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Human gut microbiota development has been associated with
healthy growth but understanding the determinants of community
assembly and composition is a formidable challenge. We cultured
bacteria from serially collected fecal samples from a healthy infant;
34 sequenced strains containing 103,102 genes were divided into
two consortia representing earlier and later stages in community
assembly during the first six postnatal months. The two consortia
were introduced alone (singly), or sequentially in different order, or
simultaneously into young germ-free mice fed human infant
formula. The pattern of fitness of bacterial strains observed across
the different colonization conditions indicated that later-phase
strains substantially outcompete earlier-phase strains, although four
early-phase members persist. Persistence was not determined by
order of introduction, suggesting that priority effects are not
prominent in this model. To characterize succession in the context
of the metabolic potential of consortiummembers, we performed in
silico reconstructions of metabolic pathways involved in carbohy-
drate utilization and amino acid and B-vitamin biosynthesis, then
quantified the fitness (abundance) of strains in serially collected
fecal samples and their transcriptional responses to different histo-
ries of colonization. Applying feature-reduction methods disclosed a
set of metabolic pathways whose presence and/or expression
correlates with strain fitness and that enable early-stage colonizers
to survive during introduction of later colonizers. The approach
described can be used to test the magnitude of the contribution of
identified metabolic pathways to fitness in different community
contexts, study various ecological processes thought to govern
community assembly, and facilitate development of microbiota-
directed therapeutics.
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Studies performed during the past decade provide a rapidly
expanding body of evidence that the gut microbiota is an

important determinant of health status. These insights have arisen
from correlative studies between host physiologic, metabolic, im-
mune, and/or other phenotypes and microbial community con-
figuration (defined at varying levels of resolution). Tests of
whether microbiota configurations are causally related to host
phenotypes of interest include assessments of the ability of com-
munities to transmit these phenotypes to recipient germ-free an-
imals, or whether transplantation of microbiota from healthy
humans can ameliorate disease in affected humans. The increasing
number of associations between the microbiota and host biological
features highlights the need to identify mechanisms that determine
how microbial communities function, for example how they assemble
following birth, how they adapt to various environmental perturba-
tions, how they maintain their robustness/resiliency, and how they
influence various aspects of host physiology and pathophysiology.
Obtaining these insights is complicated by the complexity of the
microbiota (1–3); in addition to harboring strain-level variants of
many microbial species, the system is very dynamic with genetic and

metabolic features and patterns of gene expression varying over time,
space, and at different scales. Organisms, genes, and gene products
interact with each other, with the number of possible pairwise
and higher-order interactions becoming so large as to befuddle in-
terpretation of community organization and dynamics. The pressing
nature of the problem is underscored by the fact that the ease and
cost of generating genomic, transcriptional, and metabolomic datasets
are changing in ways that are yielding a tsunami of “multiomic” data
that describe ever-expanding lists of community components (4–7).
The history of fields that study complex phenomena and col-

lect vast amounts of data emphasizes how establishing relation-
ships between the properties of a system and the properties of its
constituent parts is often a formidable challenge. Key advances
occur when groups of interacting components are identified and
the resulting dimension reduction generates testable hypotheses
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about mechanisms that determine how a system operates (8–15).
Assembly of the gut microbiota (succession) illustrates the chal-
lenges encountered as well as the insights that can be gleaned
from this type of approach. There are several reasons for using
succession as a case study. First, studies of birth cohorts repre-
senting different geographic locales and anthropologic features
have revealed shared features of community assembly across bi-
ologically unrelated healthy individuals (15). This finding suggests
that there are organizing principles that underlie the process of
succession. Second, studies of children with moderate and severe
acute malnutrition have shown that this process is interrupted,
yielding communities that appear younger (more immature) than
those of chronologically age-matched children with healthy
growth. Initial studies indicate that repair of this immaturity with
microbiota-directed complementary foods is associated with marked
changes in numerous biomarkers and mediators of healthy growth,
including those related to bone biology, immune function, metabolic
regulation, and neurodevelopment (15, 16). The latter observation
suggests that healthy microbiota development is linked to healthy
growth. Third, it is possible to model succession in gnotobiotic mice
so that the number of system components and variables can be
constrained.
Here, we characterize microbial succession in gnotobiotic mice

colonized with 34 gut bacterial strains from a single infant. These
strains, which contain a total of 103,102 known or putative
protein-coding genes, were divided into two consortia repre-
senting earlier and later periods in microbiota assembly during
the first six postnatal months. Each consortium was introduced
alone, in a different order, or together, into groups of young,
germ-free animals fed a compositionally defined human infant
formula (IF) diet. Employing techniques originally used for
feature reduction in signal processing (17), we identify a small set
of genomic features whose presence and/or pattern of expression
is associated with the fitness of consortium members, including
determinants of the establishment and persistence of a subset of
early colonizers. In principle, the experimental and computa-
tional approaches described in this paper should be generally
applicable for studies of competition, niche partitioning, and
other processes that govern succession. They may also help guide
development of prebiotic, probiotic, and synbiotic approaches
for treating or preventing defects in community development.

Results
A Manipulable In Vivo Model of Human Gut Microbial Succession.
Generating consortia of cultured bacterial strains representing stages of
microbiota development during predominant milk feeding.We began by
generating a clonally arrayed collection of 68 bacterial strains
isolated from six fecal samples obtained on postnatal days 38, 67,
133, 247, 339, and 683 from a healthy, vaginally delivered
member of a US birth cohort comprised of 40 twin pairs (18).
This infant consumed both breast milk and formula, with exclu-
sive formula feeding beginning during the second postnatal month
and complementary feeding commencing at 19 wk of age (Dataset
S1). The genomes of bacterial isolates were sequenced. To identify
associations between the bacterial strains that were recovered
(Dataset S2) and temporal stages of microbiota development, we
performed an indicator species analysis (19) on a bacterial V4-16S
ribosomal RNA dataset generated from the 40 twin pairs (n =
21 ± 6 [mean ± SD] samples per individual; total of 1,670 samples;
see Materials and Methods). Microbiota developmental trajectory
was divided into three stages: stage 1 (S1), encompassing the first
two postnatal months, stage 2 (S2), months 2 through 6, and stage
3 (S3), months 6 through 24. S1 was intended to capture organ-
isms that colonize early, either due to their specific fitness ad-
vantages in exclusively milk-fed infants or their enhanced ability to
colonize naïve habitats. S2 was intended to capture organisms that
may still have preferences for nutrients in milk, but also reflects
the period during which the infant gut community is rapidly

acquiring new taxa and is first exposed to complementary foods.
S3 was intended to capture microbes with preferences for nutri-
ents represented in an expanding “menu” of complementary foods
and in fully weaned diets. Colonization by S2 and S3 organisms
could reflect environmental conditions engineered by earlier col-
onizers and their ability to either coexist with or displace earlier
colonizers. Guided by the indicator species analysis, the 68 cul-
tured strains were assigned to developmental stages based on
their taxonomic relationships to S1-, S2-, or S3-associated oper-
ational taxonomic units (OTUs) from the twin pair dataset
(Dataset S2).
We focused on the period of colonization encompassed by

