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Amyloid beta protein-induced zinc sequestration
leads to synaptic loss via dysregulation of the
ProSAP2/Shank3 scaffold
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Abstract

Background: Memory deficits in Alzheimer’s disease (AD) manifest together with the loss of synapses caused by
the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines.
However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold
assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Ab) is able to bind Zn2+, we
hypothesize that sequestration of Zn2+ ions by Ab contributes to ProSAP/Shank platform malformation.

Results: To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank
dysregulation in rat hippocampal cultures following Ab oligomer accumulation. These changes were independent
from alterations on ProSAP/Shank transcriptional level. However, application of soluble Ab prevented association of
Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within
dendrites. Zn2+ supplementation or saturation of Ab with Zn2+ ions prior to cell treatment was able to counter the
effects induced by Ab on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+

levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and
synaptic ProSAP2/Shank3 and Shank1 protein levels.

Conclusions: We conclude that sequestration of Zn2+ ions by Ab significantly contributes to changes in ProSAP2/
Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in
Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.
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Background
The loss of synapses is closely associated with the cogni-
tive impairment seen in patients with Alzheimer’s dis-
ease (AD) [1-3]. Recent findings suggest that this loss is
mediated by increasing levels of amyloid beta protein
(Ab), a product of amyloid precursor protein (APP)
metabolism [4-6], although the mechanisms through
which Ab accumulation finally leads to synaptic degen-
eration are not fully understood. However, Pham et al.

have recently shown that Ab oligomers progressively
accumulate in brains of AD patients as well as in APP
transgenic mice together with a reduction in the levels
of synaptic scaffold proteins such as Shank1 and Pro-
SAP2/Shank3 [7].
Proteins of the ProSAP/Shank (Synamon, CortBP,

Spank, SSTRIP) family play a crucial role in proper
synapse function [8] and have been linked to autism,
schizophrenia and AD [7-13]. Treatment of rat fronto-
cortical neurons with soluble Ab1-40 resulted in a signifi-
cant thinning of the PSD and in decreased synaptic
levels of Shank1 [13] and other ProSAP/Shank platform-
associated PSD proteins such as PSD-95 [14], Homer
[13] and GKAP/SAPAP [15]. Although the precise
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mechanism of ProSAP/Shank scaffold protein dysregula-
tion still remains unclear, an emerging model is that
alterations in those proteins could interfere with cogni-
tive function and behavior by impairing excitatory gluta-
matergic synapses.
ProSAP/Shank platforms are organized through Zn2

+-ions [16-18] and ProSAP/Shank protein levels depend
on the local Zn2+ concentration and influx [17]. Zn2+ is
found in PSDs and in synaptic vesicles at glutamatergic
synapses throughout the neocortex and hippocampus
and is released during synaptic activity [19]. Intriguingly,
high concentrations of Zn2+ are also observed in neuri-
tic plaques and cerebrovascular amyloid deposits from
both AD patients and AD-prone transgenic mice
[20-22]. Ab is a metal-binding protein with high affinity
for copper and zinc [23,24] and Zn2+ ions promote Ab
oligomerization [25].
In our study, we show that soluble oligomers of Ab1-40

and Ab1-42 induce changes in ProSAP/Shank protein levels
at the synapse. These changes are not caused by a reduced
ProSAP/Shank gene expression, but reflect an altered loca-
lization of ProSAP/Shank family members. Ab seems to
efficiently compete with Zn2+ loading of ProSAP2/Shank3
finally leading to a decrease in dendritic Zn2+ signals. The
decline in synapse density and ProSAP2/Shank3 levels can
be rescued by supplementation with Zn2+-ions or satura-
tion of Ab with Zn2+. Furthermore, in APP-PS1 mice and
human AD brain sections, Zn2+ sequestration in senile
plaques is accompanied by a decrease in intracellular Zn2+

concentration along with a decrease in synapse density
and synaptic ProSAP2/Shank3 and Shank1 protein levels.
Thus, our results lead to a model illustrating that Ab

pathology is at least in part caused by trapping synaptic
Zn2+ in Ab complexes, preventing Zn2+ from reaching
its postsynaptic targets like ProSAP/Shank proteins, ulti-
mately leading to a dysregulation of the postsynaptic
scaffold and subsequent loss of synapses which might in
turn lead to the observed cognitive deficits in AD.

Results
Soluble Ab oligomers induce changes in synapse density,
maturation state and synaptic ProSAP2/Shank3 and
Shank1 protein levels in primary hippocampal neurons
Based on recent data showing that Ab induces the disrup-
tion of the Homer1b and Shank1 scaffold [13], we investi-
gated if soluble Ab oligomers are sufficient to induce
changes in ProSAP/Shank family members. We applied 1
μM Ab1-40 or Ab1-42 to rat primary hippocampal cell cul-
ture neurons (DIV15-17) and fixed them after 1, 3, 6 and
24 h, respectively. Immunohistochemistry was performed
using anti-ProSAP2/Shank3 and anti-Shank1 antibodies
co-stained with an anti-Bassoon antibody as a presynaptic
marker. Synapse density was calculated by measuring the
number of synapses (Bassoon and ProSAP/Shank positive

sites) per unit dendrite length. The mean synapse density
was significantly decreased after 6-24 h exposure to Ab1-
40, leading to a 30% reduction in synapse density after 24 h
(Figure 1A and Ab1-42, Additional file 1A).
To assess the maturation state of synapses, we charac-

terized the morphology of dendritic spines in Ab-treated
cultures (Figure 1B). The results show that the propor-
tion of “filopodia like” and “thin” spines, representing
immature synapses with respect to the total synapse
number, increased after 24 h Ab treatment compared to
control conditions (Figure 1B). This shift towards imma-
ture spines was accompanied by a decrease of mature
("mushroom and stubby”) spines.
ProSAP/Shank family members are recruited to

synapses in a sequential and development-dependent
manner [17] beginning with ProSAP1/Shank2 that
becomes concentrated at the sites where PSDs are
thought to form [26], followed by ProSAP2/Shank3 pro-
tein. Finally, with sufficient amount of ProSAP1/Shank2
and ProSAP2/Shank3 present at the synapse, the cluster-
ing of Shank1 leads to maturation of the synaptic con-
tacts and to spines with a mushroom-like appearance
[27]. Hence, a shift towards immature spines should also
influence the levels of Shank1 at synapses and we there-
fore measured the mean grey value and mean area of
ProSAP2/Shank3 and Shank1 signals opposite to Bassoon
signals (Figure 1C). In hippocampal neurons, ProSAP2/
Shank3 and Shank1 proteins were significantly downre-
gulated at the synapse after 24 h treatment with Ab1-40
(18% ± 2% and 30 ± 7%, respectively; Ab1-42, Additional
file 1B) along with a downregulation of Homer1 and
PSD-95 (Additional file 1C). The protein levels of Bas-
soon were not significantly affected (Figure 1C). A similar
decrease was observed in cortical neurons, however here,
a downregulation occurred as early as 1 h after treatment
as reported previously [13] (Additional file 1D). The
observed changes were caused by a decrease of protein
levels at the synapse since the mean signal area was unaf-
fected after Ab treatment (Additional file 1E). Cumula-
tive histograms illustrate that the puncta intensity values
are shifted across the entire populations of ProSAP2/
Shank3 and Shank1 puncta, revealing that mature
synapses were affected by the treatment similarly to
immature synapses (Additional file 1F). We thus con-
clude that exposure of neurons to Ab causes the loss of
synapses and that decreased ProSAP2/Shank3 and
Shank1 levels following Ab application, lead to altered
maturation states of excitatory synapses.