predominant milk feeding (S1 and S2), allowing us to model, in
gnotobiotic mice, interactions between members of a given stage
consortium, as well as between different stage consortium
members, in a commonly used human IF diet context. Young (3-
to 4-wk-old) germ-free C57BL/6J mice were weaned directly
onto the IF diet and then maintained on this diet ad libitum.
Different groups of animals were subjected to different histories
of exposure to the S1 consortium (composed of 21 members) and
the S2 consortium (13 members); one group was only colonized
with the S1 consortium, another with only the S2 consortium, a
third with the S1 consortium followed by the S2 consortium
13 d later (S1→S2), a fourth group with the S2 consortium followed
by S1 consortium 13 d later (S2→S1), and a fifth group where
both sets of strains were administered simultaneously (S1+S2)
(n = 5 mice per treatment group).
S2 organisms substantially and reproducibly outcompete S1 organisms.
We performed COmmunity PROfiling by short-read shotgun
sequencing (COPRO-Seq; Materials and Methods) of fecal DNA
samples collected over time from animals with the five different col-
onization histories (Dataset S3A). Fig. 1 shows the fitness (fractional
abundance in the fecal microbiota) of members of the S1 and
S2 consortia as a function of time and order of introduction.
The pattern of fitness of bacterial strains observed across the

different colonization conditions indicated that S2 organisms
substantially outcompete S1 organisms, although four S1 members
persist: Clostridium bolteae, Clostridium innocuum, Escherichia
coli, and Enterococcus casseliflavus (≥0.01 fractional representa-
tion in at least one of the three colonization conditions with S2
consortium members) (Fig. 1 and Dataset S3A). Thus, coloniza-
tion success does not seem to be driven by “arrival” order but
rather by fitness differences (i.e., in this model, priority effects are
not prominent). The results obtained in this initial study of five
types of colonization treatments and in a follow-up experiment
involving mice that received the S1 consortium alone, the S2
consortium alone, or S1 followed by S2 (n = 5 mice per treatment
group) established that the patterns of colonization/fitness were
highly reproducible (SI Appendix, Fig. S1 and Dataset S3B).
To determine whether there were also reproducible effects on

the gut nutrient/metabolic environment, we used targeted mass
spectrometry to measure the concentrations of 27 carbohydrates,
19 amino acids, and 10 B vitamins in cecal contents harvested
from animals subjected to colonization with the S1 consortium
alone, the S2 consortium alone, or the S1→S2 sequence. The
extent to which levels of a given analyte were increased for a
particular colonization condition relative to germ-free controls
was calculated (SI Appendix, Fig. S2A and Dataset S4). The re-
sults provided additional evidence for the reproducibility of the
two independent experiments involving the three different types
of colonization treatments (SI Appendix, Fig. S3). Increases in
the relative levels of nine analytes (isomaltose, gluconate, glu-
curonate, maltitol, raffinose, riboflavin, pyridoxal, pyridoxamine,
and nicotinic acid) reflected the effect of colonization per se
rather than consortium-specific effects (SI Appendix, Fig. S2A).
Principal components analysis (PCA) was subsequently per-
formed on the 47 analytes whose levels were consortium-specific.
Plotting the changes in levels of these 47 analytes in a given mouse
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subjected to a given colonization history disclosed that the cecal
metabolic landscape of animals colonized with S2 members was
distinct from that produced by the S1 consortium alone (SI Ap-
pendix, Fig. S2B and Dataset S4D).

Identifying Determinants of Fitness.
Analytic approach. These observations raise the question of what
are the determinants of fitness of organisms subjected to these
deliberately orchestrated colonization sequences, including the
four persistent S1 members. Addressing this question is chal-
lenging for a number of reasons. Given the very large number of
potential pairwise and higher-order interactions that may occur
between organisms, performing a systematic series of “leave one
or more bacterial strains out prior to gavage” experiments in-
volving S1 and S2 consortia and noting the effects on the fitness of
the remaining consortium members in vivo is not feasible. An
analogous in vitro approach is not tenable for similar reasons and
is compounded by 1) current limitations in the ability to culture
defined consortia of microbes in bioreactors in a manner that
yields reproducible community structures, 2) the lack of media
that reproduce the nutrient/metabolic landscapes of different re-
gions of a naïve (germ-free) gastrointestinal tract, and 3) the lack
of representation of other habitat features (e.g., adhesive surfaces
including partially digested food particles that could serve as sites
of attachment of community members in ways that foster metabolic

exchange/syntropic relationships, the mixing/agitative/propulsive
forces experienced by gut microbes as they transit the gut,
components of the adaptive and innate immune system, etc.).
Moreover, tools for genome-wide forward genetic screens of fit-
ness determinants are not available for a majority of the strains
included in the S1 and S2 consortia. Even if these tools were
available, a multiplicity of genes/pathways could contribute to the
fitness of a given organism, thus limiting the effect size produced
by single mutations in a given genome. Moreover, these genetic
screens would, ideally, be conducted simultaneously in more than
one community member to identify fitness determinants that re-
flect key interactions between organisms (20, 21).
Based on these considerations, we focused on identifying

metabolic pathways whose presence/absence and/or levels of
expression correlated with the different degrees of fitness of S1
and S2 organisms. Our goal was to address the question of why
S2 organisms generally outcompete S1 organisms and what allows
the subset of S1 organisms to persist in the climax communities
resulting from the three different tandem colonization sequences.
We reasoned that referencing metabolic pathway presence/
expression to the climax community resulting from colonization with
the S1 consortium alone or the S2 consortium alone would be an
inadequate way of relating the state of the transcriptome to the
fitness of organisms that have experienced a history of S1→S2,
S2→S1, or S1+S2 colonization. Rather, an alternative strategy
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would be to embrace a “within-treatment group” analysis and
use a data-driven approach to identify collective sets of metabolic
pathways whose presence and/or levels of expression vary between
organisms of varying fitness over each of the S1→S2, S2→S1, and
S1+S2 treatment conditions. To do so, we generated microbial
RNA-sequencing (RNA-Seq) datasets using cecal contents har-
vested at day postgavage 28 (dpg 28) from all animals in all
treatment groups. Dataset S5A presents correlations between the
number of reads that mapped to each organism’s genome and the
abundance of that organism across all conditions tested in the two
independent sets of colonization experiments. The results show
that the strength of the Pearson correlation varies considerably
between the organisms (range of r2 values 0.13 to 0.98). However,
because a substantial number of organisms did have statistically
significant correlations (P < 0.05), transcripts counts were nor-
malized as reads per kilobase of a given gene’s length per million
transcript reads (TPM) for each organism in each colonization
condition in order to contextualize its transcriptional profile
relative to the total abundance (number) of its expressed
transcripts (Dataset S5B). We then aggregated the normalized
RNA-Seq counts according to functional annotations of meta-
bolic pathways represented in the genomes of S1 and S2 consor-
tium members, focusing on pathways involved in carbohydrate
utilization and fermentation, biosynthesis of amino acids, and
vitamins/cofactors. Our rationale for this focus was that 1) car-
bohydrates comprise a key source of carbon and energy for a
variety of heterotrophic microbes via central carbon metabolism,
2) protein production is critical for fitness, and 3) B vitamins play a
critical role as precursors of essential cofactors for myriad meta-
bolic reactions (B1 [thiamine], B2 [riboflavin], B3 [nicotinic acid],
B5 [pantothenate], and B6 [pyridoxine] are precursors of cofactors
that drive hundreds of indispensable biochemical transforma-
tions, while B7 [biotin], B9 [folate], and B12 [cobalamin] function
as cofactors of enzymes involved in fatty acid biosynthesis, single-
carbon metabolism, methionine biosynthesis, and several other
pathways). Pathway annotations and in silico metabolic recon-
structions were based on the RAST/SEED platform. This plat-
form combines homology- and genome context-based evidence
with known sets of enzymatic reactions and nutrient transporters
to group genes into “microbial community (mc) subsystems”
(mcSEED subsystems) that capture and project variations in
particular metabolic pathways/modules across thousands of mi-
crobial genomes (22, 23). Genome annotations categorized by
mcSEED subsystems are presented in Dataset S5B and summa-
rized in SI Appendix, Fig. S4 in the form of a binary phenotype
matrix (BPM) that plots predicted metabolic phenotypes, such as
biosynthetic capabilities for amino acids, vitamin/cofactors, and
other essential metabolites (e.g., queuosine and menaquinone), as
well as the ability or inability to utilize specific carbohydrates and/or
generate short-chain fatty acid (SCFA) products of fermentation
(for details see Bacterial Genome Sequencing, Assembly, in Silico
Metabolic Reconstructions, and Phenotype Predictions). For anal-
ysis of expression data, we utilized a broader and more granular
set of curated mcSEED metabolic pathways/modules (24).
After aggregating TPM-normalized RNA-Seq counts accord-
ing to these mcSEED functional annotations, we generated ta-
bles of mcSEEDmetabolic pathway/module-normalized transcript
counts for all S1 and S2 organisms. The summed expression of
all genes comprising a given metabolic pathway/module pro-
vided a quantitative measure of its activity. Expression of a
specific mcSEED pathway in an organism was then averaged
over mice that had been subjected to a given colonization
sequence.
As the S1 and S2 consortia comprise organisms that are ge-

netically diverse and therefore contain different sets of encoded
metabolic pathways/modules, we evaluated the extent to which
the transcriptomes of community members resembled that of the
highest-fitness organism at the end of each of the three types of

tandem colonization experiments—Parabacteroides distasonis.
To do so, we log-normalized expression of a given pathway to the
same pathway in P. distasonis. A “relative expression score”
(REi

x in Eq. 1) was calculated for each metabolic pathway i in a
given organism subject to a specific colonization condition (MPi

x)
relative to expression of the metabolic pathway i in P. distasonis
under the S1→S2 colonization condition (Refi):

REi
x = ln

ðMPi
x + 0.1Þ

ðRefi + 0.1Þ. [1]

For this calculation, TPM-normalized aggregated transcript
counts for mcSEED metabolic pathways that were either 1)
absent or 2) not expressed were ascribed a 0. To enable a
quantitative comparison to the reference, a pseudocount of 0.1
was added to the metabolic pathway MPi

x and Refi.
The set of relative expression scores calculated for a given

organism (Fig. 2A) was termed that organism’s “mcSEED path-
way relative expression profile.”We subsequently created a matrix
of mcSEED pathway relative expression profiles for all four S1
organisms that survived introduction of the S2 consortium plus
each of the eight S2 organisms that had successfully colonized
under all treatment conditions and whose summed contribution to
the cecal metatranscriptome represented ≥96% of total reads
averaged over all mice in each treatment group (Dataset S6
A and B).
We performed PCA on the matrix of mcSEED pathway rel-

ative expression profiles of individual strains under each tandem
colonization sequence tested to identify groups of covarying
metabolic pathways/modules that cluster organisms along prin-
cipal components (eigenvectors) based on the similarity of their
transcriptional profiles (Dataset S6C and see Materials and
Methods). The first three principal components explained 75% of
variation in the mcSEED relative expression profiles of S1 and
S2 member species (Fig. 2B and Dataset S6D). Moreover, the
mcSEED relative expression profiles of each organism clustered
together in the PCA space irrespective of whether the climax
community reflected a history of S1→S2, S2→S1, or S1+S2
colonization (including the two Ruminococcus gnavus strains)
(Fig. 2B). Notably, there was a linear relationship between the
projection of mcSEED relative expression profiles for a given
strain along PC1 and its fitness (fractional abundance) (r2

[Pearson] = 0.7; Fig. 2C). Dataset S7 shows that the order of
strain projection along PC1 was the same in each of the three
different tandem colonization conditions evaluated. Importantly,
because transcript counts were TPM-normalized prior to analysis
of relative pathway expression, the linear relationship observed
could not be ascribed simply to abundance differences between
organisms, but rather pointed to differences in pathway presence
and/or expression as fitness determinants.
Pathways associated with the two S2 organisms having highest fitness in
all tandem colonization experiments. Singular value decomposition
(SVD) is a mathematical technique used to relate the eigens-
pectrum of the rows of a matrix to the eigenspectrum of the col-
umns of the matrix (Fig. 3A) (17). We employed SVD to identify
those mcSEED metabolic pathways/modules that most contribute
to variance along PC1 in the relative pathway expression profiles
of the four S1 and eight S2 organisms that survived in the three
different types of tandem colonization experiments (Dataset S8A
and see Materials and Methods). Specifically, we focused on the
positive and negative 10th percentiles of mcSEED pathway/
module projections along the first right singular vector shown in
Fig. 3B (Dataset S8A). Hierarchical clustering of strains by rela-
tive expression scores for these 18 pathways shows that the two
strains with the highest and second highest fractional abun-
dance values in all tandem colonization experiments (P. distasonis
and Akkermansia muciniphila, respectively) have similar relative
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Fig. 3. Using SVD to identify pathways distinguishing bacterial strains with different fitness characteristics. (A) The mathematical relationship between the
correlation structure of strains and mcSEED pathways/modules is depicted. The relationship between S1 and S2 strains (n = 36) is given by the 36 × 36
correlation matrix Xij and between mcSEED pathway/modules (n = 18) by the 18 × 18 correlation matrix Fij. The equation for eigendecomposition of each
correlation matrix is shown within the matrix. SVD relates the two correlation matrices by transforming the relative expression matrix (ME) into a product of
three different matrices, U, V, and Σ1/2. U and V are matrices of the left and right singular vectors from the strain and mcSEED pathway/modules correlation
matrices, respectively; they are related by the singular values contained within Σ1/2. (B) Histogram of the projection of mcSEED metabolic pathway/modules
along the first right singular vector computed by SVD. (C) Heat map of mcSEED metabolic pathway/module relative expression relative to the reference
condition highlighted in boldface (P. distasonis in the S1→S2 colonization condition) (Dataset S8B). Strains are hierarchically clustered according to the
relative expression profile of the mcSEED metabolic pathways/modules that project within the 10th percentile of the histogram shown in B. Strain names are
colored based on their membership in the S1 or S2 consortium as in Fig. 2B. (D) The source of the relative expression score for each organism/metabolic
pathway pair from C is indicated by the coded key. “Reference pathway” refers to the mcSEED metabolic pathway/module in the reference organism, P.
distasonis in S1→S2 colonization condition. “Test pathway” refers to the pathway/module of a test organism in the indicated colonization condition. See
Dataset S9 for values associated with each symbol in the matrix. Symbol key: , indicated metabolic pathway/module present and expressed in both test and
reference organisms with expression in the test organism being statistically significantly different from the reference organism; , pathway/module present
and expressed in test and reference strains but not at statistically significantly different levels; , present but not expressed in test, but present and expressed
in reference strain; , absent in test strain, but present and expressed in reference strain; , present and expressed in test but absent in reference strain; ,
present but not expressed in test strain and absent in reference strain; , absent in both test and reference strains.
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pathway expression profiles that are distinct from the other six
S2 and four S1 organisms that we were evaluating (Dataset S8B).
The 18 mcSEED metabolic pathways/modules that distin-
guish the S2 organisms P. distasonis and A. muciniphila from the
other bacterial strains include those involved in carbohydrate
utilization (N-acetylgalactosamine/galactosamine [GAlNAc/
GalN], fructoselysine/glucoselysine, and tagatose), metabolism
of amino acids (branched-chain amino acid [BCAA] uptake,
tryptophan uptake, and biosynthesis), vitamin/cofactors (ribo-
flavin uptake), respiratory electron carriers (menaquinone
biosynthesis), and fermentation products (L-lactate) (Fig. 3C).
Fig. 3D deconvolutes the relative expression scores for the 18