Ab1-40 oligomer-induced changes in ProSAP/Shank
protein levels are not mediated via transcriptional
regulation
The changes in synaptic ProSAP/Shank levels after
exposure to Ab1-40 (1 μM) in vitro could further be
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Figure 1 Soluble Ab oligomers reduce synapse density and dysregulate ProSAP/Shank family members in hippocampal cell culture. A)
Changes in synapse density along the dendrites of hippocampal neurons, cultured for 15 DIV, treated with 1 μM Ab1-40 and fixed after 0, 1, 3, 6,
and 24 h. Synapses along MAP2 positive dendrites were identified with antibodies against Bassoon as presynaptic marker and ProSAP2/Shank3 (left
panel) or Shank1. Synapse density was calculated measuring the number of synapses per unit dendrite length of ten cells of three independent
experiments for every time-point and condition (right panel). B) Spine maturation state after 24 h Ab1-40 treatment was assessed by quantifying
spine morphology (using ProSAP2/Shank3 immunoreactivity) along MAP2 positive dendrites (left panels). Spines were classified as “filopodia like”,
“thin” (immature) and “mushroom and stubby” (mature). The overall fraction of filopodia like and thin synapses is higher after 24 h Ab treatment
compared to control conditions (24 h treatment with DMSO). C) Ab treatment causes a progressive synaptic loss of ProSAP2/Shank3 and Shank1.
Cultured hippocampal neurons were immunostained with antibodies against Bassoon and ProSAP2/Shank3 or Shank1 (upper left panel) and the
ratio of mean grey values per mean signal area between treated and untreated neurons were measured after 1, 3, 6 or 24 h treatment with Ab1-40
(upper right panel). Cumulative histograms illustrate that the puncta intensity values are shifted across the entire populations of ProSAP2/Shank3
and Shank1 puncta (bottom panels). Data derive from 3 independent experiments at each time-point and condition representing approx. 2,500
signals per experiment.
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confirmed by Western Blotting of P2 membrane frac-
tions from hippocampal neurons at 15 DIV after Ab-
treatment for 6 and 24 h. Compared to untreated cells
(time-point 0), significantly lower levels of ProSAP2/
Shank3 (6 and 24 h) and Shank1 (24 h) within the P2
fraction of lysates could be detected after 24 h of Ab1-
40 treatment - similar to the effect observed by grey
value measurement of immunohistochemical ProSAP2/
Shank3 and Shank1 signals at the synapse (Figure 2A,
for comparison see Figure 1C). After 24 h of treat-
ment, Homer1 also showed a significant decrease in
protein levels and PSD-95 a clear trend towards down-
regulation (Figure 2A, b-III Tubulin was used as
control).

To assess if the observed changes in ProSAP/Shank
protein levels at synapses were due to changes in gene
expression levels, we performed quantitative RT-PCR
(Figure 2B). Hippocampal neurons (DIV15) were treated
with Ab1-40 and mRNA was extracted after 1, 6, and 24
h. The results showed no significant differences in gene
expression levels compared to controls indicating that
the observed changes are due to a structural alteration
of the PSD scaffold leading to a shift of ProSAP2/
Shank3 from a PSD bound state to a soluble pool.
Indeed, the ratio between ProSAP2/Shank3 within the
S2 soluble (Additional file 2A) and P2 membrane (Fig-
ure 2A) fraction set to 1 at time-point 0 rises to 1.59 at
6 h and 1.69 at 24 h after treatment with Ab. This is

Figure 2 Changes in synaptic ProSAP/Shank levels after Ab treatment are not linked to transcriptional regulation. Western blots of P2
membrane fractions from hippocampal neurons cultured for 15 DIV and then treated for 6 and 24 h with Ab1-40. A) Compared to untreated
cells at time-point 0, a significant decrease in the amount of ProSAP2/Shank3 and Shank1 could be detected after 6-24 h of Ab treatment (right
panel). Homer1 and PSD-95 levels also show a decrease of protein levels after 24 h. Lysates from 3 independent experiments were quantified via
Western Blot analysis by measuring the integrated density. The values were normalized against b-III Tubulin and 0 h was set to 100%. B)
Quantitative RT-PCR was performed for ProSAP2/Shank3 and Shank1 after Ab1-40 treatment. mRNA was isolated from hippocampal neurons
(DIV15) at time-point 0 and after 1, 6, and 24 h. The mean ratio between treated and untreated control neurons from three independent
experiments is shown. No significant changes in transcription levels can be seen.
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underlined by data showing that the reduction of Pro-
SAP2/Shank3 and Shank1 at the synapse is independent
of both, proteasomal degradation and protein synthesis,
since treatment with the proteasome inhibitor MG132
or protein synthesis inhibitor cycloheximide (CHX) did
not prevent Ab1-40-induced changes in synaptic signal
intensities of ProSAP2/Shank3 and Shank1. However,
MK801, an NMDAR antagonist, significantly decreased
the amount of Ab1-40-induced changes in Shank1 levels
as shown before [13] (Additional file 2B).