metabolic pathways/modules in the four S1 and eight S2 organ-
isms in each of the three colonization conditions into whether
the pathway was present or absent, if present whether it was
expressed, and if expressed whether expression was significantly
different from in the reference P. distasonis strain present in the
community that had experienced the indicated colonization
history (i.e., S1→S2, S2→S1, or S1+S2). [Nonparametric statis-
tical comparisons were performed between mcSEED-aggregated
expression data by Dunn’s multiple comparisons test versus the
corresponding reference P. distasonis, following a significant
Kruskal–Wallis test (P < 0.05) (Dataset S9)]. Fig. 3 C and D
present 648-cell matrices of 18 metabolic pathways/modules by
12 organisms by three tandem colonization conditions. Fig. 3D
shows the nine mcSEED pathways/modules comprising the neg-
ative 10th percentile of pathway/module projections along the first
right singular vector (ethanol fermentation, BCAA uptake,
GalNAc/GalN utilization, L-lactate fermentation, riboflavin uptake,
pantothenate [vitamin B5] uptake, tryptophan uptake, and tagatose
utilization) and the nine pathways/modules comprising the positive
10th percentile of projections (propionate fermentation, lipoate
biosynthesis, cobalt uptake for cobalamin [B12] biosynthesis,
tryptophan biosynthesis, gluconate utilization, inositol utiliza-
tion, menaquinone biosynthesis, proline degradation, and histi-
dine degradation). Comparing Fig. 3D with the scores provided in
Fig. 3C reveals that the source of the positive relative expression
score of the pathways comprising the negative 10th percentile in
the test organisms is largely due to their absence in P. distasonis
(227 of 324 cells [70%] with the remainder of cells reflecting ab-
sence in both the reference and test organisms). In contrast, for
the nine pathways comprising the positive 10th percentile of
projections, 79 of 324 cells (24%) reflect statistically significant
differences in expression while 144 of 324 (44%) reflect pathway
absence. Importantly, with the exception of the lipoate and tryp-
tophan biosynthesis pathway in Peptoclostrium difficile (the taxo-
nomic assignment now applied to what was formerly Clostridium
difficile; ref. 25) and the tryptophan biosynthesis and gluconate
utilization pathways in E. casseliflavus, the pattern of “expressed/
not expressed” across the nine pathways/modules in each of the 11
test organisms was robust to order of colonization. Based on this
criterion, priority effects appear to be minimal in this model of
succession.
A. muciniphila is phylogenetically unrelated to P. distasonis

but exhibits the second-highest fitness in each of the tandem
colonizations tested (Fig. 2C). Therefore, using A. muciniphila
as an alternative reference strain for interrogating the source
of relative expression scores shown in Fig. 3C provides an
opportunity to test whether the results displayed in Fig. 3D are
robust to the choice of reference strain. We find that using A.
muciniphila recapitulates a pattern of relative expression
scores very similar to when P. distasonis is employed as the
reference with the exception of four pathways: ethanol fer-
mentation, pantothenate uptake, gluconate utilization, and
histidine degradation (compare Fig. 3D, SI Appendix, Fig. S5,
and Dataset S10). Genes comprising these four pathways have
opposite patterns of presence/absence in the two organisms: A.
muciniphila has the apparatus for ethanol fermentation and

pantothenate uptake while P. distasonis does not; P. distasonis
contains the pathway for degradation of histidine and a po-
tential gluconate transporter while A. muciniphila does not
(Fig. 3D).
Fitness determinants in the four S1 organisms that persist in the presence
of S2 consortium members. Having identified 18 fitness-associated
metabolic pathways among the 92 evaluated, we focused on the
four S1 organisms (C. innocuum, E. casseliflavus, C. bolteae, and
E. coli) that survive introduction of the S2 consortium as well as
the S1 consortium member, Enterococcus faecium, that suffers
the greatest mean reduction in its fractional abundance after
introduction of S2 organisms (fractional abundance 0.14 in the
S1-only colonization condition compared to 0.002, 0.006, and
0.007 in the S1→S2, S2→S1, and S1+S2 conditions, respectively
[SI Appendix, Fig. S5 and Dataset S3A]). To address the question
of why C. innocuum, E. casseliflavus, C. bolteae, and E. coli are
able to survive while E. faecium exhibited a pronounced re-
duction in fitness, mcSEED relative expression profiles were
created for each of these organisms for all four colonization
conditions (S1 alone, S1→S2, S2→S1, and S1+S2). E. faecium in
the “S1 consortium only” treatment group served as the refer-
ence to create a “mcSEED relative expression matrix” spanning
the 18 mcSEED metabolic pathways described above (Dataset
S11 A and B). Using E. faecium as the reference allowed us to
determine 1) the extent to which its transcriptome changed in
the presence of the S2 consortium members compared to the S1
alone colonization condition where its fitness in the climax
community was greater than that of C. innocuum, E. coli, and C.
bolteae and 2) the extent to which its transcriptome in the tan-
dem colonization conditions resembled that of the four survivors.
Coverage of genes represented in the E. faecium transcriptome
in the S2→S1 and S1+S2 colonization conditions was compara-
ble to the S1 alone condition, while coverage in S1→S2 was
decreased from ∼83% for S2→S1 compared to S1 alone to 38%
for S1→S2 compared to S1 alone with the coverage threshold for
inclusion of a gene in the analysis set at 50 reads for that gene
(note that this reduced coverage trend is preserved if the
threshold is raised to 100, 500, or 1,000 reads; see Dataset S12).
Therefore, the E. faecium transcriptome from the S1→ S2 col-
onization condition was omitted from the analysis.
Considering the S1 alone, S1+S2, S1→S2, and S2→S1 colo-

nization conditions, PCA revealed that the first three principal
components explain 88% of variability in the mcSEED relative
metabolic pathway/module expression profiles of C. innocuum,
E. casseliflavus, C. bolteae, and E. coli and E. faecium (Fig. 4A,
Dataset S11C, and see Materials and Methods). The relative ex-
pression profiles of C. innocuum, E. casseliflavus, C. bolteae, and
E. coli were not affected by exposure to the S2 consortium as de-
fined by their positions along any of the three principal compo-
nents, while that of E. faecium changed primarily along PC3. This
was true regardless of the order presentation of the S2 consortium.
By performing SVD on the mcSEED relative expression ma-

trix, we found that the position of each organism’s mcSEED
pathway relative expression profile along the three principal
components is determined by 11 of the 18 metabolic pathways
(Fig. 4 B–D, Dataset S11D, and see Materials and Methods). The
mcSEED pathway relative expression profile for E. coli under all
colonization conditions is positioned on the negative extreme of
PC1 (Fig. 4A). Fig. 4E shows that this position in PCA space
corresponds to positive relative expression scores for metabolic
pathways/modules involved in BCAA (isoleucine/leucine/valine)
uptake, tryptophan biosynthesis, and menaquinone biosynthesis
relative to E. faecium in the S1-alone colonization condition and
negative scores for the L-lactate fermentation pathway (Dataset
S11A). The positive relative expression score for the BCAA
biosynthesis pathway reflects its increased expression compared
to the reference organism (statistically significant in the S1+S2
and S2→S1 treatment groups and but not reaching statistical
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Fig. 4. S1 members that survive after introduction of the S2 consortium retain their mcSEED metabolic pathway expression pattern. (A) mcSEED metabolic
pathway/module relative expression profiles defined by the 18 mcSEED pathways/modules identified by SVD in Fig. 3B for each organism under all coloni-
zation conditions are plotted on a PCA space. The relative expression profile of E. faecium (S1 alone) is used as the reference. The space on the right of the
panel has been rotated by 60° for ease of visualization. (B–D) SVD performed on the PCA space in A yields projections of mcSEED metabolic pathways/modules
onto right singular vectors 1 to 3. Histograms of these projections onto right singular vector 1 (B), vector 2 (C), and vector 3 (D) are shown. Projections within
the positive and negative 10th percentiles for the first and second singular vectors are labeled and included in E. As the third right singular vector is negatively
skewed, the projections within the negative 20th percentile are labeled and also included in E. (E) The mcSEED metabolic pathways/modules that define
separation of species’ relative expression profiles along PC1, PC2, and PC3 are shown in heat-map form for all organisms in all colonization conditions. mcSEED
metabolic pathway/module relative expression scores are shown as are a breakdown of the elements of that pathway/module’s score (i.e., pathway present/
absent; whether or not expressed; whether expressed at levels significantly different from the pathway in the reference organism). See the legend to Fig. 3D
for the key to the symbols used in each cell in the lower portion of the panel and Dataset S13 for the values associated with the symbols. (F) Box plots of levels
of N-acetylgalactosamine and tagatose in cecal contents harvested from mice belonging to the indicated treatment group.

Feng et al. PNAS | February 4, 2020 | vol. 117 | no. 5 | 2629

M
IC
RO

BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918951117/-/DCSupplemental


significance in the S1-alone and S1→S2 conditions [Dataset S13]).
For the tryptophan and menaquinone biosynthesis pathways, the
positive score originates from its expression in E. coli and pathway
absence in the reference E. faecium strain. The negative score for
the L-lactate fermentation pathway reflects its absence from E. coli
and presence in the reference E. faecium strain (Dataset S11A).
The mcSEED pathway relative expression profile for C. innocuum
under all colonization conditions is positioned on the positive
extreme of PC2 (Fig. 4A). This corresponds to positive relative
expression scores for the BCAA uptake, tryptophan biosynthesis,
and fructoselysine/glucoselyine utilization pathways and negative
scores for the gluconate utilization, lipoate biosynthesis, and
propionate production (fermentation) pathways (Fig. 4E). The
negative score of the latter pathways reflects their absence in C.
innocuum (Dataset S11A). The positive scores for the BCAA
uptake and fructoselysine/glucoselysine utilization pathways reflects
their statistically significant increases in expression in C. innocuum
relative to E. faecium (Dataset S13), while the positive score for
the tryptophan biosynthetic pathway is due to its absence in the
genome of E. faecium (Dataset S11A). The mcSEED metabolic
pathway/module relative expression profile for C. bolteae under all
colonization conditions is positioned on the negative extreme of
PC3 (Fig. 4A). This corresponds to negative scores for its tagatose
and GalNAc/GalN utilization pathways, both of which share a
common intermediate, tagatose-6-phosphate (Fig. 4E and Dataset
S11A). The negative score for the tagatose pathway is due to its
absence in C. bolteae (Dataset S13).
Mass spectrometry-based measurements of tagatose, N-

acetylgalactosamine, proline, and histidine in cecal contents con-
firmed statistically significant differences in their levels in mice
colonized with the S1 consortium alone compared to mice in-
oculated with just the S2 consortium or subjected to the various
tandem colonization conditions (Dataset S4E and Fig. 4F). One
conjecture is that low levels of GalNAc reflect the fact that among
the most abundant strains in mice harboring the S1 consortium
alone are three GalNAc utilizers (E. coli, Clostridium butyricum,
and Citrobacter amalonaticus), while the S2 community only in-
cludes one GalNAc-utilzing strain (Collinsella intestinalis). Low
levels of tagatose could be related to the high abundance of a
tagatose utilizer, E. faecium in the S1 community, while the S2
community has only C. intestinalis as a potential tagatose utilizer.
However, testing hypotheses about how these observed differ-
ences in carbohydrate and amino acid concentrations are related
to differences in bacterial gene expression as well as their extra-
cellular versus intracellular distributions, rates of uptake, and
metabolic origins or fates in S1 and S2 community members will
require time-series expression measurements and complex in vivo
flux analyses using isotopically labeled compounds.
In summary, as shown in the PCA space in Fig. 4A, the

mcSEED metabolic pathway/module relative expression profiles
of the four S1 “survivors” remain unchanged in the various colo-
nization contexts that also contain members of the S2 consortium,
thus providing a measure of how these organisms are suited to the
environment created by introduction of S2 organisms. Our find-
ings indicate that, in the context of this experimental model, their
fitness reflects the presence and/or expression of key genomic
assets (mcSEED pathways/modules) that are not present in the
nonpersisting E. faecium.