Zinc sequestration by Ab influences ProSAP2/Shank3 Zn2+

loading and leads to lower intracellular Zn2+ levels in
hippocampal neurons
Since ProSAP2/Shank3 protein levels at the PSD are
sensitive to the local Zn2+ concentration [17] and Ab
has a Zn2+-binding site and might thus be able to
sequester Zn2+ ions, we investigated if Ab is indeed able
to sequester extracellular Zn2+ ions affecting the Zn2+

loading of ProSAP2/Shank3. To that end, we transfected
Cos7 cells growing in 5 μM Zn2+-supplemented medium
with GFP-ProSAP2/Shank3 and depleted Zn2+-ions
using TPEN (Figure 3A). After Zn2+ depletion, Zn2+

ions were introduced back into the medium via ZnCl2
with and without additional Ab treatment. Furthermore,
as a control, Ab was preloaded with Zn2+ ions and then
added to the medium followed by ZnCl2 application.
For these experiments, we took advantage of a dye (Zin-
quin) that fluoresces when it binds Zn2+ [28] to measure
the local Zn2+ concentration (correlating with Zinquin
signal intensity) colocalizing with GFP-ProSAP2/Shank3
clusters. The results show that in control cells, GFP-
ProSAP2/Shank3 colocalizes with Zn2+ (Figure 3A, t = 0
min, B). After 10 min application of the Zn2+ chelator
TPEN, Zn2+-ions were efficiently removed from Pro-
SAP2/Shank3 clusters (Figure 3A, t = 10 min, B,C). Sup-
plementation with 10 μM ZnCl2 restored and increased
the initial Zn2+ association of ProSAP2/Shank3 (Figure
3A left panel t = 50 min, B,C). However, 20 min appli-
cation of 10 μM Ab1-40 (red fluorescence) followed by
supplementation of the medium with 10 μM ZnCl2 for
20 min only resulted in a minor increase in Zn2+ load-
ing of ProSAP2/Shank3 (Figure 3A, middle panel t = 50
min, B,C). In contrast, preloading of 10 μM Ab1-40 (red
fluorescence) with 10 μM ZnCl2 followed by supplemen-
tation of the medium with 10 μM ZnCl2, led to a signifi-
cantly higher increase in ProSAP2/Shank3 Zn2+ loading
(Figure 3A, right panel, t = 50 min, B,C). Thus, Ab
influences Zn2+ loading of ProSAP2/Shank3 by seques-
tering extracellular Zn2+-ions. Because Zn2+-ions pass
through the extracellular space into the postsynaptic
compartment after activity-dependent vesicle release, it
could well be that Ab oligomers accumulating in the
synaptic cleft interfere with this process.

As the observed changes in synapse density and
synaptic levels of ProSAP/Shank within 6-24 h after
treatment with Ab are relatively fast, we followed the
possibility that intracellular Ab contributes to a dysregu-
lation of intracellular Zn2+ levels in neurons. Indeed,
application of fluorescently-tagged Ab to hippocampal
neurons in cell culture was followed by intracellular
colocalization of Ab and Zn2+ (Figure 4A, arrows). Since
these neurons were cultivated in medium without Zn2
+-supplementation, Zn2+ ions colocalizing with Ab are
most likely depleting other Zn2+ stores. We therefore
investigated postsynaptic Zn2+ levels of hippocampal
neurons after treatment with Ab Zinquin labels postsy-
naptic Zn2+ (Additional file 3A), which is in line with
previous studies that revealed a striking colocalization of
dendritic ProSAP2/Shank3 and Zinquin, colocalizing
apposed to presynaptic boutons loaded with the styryl
dye FM [17]. A significant reduction of Zn2+ signals
within dendrites (Figure 4B and Additional file 3B) was
seen after Ab treatment.

Zn2+ supplementation leads to a rescue of Ab induced
decrease in synapse density and ProSAP2/Shank3 levels
at the synapse
Based on the results obtained through the previous
experiments, we investigated if Zn2+ supplementation
along with Ab1-40 treatment or the saturation of Ab1-40
with Zn2+ before treatment led to a rescue of the
observed changes in synapse density and ProSAP2/
Shank3 protein levels at the PSD. Therefore, hippocam-
pal neurons (DIV15) were treated with Ab1-40 and sup-
plemented with equimolar levels of ZnCl2 or with
equimolar ZnCl2 preincubated with Ab1-40 (Figure 5).
Synapse density and protein levels of ProSAP2/Shank3
at the synapse were measured as described above (Fig-
ure 1). The results show that after treatment for 1, 6
and 24 h, neither control (DMSO-supplemented) nor 1
μM Zn2+-supplemented neurons display an increase or
decrease in synapse density (Figure 5A, B). However,
treatment with 1 μM Ab1-40 resulted in a significant
decrease of synapse density after 6 and 24 h (Figure
5A). In contrast, treatment of hippocampal neurons
with 1 μM Ab1-40 preincubated for 1 h on ice with 1
μM ZnCl2 led to a significantly higher synapse density
compared to treatment with 1 μM Ab1-40 after 6 and 24
h. Saturation of Ab with Zn2+ thus ameliorates the
effects of Ab on synapse density. To investigate, if sup-
plementation of Zn2+ after Ab-induced decrease in
synapse density can rescue the effects of Ab we treated
hippocampal neurons (DIV15) for 18 h with 1 μM or 10
μM Ab1-40, followed by 1 μM or 10 μM ZnCl2 supple-
mentation for 6 h, respectively (Figure 5B). ZnCl2 sup-
plementation for 6 h alone did not induce changes in
synapse density, whereas 1 μM Ab1-40 treatment

Grabrucker et al. Molecular Neurodegeneration 2011, 6:65
http://www.molecularneurodegeneration.com/content/6/1/65

Page 5 of 20



resulted in a significant reduction after 18 and 24 h.
However, supplementation of ZnCl2 for 6 h after 18 h
treatment with Ab1-40, led to a significantly higher
synapse density compared to cells treated with Ab1-40
alone. In fact, the synapse density after ZnCl2

supplementation was not significantly different from
control (DMSO-treated) cells (Figure 5B).
To assess if Zn2+ supplementation or saturation of Ab

with Zn2+ is able to rescue ProSAP2/Shank3 levels at
the synapse, we measured ProSAP2/Shank3 signal grey