Discussion
Characterizing determinants of microbial succession is critical
for defining how gut bacterial community compositions are
achieved; this includes understanding 1) to what degree the se-
quential order of microbial introduction determines composition,
2) what determines the fitness of specific member species over
others, and 3) how member species can survive perturbations to
the gut ecosystem. Here, we describe a simplified model of mi-
crobial succession that involves two defined consortia of cultured,

sequenced bacterial strains representing early and later colonizers
of an infant human gut, introduced singly and in different order
into gnotobiotic mice fed an IF diet. Our experimental and
computational approaches allowed us to reduce a dataset of
103,102 genes to a lower-dimensional dataset of 18 metabolic
pathways that correlate with bacterial fitness in competition ex-
periments between S1 and S2 consortium members. Members of
the S2 consortium generally outcompeted members of the S1
consortium in a reproducible fashion, independent of their order
of arrival, indicating that priority effects were not deterministic in
this model. The model system allowed us to dissect the under-
pinning of the dominance of individual S2 consortium members
over S1 consortium members by determining the extent to which
18 mcSEED metabolic pathways/modules were represented in
their genomes and expressed. Moreover, the representation of
these pathways and their expression in the four S1 organisms that
do survive in the three different types of tandem colonization
treatments examined revealed how they were better suited (adapted)
to the environment created by the S2 consortium than the other
S1 strains.
The considerable genetic, transcriptional, and metabolic var-

iation observed within and across the gut microbial communities
of humans provides a “substrate” for gut microbiota adaptation
to varying selective pressures over varying time scales (26). Re-
lating the varied genomic features of gut community members,
and expression of these features, to the overall temporal pattern
of community development represents a key aspect of the for-
midable challenge faced when seeking to understand the deter-
minants and form of succession. The ability to deliberately
control membership of bacterial consortia and the order of their
introduction into recipient gnotobiotic animals, combined with
feature-reduction approaches, provides an avenue for identifying
the significance of genome variation/gene expression, at strain-
level resolution, in determining the “trajectory” of succession.
The output of this type of experimental and computational ap-
proach is a low-dimensional description of fitness determinants.
The experimental and analytic approaches employed may be

useful for a variety of future studies. In principle, they are suit-
able for characterizing ecological processes that govern com-
munity assembly in the gut such as competition, niche partitioning,
exclusion, limiting similarity, and priority effects and testing hy-
potheses based on these concepts. They can be used to model a
variety of types of community disturbances in order to 1) decipher
the underpinnings of robustness/resiliency when such disturbances
are applied and 2) identify new metrics for characterizing the se-
verity of perturbations and the efficacy of their repair with existing
and new therapeutic agents. The present study used mcSEED
pathways as an exemplary annotation because these pathways are
extensively curated. However, a variety of other annotation
schemes can be applied to microbial genomes in order to sys-
tematically assess their value in revealing which key features in
community members relate to their fitness. Finally, we do not
provide evidence of the dependence of our results (identified
pathways) on the choice of strains used to construct the S1 and S2
consortia. The approaches to modeling succession described in the
present paper underscore the need to aggressively expand the
capacity to genetically manipulate members of the gut microbiota
so that the magnitude of the contribution of identified features to
organismal properties in different community contexts can be
tested directly.

Materials and Methods
Bacterial Culture Collections. Deidentified fecal samples that had been col-
lected from a vaginally delivered infant on postnatal days 38, 67, 133, 247,
339, and 683 were used to create a bacterial culture collection; these samples
were obtained during the course of a previously reported and completed
study that had been approved by the Human Research Protection Office of
Washington University School of Medicine and described in ref. 18. No new
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fecal samples were collected for the current study. All fecal samples had
been frozen at −80 °C shortly after their production and maintained at that
temperature until further use.

To generate the culture collection, previously weighed frozen samples were
brought into an anaerobic Coy chamber (atmosphere: 75% N2, 20% CO2, and
5% H2) and placed in sterile 50-mL conical tubes containing 5 mL of 2-mm-
diameter sterile soda lime glass beads (26396-58; VWR). A sufficient amount of
reduced phosphate-buffered saline (PBS) (PBS with 0.05% L-cysteine-HCl) was
added to each sample so that the final concentration of fecal material was 100
mg/mL buffer. The tube was then subjected to four cycles of vortexing (30 s at
3,000 rpm with a 30-s pause per cycle) to disrupt clumps in the fecal sample.
The resulting suspension was passed through a sterile 100-μm-pore-diameter
cell strainer (352360; Corning Life Sciences). An equal volume of sterile re-
duced PBS/30% glycerol was added to the resulting filtrate and the tube was
inverted several times to ensure mixing. Aliquots of the clarified fecal sample
were stored in 2-mL Crimp-Top EZ Vials (Wheaton) that were then sealed and
frozen at −80 °C. Other aliquots were serially diluted in reduced PBS and
plated on brain heart infusion agar (BHI; Becton-Dickinson) supplemented
with 10% horse blood and Mega33.1 agar (Dataset S2). Plates were incubated
at 37 °C for 2 to 3 d in the anaerobic Coy chamber. A total of 3,000 colonies
were picked and each inoculated into Mega33.1 medium in 96 deep-well
plates (260251; Thermo Fisher). Plates were covered with aluminum foil seals
and incubated at 37 °C for 2 to 3 d in the anaerobic Coy chamber. A BioTek
Precision XS robot, located within the Coy chamber, was used to transfer a
50-μL aliquot of each of culture into wells of a 96 shallow-well plate (92696;
Midwest Scientific) containing 50 μL of reduced PBS/30% glycerol. Replicate
plates were generated, sealed, and stored at −80 °C until use.

Genomic DNA was isolated from the remaining material from the deep-well
plate and subjected to V4-16S ribosomal DNA (rDNA) amplicon sequencing
(primers 515F and 806R). Isolates were grouped into 97% ID OTUs. Three to
four isolates representing each OTUwere then subjected to full-length 16S rDNA
gene sequencing (primers 8F and 1391R). Isolates were grouped into a total of
68 unique isolates; those sharing ≥99% nucleotide sequence identity in their 16S
rDNA genes were considered to represent a unique isolate. The 68 isolates were
then cultured in Mega33.1 broth, LYHBHI broth, or LYHBHI broth supplemented
with 0.1% (wt/vol) soluble starch (21780; Difco) and 0.5% (wt/vol) partially
purified porcine stomach mucin (M1778; Sigma) (Dataset S2). Stocks were
made in culture media containing 15% glycerol and stored at −80 °C.

Bacterial Genome Sequencing, Assembly, in Silico Metabolic Reconstructions,
and Phenotype Predictions. DNA was purified from each isolate. Barcoded li-
braries were prepared (Illumina TruSeq Nano DNA Library Prep Kit or Illumina
Nextera DNA Library Prep Kit.) and sequenced (Illumina MiSeq instrument;
paired-end 150-nt or 250-nt reads). Reads were demultiplexed and assembled
(Spades version 3.5.0). Genes were initially annotated using Prokka (v1.11).
Additional annotations were based on SEED, a genomic integration platform
that includes a growing collection of complete and nearly complete microbial
genomes with draft annotations performed by the RAST server (22). SEED
contains a set of tools for comparative genomic analysis, annotation, curation,
and in silico reconstruction of microbial metabolism. Microbial Community SEED
(mcSEED) is an application of the SEED platform used for manual curation
of a large and growing set of bacterial genomes representing members of the
human gut microbiota (currently ∼2,600). mcSEED subsystems are user-curated
lists/tables of specific functions (enzymes, transporters, and transcriptional
regulators) that capture current (and ever-expanding) knowledge of specific
metabolic pathways, or groups of pathways, projected onto this set of ∼2,600
genomes (22, 23). mcSEED metabolic pathways are lists of genes comprising a
particular metabolic pathway or module; they may be more granular than a
subsystem splitting it into certain aspects (e.g., uptake of a nutrient separately
from its metabolism) (24). mcSEED pathways are presented as lists of assigned
genes and their annotations in Dataset S5B. Predicted phenotypes are gen-
erated from the collection of mcSEED subsystems represented in a microbial
genome and the results described in the form of a BPM (prototrophy or
auxotrophy for an amino acid or a vitamin/cofactor; the ability to utilize specific
carbohydrates and/or generate SCFA products of fermentation).

Indicator Species Analysis. To identify bacterial taxa associated with different
successional stages, an indicator species analysis was performed using a bacterial
V4-16S rDNAdataset generated from the birth cohort of 40 healthy US twin pairs
(18, 19) that included the child from whom we generated the culture collection.
Prior to analysis, 97% ID OTUs that did not have a relative abundance of at least
0.1% in at least five samples were removed. The significance of each OTU’s as-
sociation with S1, S2, or S3 was tested using 10,000 permutations, which were
restricted within twin pairs, and P values were adjusted for false discovery rate
according to the Benjamini–Hochberg method. The 68 isolated strains were then

assigned to stages based on the associations of related OTUs from the twin
pair dataset, according to the following criteria: 1) Each strain was assigned
to the same Stage as the OTU bearing the same species assignment; 2) strains
not sharing a species assignment with an OTU were assigned to the stage
based on the postnatal age of the donor of the sample from which they
were isolated; 3) all Enterococcaceae and Streptococcaceae were assigned to
S1, because eight of nine Enterococcaceae OTUs and four of seven Strep-
tococcaceae OTUs were indicators of S1.

Studies in Gnotobiotic Mice. All experiments were performed according to
protocols approved by theWashington University Animal Studies Committee.
No inclusion or exclusion criteria were established; all animals studied were
included in our analysis. Young (3- to 4-wk-old) male germ-free C57BL/6J mice
were maintained in plastic flexible film gnotobiotic isolators under a strict
12-h light cycle (lights on at 0600) andweaned directly to an IF diet 1 wk before
colonization with the different bacterial consortia. The IF diet consisted of a
mixture of Similac Sensitive with Iron and unflavored whey protein powder
(General Nutrition Corporation) mixed at a ratio of 8.5:1 (wt/wt). The
powdered diet was sterilized by irradiation (20 to 50 kGy). The IF mixture (20
g) was dissolved in 50 mL of sterile water. IF was presented to each group of
mice in a 50-mL-capacity liquid diet feeding tube (9019; Bioserv). Animals
were able to feed ad libitum; boots were changed daily and litter (Aspen Chip;
NEPCO) was changed twice a week.

Different treatment groups were maintained in separate gnotobiotic
isolators (five mice per cage per treatment group per experiment; one cage
per isolator). A frozen glycerol stock of a monoculture of each bacterial strain
was thawed in the anaerobic Coy chamber and inoculated into medium that
supported its growth (Dataset S2). Cultures were incubated under anaerobic
conditions at 37 °C for 2 to 3 d. Strains were pooled at an equivalent optical
density at 600 nm and then mixed with an equal volume of reduced PBS/
30% glycerol. Aliquots of the pooled S1, the pooled S2, and the pooled
S1+S2 consortium members were placed in 2-mL Crimp-Top EZ Vials
(Wheaton), and the vials were sealed and stored at −80 °C prior to gavage.
Initial gavage involved introduction of 200 μL of the pooled S1, S2, or S1+S2
consortia, via a flexible 3.8-cm-long, 20-gauge plastic tube (Fisher) into the
stomach of each recipient mouse. Germ-free controls were maintained in a
single gnotobiotic isolator and fed IF for 4 wk before they were killed.

COPRO-Seq. The time points of fecal sample collection are provided in Fig. 1.
Fecal DNA was purified from each sample and shotgun sequencing libraries
were generated using the Illumina Nextera DNA Library Prep Kit. Short-read
multiplex sequencing of barcoded libraries was performed using protocols
detailed previously (16, 20, 27). COPRO-Seq data were analyzed employing
software available at https://gitlab.com/hibberdm/COPRO-Seq (27, 28).

Microbial RNA-Seq. RNA was isolated from 20- to 50-mg aliquots of cecal
contents collected at the time mice were killed, immediately frozen in liquid
nitrogen, and stored at −80 °C. Complementary DNA libraries were pre-
pared, pooled, and subjected to multiplex sequencing using an Illumina
NextSeq instrument (21.9 ± 13.2 million [mean ± SD] unidirectional 75-nt
reads per sample) (28). Data were analyzed using methods described pre-
viously (28, 29). Briefly, reads were mapped to all bacterial genomes in the
corresponding defined community using a short-read aligner appropriate
for bacterial genomes (bowtie, v0.12.7; ref. 30), and allowing up to one
nucleotide mismatch. Transcript abundance per gene was determined by
quantifying reads that mapped within each annotated open reading frame
(ORF) in each genome, followed by creation of “per-organism” tables con-
taining sample and transcript quantitation information. Count tables and
ORF length data were loaded into R (v3.6.0) and transcript counts per gene
were normalized for each organism in each colonization condition using
reads per kilobase per million (TPM). Normalized data were then aggre-
gated according to mcSEED functional annotation to generate tables of
mcSEED metabolic pathway/module normalized transcript count.

Following a significant Kruskal–Wallis test (P < 0.05), nonparametric sta-
tistical comparisons were performed between mcSEED-aggregated expres-
sion data by using Dunn’s multiple comparisons test (versus the corresponding
reference organism). Analyses were conducted using the PMCMR (v4.3; ref. 31)
in R (v3.6.0).