Figure 3 Application of soluble Ab oligomers decreases Zn2+ loading of ProSAP2/Shank3. Cos7 cells grown in 5 μM Zn2+-supplemented
medium were transfected with GFP-ProSAP2/Shank3. The intracellular Zn2+ level, visualized by Zinquin ethyl ester, and subcellular distribution
were compared to GFP-ProSAP2/Shank3. A) In control cells, GFP-ProSAP2/Shank3 colocalizes with Zn2+ (t = 0 min) (left panel). After application
of TPEN, Zn2+-ions were removed from ProSAP2/Shank3 clusters (t = 10 min). Supplementation with 10 μM ZnCl2 restores and increases the
initial Zn2+-association with GFP-ProSAP2/Shank3 clusters (left panel t = 50 min). Twenty min application of 10 μM Ab1-40(red fluorescence)
followed by supplementation with 10 μM ZnCl2 for 20 min only leads to a minor increase in Zn2+ loading of ProSAP2/Shank3 (middle panel t =
50 min). Application of 10 μM Ab1-40(red fluorescence) preloaded with 10 μM ZnCl2 followed by supplementation with 10 μM ZnCl2 leads to a
significantly higher increase in ProSAP2/Shank3 Zn2+ loading (right panel t = 50 min) (scale bar = 50 μm). B) Magnification of Zn2+ signals
colocalizing with ProSAP2/Shank3 cluster under the conditions described in A) (scale bar = 25 μm). C) Quantification of Zn2+ fluorescence,
visualized with Zinquin, colocalizing with ProSAP2/Shank3 clusters. The ratio of mean grey values between control cells (t = 0 min) and treated
cells is shown.
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values under the conditions described above and per-
formed Western Blot analysis of protein levels. The
results show that after treatment for 1, 6 and 24 h,
neither control (DMSO-supplemented) nor 1 μM Zn2
+-supplemented neurons display any changes in Pro-
SAP2/Shank3 levels at the synapse (Figure 5C, D, for
loading control of Figure 5D see Additional file 4A).
Treatment with 1 μM Ab1-40 resulted in a significant
decrease of ProSAP2/Shank3 levels after 6 and 24 h
(Figure 5C) compared to control (DMSO treated) cells.
However, 24 h treatment of hippocampal neurons with
1 μM Ab1-40 preincubated for 1 h on ice with 1 μM

ZnCl2 led to significantly higher ProSAP2/Shank3 levels
compared to treatment with 1 μM Ab1-40 alone (Figure
5C, E). Thus, Zn2+-saturated Ab causes less decrease of
ProSAP2/Shank3 protein levels at the synapse. Similar
to the experiments described above, we investigated if
supplementation of Zn2+ after Ab protein induced
decrease in ProSAP2/Shank3 levels is able to rescue the
effects of Ab. To that end, we treated hippocampal neu-
rons (DIV15) for 18 h with 1 μM or 10 μM Ab1-40, fol-
lowed by 1 μM or 10 μM ZnCl2 supplementation for 6
h (Figure 5D, E). Zn2+ supplementation for 6 h alone
did not induce changes in ProSAP2/Shank3 levels,

Figure 4 Intracellular Zn2+ levels are decreased in primary hippocampal culture neurons after treatment with soluble Ab. A) In
hippocampal cell cultures (DIV15), a fraction of applied Ab1-40 HiLyte Fluor™ 555 can be found intracellular, after removal of extracellular Ab by
washing steps, colocalizing with Zn2+ stained by Zinpyr-1 (arrows). B) After treatment of hippocampal neurons (DIV15) with 1 μM and 10 μM
Ab1-40, a reduction in dendritic Zn2+ signals (arrows) can be seen. The mean grey value of Zinquin signals inside dendrites was measured from
five cells and the ratio between cells treated for 6 or 24 h and untreated cells is shown. A significant reduction can be seen after 6 h (10 μM)
and 24 h (1 μM and 10 μM) treatment.
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Figure 5 Ab binding of Zn2+ regulates synapse loss and synaptic levels of ProSAP2/Shank3 in hippocampal cell culture. A,B) Effect of
Ab and Zn2+ on synapse density assessed by treating cultured hippocampal neurons (DIV15) with Ab1-40 followed by equimolar ZnCl2
supplementation or Ab1-40 preincubated with equimolar ZnCl2. Synapse density was determined by quantifying the number of ProSAP2/Shank3
and Bassoon colocalizing puncta per unit length of MAP2 positive primary and secondary dendrites (arrow, right panel B). A) Quantification of
synapse density on neurons treated for 1, 6 and 24 h with DMSO (control/vehicle), 1 μM Zn2+, 1 μM Ab1-40 and 1 μM Ab1-40 preincubated for 1
h on ice with 1 μM ZnCl2. B) Treatment of hippocampal neurons for 18 and 24 h with DMSO or Ab1-40, 18 h with DMSO and 6 h with 1 μM
ZnCl2 and 18 h with 1 μM or 10 μM Ab1-40, followed by 1 μM or 10 μM ZnCl2 supplementation for 6 h. Synapse density is significantly higher in
cultures supplied with Ab saturated with Zn2+ than in those treated with 1 μM Ab1-40 alone. C,D) Synaptic levels of ProSAP2/Shank3 in
hippocampal cultures treated with Zn2+ and/or Ab C) Quantification of ProSAP2/Shank3 signal grey values colocalizing with Bassoon puncta
along MAP2 positive primary and secondary dendrites of neurons treated for 1, 6 and 24 h with DMSO (control), 1 μM Zn2+, 1 μM Ab1-40 and 1
μM Ab1-40 preincubated for 1 h on ice with 1 μM ZnCl2. A significantly higher ProSAP2/Shank3 level compared to treatment with 1 μM Ab1-40
was measured after 24 h in cultures supplied with Zn2+-saturated Ab D) Neurons treated for 18 and 24 h with DMSO or Ab1-40, 18 h with DMSO
and 6 h with 1 μM ZnCl2 and 18 h with 1 μM or 10 μM Ab1-40, followed by 1 μM or 10 μM ZnCl2 supplementation for 6 h. Supplementation of
ZnCl2 for 6 h after 18 h treatment with Ab1-40 leads to a rescue of ProSAP2/Shank3 levels at the synapse (p < 0.05*; < 0.01**; < 0.001***). E)
Western blots of P2 membrane fractions from hippocampal neurons cultured for 15 DIV and then treated for 18 or 24 h with Ab1-40, 24 h Ab1-40
preincubated for 1 h on ice with ZnCl2 and 18 h Ab1-40 followed by 6 h incubation with ZnCl2. Compared to untreated cells at time-point 0 h, a
decrease in the amount of ProSAP2/Shank3 could be detected after 18 and 24 h of Ab treatment. In contrast, treatment for 24 h with Zn2+

saturated Ab1-40 and 18 h Ab1-40 followed by 6 h incubation with ZnCl2 leads to ProSAP2/Shank3 levels comparable to control conditions. Note
PSD-95 and b-III Tubulin levels did not change under these conditions.
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whereas 1 μM Ab1-40, treatment resulted in a significant
reduction. Supplementation of 1 μM or 10 μM ZnCl2
for 6 h after 18 h treatment with 1 μM or 10 μM Ab1-40
respectively, led to a complete rescue of the decrease in
ProSAP2/Shank3 levels (Figure 5D, E) and did not
depend on enhanced protein synthesis (Additional file
4B). Interestingly, Zn2+ supplementation was also able
to rescue synaptic Shank1 and partially, although not
significantly, synaptic Homer1 levels (Additional file 4C).
Previous studies have demonstrated that the Ab-Zn2+

binding site is localized within residues 6-28 and that
histidines may serve as the principal sites of interaction
[29], but interaction of Zn2+ with the full-length Ab1-40
and Ab1-42, as well as the truncated Ab1-16 and Ab1-28,
were reported [30]. Thus, we used Ab29-40 as a control
in our assays, because the C-terminus residues 29-40 do
not seem to be affected by metal ion interactions [31].
The results showed that Ab29-40 does not significantly
reduce synapse density within 24 h of treatment (Addi-
tional file 4D) nor does it significantly affect synaptic
ProSAP2/Shank3 levels (Additional file 4E). We also
investigated the amount of cell death after Ab1-40, Ab1-
42 and Ab29-40 treatment. Our data show similar toxicity
with respect to cell death in hippocampal cell cultures.
For example, at 48 h, Ab1-40, Ab1-42 and Ab29-40-treated
cells showed signs of cell death (Additional file 4F),
while no significant decrease in neuron number was
seen after 24 h of treatment. This implies that cell death
occurs independently from Zn2+ dysregulation.

Altered Zn2+ and ProSAP/Shank levels in human AD and
APP-PS1 mouse brain
To assess whether an excess of Ab leads to alterations
of Zn2+ levels in vivo, we visualized Zn2+ using Zinpyr-1
in hippocampal brain sections of APP-PS1 mice (3, 6
and 12 months of age) and AD patients. The brightness
of the intracellular Zinpyr-1 fluorescence that correlates
with local Zn2+ levels, was assessed (Figure 6A, 7A), as
was the specificity of the signal by application of the
Zn2+ chelator TPEN (Additional file 5). After treatment
with TPEN, the Zinpyr-1 signals in the CA3/dentate
gyrus regions of the hippocampus were eliminated
(Additional file 5). A comparison of Zn2+ levels in the
dentate gyrus and CA3 regions (Additional file 6) of
wild type and APP-PS1 mice revealed a significantly
lower Zn2+ staining in APP-PS1 mice beginning with 6
m.o.a. (Figure 6A). Moreover, extracellular Zn2+ ions
were enriched in plaques formed by Ab (Figure 6A,
arrows). These data are consistent with higher Ab levels
causing a depletion of Zn2+ in the hippocampus of older
APP-PS1 mice. To assess whether disease progression in
APP-PS1 mice is associated with a reduction in synapse
density and/or synaptic ProSAP/Shank levels, we stained
hippocampal sections from APP-PS1 mice with

antibodies against ProSAP2/Shank3 or Shank1 as well as
Bassoon and VGluT. In these experiments, we observed
a significant reduction in synapse density in brain sec-
tions of APP-PS1 mice at 12 m.o.a. (Figure 6B, C). Simi-
larly, synaptic levels of ProSAP2/Shank3 and Shank1
were significantly decreased at this age (Figure 6B, D).
To assess whether patients with Alzheimer’s Disease

(AD) exhibit similar reductions in Zn2+ and ProSAP/
Shank levels in the hippocampus, we analyzed brain sec-
tions from 14 control and AD patients (Table 1).
Human sections were divided into three groups based
on their Clinical Dementia Rating (CDR), Mini-Mental
State Examination (MMSE), and Braak scores: a) “con-
trol” sections, b) sections of patients with mild cognitive
impairment “MCI” and c) patients with terminal/severe
Alzheimer’s disease “AD”. Similar to the experiments
conducted in APP-PS1 mice, we assessed intracellular
Zn2+ concentration using Zinpyr-1 staining. The results
show that sections from severely impaired AD patients
("AD”) display significantly lower Zn2+ staining (Figure
7A). Moreover, extracellular Zn2+ ions were enriched at
plaques formed by Ab (Figure 7B, arrows). These obser-
vations are again consistent with the capacity of Ab to
bind, sequester and thus reduce intracellular Zn2+ levels
in the hippocampus of AD patients.
To assess synapse density, we initially stained human

hippocampal sections with antibodies against the presy-
naptic active zone protein Bassoon and the PSD protein
Homer1. The number of Bassoon and Homer1 coloca-
lizing puncta was then quantified per optic field (Figure
8A). This revealed a significant reduction in synapse
number in brain sections of severe AD cases ("AD”)
compared to controls. To measure the change of Pro-
SAP2/Shank3 and Shank1 at these synapses, the signal
intensity of Alexa568-labeled ProSAP/Shank proteins
opposed to a Bassoon or VGluT signal was measured
(Figure 8B). Ten optical fields of 3 different sections per
case were measured and the mean grey value per group
calculated. The results showed a significant reduction of
ProSAP2/Shank3 and Shank1 in the AD group com-
pared to controls. Moreover, the clear trend towards
this reduction could already be seen in “MCI” patient
sections.

Discussion
Soluble Ab oligomers are thought to cause early synap-
tic damage and memory deficits in AD [32], although
the mechanisms through which Ab aggregates might
lead to this phenotype are not yet fully understood. Dur-
ing the progression of AD, monomers of Ab can aggre-
gate to form amyloid fibrils. Five distinct fibrillar
aggregates induced by Zn2+ have been described [33],
including protofibrils, Ab-derived diffusible ligands
(ADDL) and oligomeric species [34,35]. Oligomeric Ab

Grabrucker et al. Molecular Neurodegeneration 2011, 6:65
http://www.molecularneurodegeneration.com/content/6/1/65

Page 9 of 20



Figure 6 Synapse density, synaptic ProSAP2/Shank3 and intracellular Zn2+ levels are decreased in APP-PS1 mouse brain sections. A)
Cellular Zn2+ levels are reduced in APP-PS1 hippocampus. Hippocampal sections from WT and APP-PS1 mice were double stained with DAPI to
reveal cell nuclei and Zinpyr-1 to fluorescent-detect intracellular Zn2+ (see Figure S6). The ratio of mean Zinpyr-1 grey values between APP-PS1
and WT mouse sections at 3, 6 and 12 months of age is shown. The intracellular zinc concentration is significantly decreased in sections from 6
and 12 month-old mice (right panel). An enrichment of Zn2+-ions can be found colocalizing with extracellular Ab plaques (arrow). B,C) The total
number of synapses per optic field was measured and the ratio of mean number of synapses per optic field between APP-PS1 and WT mice is
shown. A significant decrease is visible at 12 months. B,D) Sections of APP-PS1 and WT mice were stained with anti-Bassoon or anti-VGluT
antibody as presynaptic marker and ProSAP2/Shank3 or Shank1 antibodies, respectively. The mean signal intensity of Alexa568 labeled ProSAP/
Shank proteins opposed to a Bassoon or VGluT signal was measured and the ratio of mean grey values between APP-PS1 and WT mice is
shown (merged images in B include DAPI staining (blue)).