Targeted Mass Spectrometry. Targeted metabolites were quantified using the
external standard method based on peak areas of analytes. To measure amino
acids, mono- and disaccharides, sugar acids, sugar alcohols, and amino sugars,
cecal contents were homogenized in 20 volumes of high-performance liquid
chromatography (HPLC)-grade water. Homogenates were centrifuged (10,000 ×g
for 10 min at 4 °C). A 100-μL aliquot of each supernatant was transferred to a
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clean 2-mL glass tube and combined with 400 μL ice-cold methanol. The
mixture was vortexed and centrifuged (10,000 × g for 10 min at 4 °C) and a
450-μL aliquot of the resulting supernatant was evaporated to dryness. Dried
samples were derivatized by adding 80 μL methoxylamine solution (15 mg/mL
stock solution prepared in pyridine) to methoximate-reactive carbonyls (in-
cubation for 16 h for 37 °C), followed by replacement of exchangeable protons
with trimethylsilyl groups using N-methyl-N-(trimethylsilyl) trifluoroacetamide
together with a 1% vol/vol catalytic admixture of trimethylchlorosilane (in-
cubation for 1 h at 70 °C). Heptane (160 μL) was added and a 1-μL aliquot of
each derivatized sample was injected into an Agilent 7890B/5977B gas chro-
matography–mass spectrometry system.

Tomeasure B vitamins cecal contents were homogenized in 40 volumes per
weight of 50% methanol. After centrifugation (10,000 × g, 4 °C), 200 μL of
the supernatant was dried in a centrifugal evaporator. Dried samples were
resuspended in 100 μL of 10% methanol and centrifuged at 10,000 × g for
2 min at 4 °C. A 80-μL aliquot of each supernatant was placed into a sample
vial and 5 μL was injected into a 1290 Infinity II UHPLC system coupled to a
6470 Triple Quadrupole (QQQ) mass spectrometer equipped with a Jet Stream
electrospray ionization source (Agilent Technologies). Chromatographic separa-
tion was performed on a Poroshell 120 SB-AQ, 3 × 100 mm, 2.7 μm column
(Agilent Technologies), using the following gradient conditions: 5 to 95% solvent
B (0 to 6 min), 95% solvent B (6 to 8 min) at a flow rate of 0.5 mL/min. Solvent A
was an aqueous solution containing 0.1% formic acid and 5 mM ammonium
formate. Solvent B contained methanol with 0.1% formic acid. Mass spectra were
acquired in positive mode using the following conditions: capillary voltage at
2,100 V, nitrogen as the nebulizer gas (35 pounds per square inch), drying gas
flow rate and temperature of 8 L/min and 300 °C, respectively, and sheath gas
flow rate and temperature of 12 L/min and 300 °C. Transitions were taken from
an optimized dynamic multiple reaction monitoring library that we generated.

The extent to which an analyte was increased in the cecum for a particular
colonization condition relative to germ-free controls was calculated (see Dataset
S4C for results from individual animals). PCA was performed on the nutrient
relative abundance matrix constructed considering 1) 47 analytes (rows) whose
increase was dependent on colonization sequence (orange portion of dendro-
gram in SI Appendix, Fig. S2A) and 2) all mice subjected to each colonization
condition (25 columns). This yielded 25 principal components. PC1 and PC2,
shown in SI Appendix, Fig. S2B, define two axes onto which each mouse subject
to each colonization condition was projected (x and y coordinates, respectively).

Using PCA and SVD to Identify Determinants of Fitness in Figs. 2 and 3. Mi-
crobial RNA-Seq of cecal contents was performed on mice subject to tandem
colonization conditions and the data were aggregated into expression levels of
mcSEED metabolic pathways from which mcSEED relative expression profiles
were created for each organism in each colonization sequence. A pseudocount
of 0.1 was added to all values prior to calculation of log-ratios in order to enable
comparisonsbetweenprofiles inwhich specificmcSEEDpathways/moduleswere
not encoded or not expressed. PCA was performed on the rows (32 in total) of
the mcSEED relative expression matrix depicted in Fig. 2A. This calculation
yielded 32 eigenvectors (principal components) onto which the mcSEED path-
way/module relative expression profile of each organism subject to a specific
colonization condition was projected. The first three eigenvectors defined the
PCA space shown in Fig. 2B, where the projection of mcSEED relative expres-
sion profiles onto these eigenvectors comprised the x, y, and z coordinates.

SVD was performed to identify those metabolic pathways that most
contribute to PC1 in Fig. 2B. The details of this calculation are as follows. The
mcSEED pathway/module relative expression matrix M (dimensions of 36
rows by 92 columns; shown in Fig. 2A) was factorized using SVD into three
separate matrices (Eq. 2):

M36x92 = U36x36E36x92V
T
36x36, [2]

where U is a square symmetric matrix of the “left singular vectors” signifying
covariation between organisms (dimensions of 36 rows by 36 columns), E is a

diagonal matrix of “singular values” relating the covariation between or-
ganisms with that of mcSEED metabolic pathways (dimensions of 36 rows by
92 columns), and V is a square symmetric matrix of the “right singular vec-
tors” associated with the covariation between mcSEED metabolic pathways
(dimensions 92 rows by 92 columns; superscript “T” indicates the matrix
transpose) (Fig. 3A).

The mcSEED metabolic pathways that contribute to variance along PC1
shown on the y axis of Fig. 2C were identified by recomputing a mcSEED
relative expression matrix derived from considering only the first left singular
vector, singular value, and right singular vector in Eq. 3 (dimensions of each
factorized matrix and recomputed matrix (MEv1) are shown in subscripts):

MEv1
36x92 = URSV1

36x1 E
SV1
1x1 V

T  LSV1
1x92 . [3]

The mcSEED metabolic pathways that contribute to the top and bottom 10th
percentile of the left singular vectors (matrix VT) are those shown in Fig. 3C.

Using PCA and SVD to Identify Determinants of Persistence in Fig. 4. An
mcSEED relative expression matrix was generated comprising the 18 mcSEED
metabolic pathways associated with bacterial fitness identified in Fig. 3B
(columns) and the four S1 “survivors” (C. bolteae, C. innocuum, E. casseliflavus,
and E. coli) plus E. faecium in each of the colonization conditions involving the
S1 consortium (rows). PCA was performed on the rows to create a space of
mcSEED relative expression profiles associated with each organism subject to
each colonization condition (Fig. 4A). To determine which mcSEED metabolic
pathway/module was related to the variance observed over PC1, PC2, and PC3,
the mcSEED relative expression matrix O (dimensions 19 rows by 18 columns)
was subject to SVD and factorized into three separate matrices (Eq. 4):

O19x18 = F19x19Θ19x18J
T
18x18. [4]

Three new matrices were computed, derived from considering only the first,
second, and third right singular vectors, singular values, and left singular
vectors (Eqs. 5–7):

OEv1
19x18 = FRSV1

19x1 Θ
SV1
1x1 J

T  LSV1
1x18 [5]

OEv2
19x18 = FRSV2

19x1 Θ
SV2
1x1 J

T  LSV2
1x18 [6]

OEv3
19x18 = FRSV3

19x1 Θ
SV3
1x1 J

T  LSV3
1x18 . [7]

Histograms of the first, second, and third right singular vectors are shown in
Fig. 4B. Analyses were performed using the Matlab_R2018a software pack-
age or R (v3.6.0).

Data Availability. COPRO-Seq and microbial RNA-Seq datasets plus shotgun
sequencing datasets generated from cultured bacterial strains have been
deposited at the European Nucleotide Archive (ENA) under study accession no.
PRJEB26512. Code is available for download from github (https://github.com/
arjunsraman/Feng_et_al).
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