Grabrucker et al. Molecular Neurodegeneration 2011, 6:65
http://www.molecularneurodegeneration.com/content/6/1/65

Page 10 of 20



peptides have the ability to form dimers, trimers, tetra-
mers and higher-order arrays that can form so-called
annular structures. These are thought to influence the
functionality of cytoskeleton-associated proteins, cause
damage to synaptic spines and inhibit long-term poten-
tiation in cultured neurons [33,36,37] and in vivo [38]. It
was shown that physiological levels of Cu2+ and Zn2+

cause Ab to aggregate [39] and that Zn2+ ions are
bound to Ab via the histidine imidazole rings within
senile plaque cores [40]. Recently, Adlard et al. proposed
a mechanism whereby Ab pathology causes cognitive
impairment by trapping synaptic Zn2+ rather than
through direct toxicity [41]. Thus, the transsynaptic
movement of Zn2+ may be severely compromised in AD
by being sequestered in Ab. This trapping of Zn2+

might mimic ZnT3 ablation [41] and indeed, mice with
a disruption of the vesicular Zn2+ transporter ZnT3, dis-
play complete absence of Zn2+ from synaptic vesicles
throughout the brain [42] as well as synaptic and mem-
ory deficits comparable to those seen in a cognitively
impaired APP transgenic mouse model of AD [41].
Based on these findings, we propose a model, where

Zn2+-ions might fail to reach their postsynaptic targets
like ProSAP/Shank proteins due to sequestration by Ab,
leading to a dysregulation of the PSD scaffold and ulti-
mately to a loss of synapses that can also be seen in
ProSAP/Shank knockdown conditions [17]. This model
is consistent with findings of Deshpande et al., who pos-
tulated that sequestration of Zn2+ in oligomeric Ab
leads to reduced availability of Zn2+ at the synapse, ulti-
mately leading to cognitive deficits in AD [43]. To test
this model, we investigated the influence of Ab1-40 and

Ab1-42 on ProSAP/Shank family members in hippocam-
pal neuron culture. In line with a number of recent pub-
lications showing the possibility that Ab oligomers
influence synaptic proteins and thus interfere with
synaptic function [7,12,13,44,45], our study shows that
the synaptic levels of ProSAP2/Shank3 and Shank1
decrease significantly following the addition of Ab to
primary neurons. Moreover, introduction of Ab oligo-
mers leads to a significant reduction (about 25%) in
synapse density in hippocampal cultures, which is in
agreement with previous studies reporting 11 to 77%
declines in synaptophysin immunostaining in brain sec-
tions [46,47]. These results are also consistent with
recent studies in cellular and rodent models, showing
that small soluble oligomers are toxic because they
directly damage synapses [32,48]. Furthermore, our
experiments show that the loss of synapses is caused by
a decrease in mature synapses. Thus, we conclude that
the reduction in synapse density caused by Ab is due to
impaired activity dependent maturation and destabiliza-
tion of mature synapses, but leaves the ability of an
initial formation of synapses intact.
Additionally, treatment of hippocampal neurons with

Ab1-40 leads to a significant downregulation of Pro-
SAP2/Shank3 at the synapse, to an impairment in
synapse maturation and, in line with previous studies, to
a downregulation of synaptic Shank1 levels [13]. The
decrease in synaptic ProSAP2/Shank3 is also reflected
by a decrease in protein levels in the P2 fraction as
assessed by Western Blotting after 24 h treatment with
Ab1-40. Given the multiple interaction partners of Pro-
SAP/Shank proteins at the synapse, it is likely that Ab

Table 1 Classification of human hippocampal brain sections

Case Case Code Age Gender Pmi [h] CDR MMSE BraakNFT BraakNP Diagnosis

Control 1 99-111 75 M 6 0 29 1 1 C

Control 2 00-96 91 W 10 0 28 2 1 C

Control 3 02-55 82 M 4.5 0 28 2 1 C

Control 4 99-121 82 M 7 0.5 26 1 1 C

MCI 1 00-37 90 W 4 0.5 28 2 1 MCI

MCI 2 00-33 77 W 8 0.5 27 2 2 MCI

MCI 3 00-61 87 W 8 0.5 27 2 1 MCI

MCI 4 99-105 85 M 4.5 0.5 20 3 1 MCI

AD 1 99-68 88 M 8 2 13 3 3 AD

AD 2 00-58 85 M 6 2 20 4 2 AD

AD 3 99-96 90 M 2 2 10 6 3 AD

AD 4 98-15 85 W 11 3 11 6 4 AD

AD 5 99-67 95 W 3 3 0 5 4 AD

AD 6 99-98 102 W 11 3 0 6 4 AD

Hippocampal sections of human brains were used and classified as “Control”, “MCI” and “AD” (m: man; w: woman; pmi: postmortem interval; CDR: Clinical
Dementia Rating score; MMSE: Mini-Mental State Examination score; BraakNFT; neurofibrillary tangles Braak score; BraakNP: neuritic plaques Braak score; C:
Control; MCI: mild cognitive impairment; AD: severe Alzheimer’s disease).
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mediated changes in ProSAP/Shank complex formation
cause synaptic dysfunction induced by reducing actin
cytoskeletal assembly, spine motility as well as the
maturation and plasticity of excitatory glutamatergic
synapses.
We also show that the observed changes in ProSAP/

Shank levels at the synapse are not due to altered gene
expression, proteasomal degradation or protein synthesis
and it appears that other posttranscriptional mechan-
isms control synaptic ProSAP/Shank levels. One inter-
esting candidate is Zn2+, which is known to bind and
regulate the synaptic localization of specific ProSAP/
Shank family members, including ProSAP1/Shank2 and
ProSAP2/Shank3 but not Shank1 [16-18]. We thus
investigated whether an increased demand on extracellu-
lar Zn2+, e.g. by an increased level of Ab, would reduce
cellular levels of Zn2+ and consecutively the synaptic
levels of ProSAP/Shank family members. Using a cell-

based assay, we directly demonstrated that the presence
of extracellular Ab interferes with the proper loading of
ProSAP2/Shank3 with Zn2+. In contrast, saturation of
Ab with Zn2+ before application does not change Pro-
SAP2/Shank3 Zn2+ loading.
In hippocampal cell culture, exogenously applied Ab

clusters with Zn2+ intracellular and treatment of cul-
tured neurons with Ab reduces dendritic Zn2+ levels. It
was demonstrated previously that some intracellular Ab
is derived from extracellular Ab pools and several dis-
tinct pathways of entry for extracellular Ab have been
proposed [49,50]. Although intracellular accumulation of
Ab is seen in multivesicular bodies and lysosomes, it can
also be found within the cytosol [51]. Indeed, Kandimilla
et al. have shown that Ab is internalized by neurons pri-
marily via passive diffusion [49]. That way, a fraction of
intracellular accumulating Ab might directly compete
with Zn2+ binding proteins such as ProSAP2/Shank3 for

Figure 7 Intracellular Zn2+ levels are decreased in brain sections from AD cases. A) Zinc ions were visualized by Zinpyr-1 and the
fluorescence of intracellular Zn2+ staining measured in AD patient and control sections (see Table 1). The mean Zinpyr-1 grey values of cells of
10 optical fields of view from AD and Control cases are shown (a, right panel). The intracellular Zn2+ concentration is significantly decreased in
sections of AD patients. B) Although the intracellular Zn2+ concentration is decreased in AD, an enrichment of Zn2+-ions can be found
colocalizing with extracellular Ab plaques (arrow) in AD patient brain sections.
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Figure 8 Synaptic ProSAP/Shank protein levels are reduced during AD progression in hippocampal brain sections . A)
Immunofluorescent images of human hippocampal brain sections (CA3), stained with DAPI and antibodies against Bassoon and Homer1 (left
panel) (low, medium and high magnification images are shown to reveal Bassoon/Homer1 co-clusters). The total number of synapses
(colocalizing Bassoon/Homer1 puncta) was quantified to yield the mean number of synapses per optic field in control and patients with severe
Alzheimer’s disease (AD) (right panel). B) Loss of synaptic ProSAP2/Shank2 and Shank1 in AD patients was assessed by quantifying the intensity
of ProSAP2/Shank3 and Shank1 puncta (mean grey values) colocalizing with Bassoon or VGluT (both presynaptic marker proteins)
immunopositive puncta of hippocampal sections from control, “MCI” and “AD” patients.
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Zn2+ ions in addition to the sequestration of extracellu-
lar Zn2+ ions.
Based on these findings, we predicted that supplemen-

tation of hippocampal cultures with Zn2+ during the
treatment with Ab or application of Zn2+-saturated Ab
would lead to a rescue of the observed loss-of-ProSAP2/
Shank3 phenotype. Our results show that the Ab-
induced decrease in synapse density as well as lowered
synaptic levels of ProSAP2/Shank3 can indeed be res-
cued by Zn2+-supplementation. Moreover, Zn2+ satu-
rated Ab causes significantly less changes in synapse
density and ProSAP2/Shank3 levels. Interestingly, also
the decrease of Shank1 that shows a stronger require-
ment of NMDAR activity compared to ProSAP2/
Shank3, can be rescued by Zn2+-supplementation. This
indicates that Shank1 scaffold plasticity might depend
on both, homeostatic changes via ProSAP2/Shank3 and
the presence of Zn2+ ions as well as on changes induced
by synaptic activity, driven by the activation of down-
stream signaling pathways.
Our findings are further supported by in situ studies

using APP-PS1 mice and AD patient brain sections.
Here, we observed that Zn2+ ions are enriched within
amyloid plaques present in the hippocampus of older
APP-PS1 mice and patients with severe AD. Intriguingly,
intracellular Zn2+ concentrations are ~20% lower in
neurons from these sections compared to control sec-
tions. However, in addition to the sequestration of Zn2+

by Ab, other mechanisms may contribute to decreased
intracellular Zn2+ concentrations, for example Metal-
lothioneins (MTs) or other Zn2+-binding proteins such
as a2 macroglobulin (A2M) [52] may alter levels by reg-
ulating intracellular free Zn2+. MT upregulation, as
reported for MT-I in AD mouse models [53], leads to
inhibition of NO-mediated Zn2+ release. Furthermore,
pro-inflammatory cytokines cause a large induction of
MTs [52]. Several Zn2+ transporter proteins, including
ZnT-1, ZnT-4 and ZnT-6, are altered in brain regions
of subjects with early and late stages of AD [54]. More-
over, several members of the ZnT family (ZnT-1, 3, 4, 5,
6, 7) are expressed in amyloid plaques [55].
In addition to reduced intracellular Zn2+ levels, we found

a significant decrease in synapse density and synaptic Pro-
SAP2/Shank3 and Shank1 protein levels. While chelation
of Zn2+ by extracellular Ab appears a likely mechanism for
influencing Zn2+ levels in the brain, it should be noted that
intracellular chelation of Zn2+ might also contribute to its
sequestration. Interestingly, it was recently found that
serum Zn2+ concentrations were significantly reduced from
12.3 μmol/l to 10.9 μmol/l in AD patients compared to
control subjects [56]. Moreover, Zn2+ supplementation
greatly delays hippocampus-dependent memory deficits
and strongly reduces both Ab and tau pathology in the hip-
pocampus of an AD mouse model [57].

However, distinct mechanisms might contribute to the
observed decreases in PSD scaffold proteins in a brain
region specific manner. In cortical cultures, the Ab1-40-
mediated reduction of PSD-95 protein levels is depen-
dent on NMDAR activity and cyclin-dependent kinase
5, involving the proteasomal pathway [14]. However, the
decreased levels of Homer1b and Shank1 were not influ-
enced by proteasome activity. The decreased levels of
synaptic Homer1b required de novo protein synthesis
and involved the PI3-K pathway and calcineurin phos-
phatase (PP2B) activity, whereas declustering of Shank1
required NMDAR activity and activation of the ERK
pathway [13]. In this study, the focus on the hippocam-
pal region and the use of primary cultured neurons
derived from hippocampus might explain the differences
in regulatory pathways and kinetics mediating decreased
levels of PSD scaffold proteins. This is underlined by
our results, showing that a downregulation of ProSAP2/
Shank3 and Shank1 in cortical neuronal cultures indeed
occurs already after 1 h treatment with Ab as reported
previously [13]. Given that the hippocampus is the brain
region with the highest Zn2+ concentration, Zn2+-depen-
dent regulatory mechanisms of PSD plasticity might be
more pronounced in the hippocampus compared to
other brain regions.
Although sporadic forms of AD are the most com-

mon, mutations in presenilin are associated with familial
AD causing approximately 50% of these cases. In fact, it
was recently reported that presenilin is important for
cellular copper and zinc turnover, having the potential
to affect Ab aggregation indirectly through metal ion
clearance [58]. Moreover, inflammatory processes that
have been associated with AD [59] lead to a dysregula-
tion of metallothioneins that might additionally seques-
ter Zn2+. Thus, our experiments provide additional
evidence for a common mechanism of the pathology of
AD caused by the dysregulation of Zn2+ levels within
the brain.

Conclusions
Based on our results and on recent studies [17], we con-
clude that Ab complexes are able to bind extracellular
and possibly also intracellular Zn2+, causing a dysregula-
tion of Zn2+-dependent postsynaptic ProSAP/Shank
scaffold proteins. Since ProSAP/Shank family members
have specific roles in synapse formation and Shank1 is
only targeted to a sufficiently preformed ProSAP1/
Shank2-ProSAP2/Shank3 scaffold [17], the synaptic loss
of ProSAP2/Shank3 could lead to instable synapse for-
mation and/or maturation. This could further ultimately
result in the untimely elimination of synapses [17,27] as
evidenced by a reduction of Shank1 at the PSD in Ab
treated neurons and in patients with AD. In terms of
cognitive performance, this is expected to affect the
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establishment of new memory and the retention of older
memories during disease progression.
Although the idea, that sequestration of Zn2+ by Ab

might cause the deficits seen in AD has been raised in
the past, our data provide the first mechanistic insights,
that could ty the dysregulation of a major postsynaptic
scaffold molecule to the depletion of Zn2+ by Ab and
consecutive synapse elimination.

Methods
Chemicals and reagents
Zinquin ethyl ester, ZnCl2, the Zn2+ chelators CaEDTA
and TPEN (N,N,N’,N’-tetrakis(2-pyridylmethyl)-ethylene-
diamine) were purchased from Sigma-Aldrich. Zinpyr-1
was purchased from Mellitech. Primary antibodies were
purchased from Covance (b-III Tubulin), Synaptic Sys-
tems (Homer1, PSD-95, VGluT), Novus Biologicals
(Shank1 for IF), Stressgen (Bassoon), Sigma (PSD-95 for
IF, Shank1 for WB) and Millipore (Ab1-40 and Ab1-42).
ProSAP2/Shank3 antibodies have been described pre-
viously [17]. Secondary Alexa-coupled antibodies were
from Invitrogen. Unless otherwise indicated, all other
chemicals were obtained from Sigma.

Hippocampal cultures from rat brain
The preparation of hippocampal cultures was performed
essentially as described previously [60]. Cell culture
experiments of hippocampal primary neurons from rat
(embryonic day 18; E18) were performed as described
previously [60]. After preparation, hippocampal neurons
were seeded on poly-L-lysine (0.1 mg/ml; Sigma) glass
coverslips. Cells were grown in Neurobasal medium
(Invitrogen), complemented with B27 supplement (Invi-
trogen), 0.5 mM L-Glutamine (Invitrogen) and 100 U/
ml penicillin/streptomycin (Invitrogen) and maintained
at 37°C in 5% CO2. All animal experiments were per-
formed in compliance with the guidelines for the welfare
of experimental animals issued by the Federal Govern-
ment of Germany and the National Institutes of Health.
All of the experiments were conducted in strict compli-
ance with APLAC approved animal protocols from Stan-
ford University (protocol 14607) and by the local ethics
committee at Ulm University (ID Number: O.103).

Immunohistochemistry
For immunofluorescence, the primary cultures were
fixed with 4% paraformaldehyde (PFA)/1.5% sucrose/1x
PBS at 4°C for 20 min and processed for immunohisto-
chemistry. After washing 3 × 5 min with 1x PBS at RT,
blocking was performed with 0.5% cold fish gelatine
(Sigma) and 0,1% ovalbumin (Sigma)/1x PBS for 30 min
at RT and the cells were washed again 3 × 5 min with
1x PBS at RT, followed by the primary antibody at 4°C

overnight. After a 3 × 5 min washing-step with 1x PBS,
incubation with the second antibody coupled to
Alexa488, Alexa568 or Alexa647 for 1 h followed. The
cells were washed again in 1x PBS for 10 min and 5
min with ddH2O and mounted with Mowiol with or
without DAPI (4’,6-diamidino-2-phenylindole, for stain-
ing the nuclei) for fluorescence microscopy. Fluores-
cence images were obtained using an upright Axioscope
microscope equipped with a Zeiss CCD camera (16 bits;
1280 × 1024 ppi) using the Axiovision software (Zeiss)
or a spinning disk confocal microscope from Zeiss with
MetaMorph (Universal Imaging) software.

Human sections
Human brains from patients with different dementia
severity were obtained from the autopsy service at the
Department of Psychiatry from the University of Gen-
eva, School of Medicine, Geneva, Switzerland. All proce-
dures were reviewed and approved by the relevant
Institutional Review Board and Ethics Committees.
Details on the cases are provided in Table 1. Materials
were fixed as full hemispheres in 4% paraformaldehyde
for up to 6 weeks. Sections from hippocampal blocks
were cut on a vibratome at a thickness of 50 μm and
kept as free-floating series in PBS-azide at 4°C. For
staining, sections were exposed to blocking solution,
10% BSA in 1x PBS for 1 h at room temperature and
then incubated with the appropriate primary antibody in
the blocking solution overnight at 4°C. The sections
were washed with buffer and incubated with the second-
ary antibody (1:1000) in blocking solution for 1 h at
room temperature. Afterwards, sections were mounted
in VectaShield (Vector Laboratories) with DAPI for con-
focal fluorescence microscopy.

Mouse sections
Animal studies were conducted in accordance with the
National Institutes of Health guidelines for the use of
experimental animals, and protocols were approved by
the Institutional Animal Care and Use Committee. All
mice were housed in an environment controlled for
lighting (12-hour light/dark cycle), temperature, and
humidity, with food and water available ad libidum.
Male APP(swe)-PS1(dE9) mice, backcrossed for more
than ten generations to a C57BL/6J background, were
used for this study along with male non-transgenic lit-
termates. At 3, 6, or 12 months of age, mice were deeply
anesthetized and trans-cardially perfused with 0.9% sal-
ine. Brains were removed and fixed with 4% PFA in PBS
for 24 h followed by immersion in 30% sucrose in PBS
for more than two days. Coronal brain sections (40 μm)
were prepared using a sliding microtome and used for
immunostaining experiments as described above.
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Biochemical Analysis
To obtain P2/S2 fractions from hippocampal cultures,
DIV15 cells exposed to different compounds of interest
for the indicated times, were harvested and homoge-
nized in homogenization buffer (320 mM sucrose, 5
mM HEPES, pH 7.4) containing protease inhibitor mix-
ture (Roche). Cell debris and nuclei were removed by
centrifugation at 1000 × g for 15 min. The supernatant
was spun for 20 min at 12.0000 × g resulting in super-
natant S2 (soluble fraction) and pellet P2 (membrane-
associated fraction). Protein concentration was deter-
mined by amidoblack analysis and samples were further
separated by SDS-PAGE, Coomassie-stained or blotted
onto PVDF membranes using standard protocols.
Immunoreactivity was visualized using HRP-conjugated
secondary antibodies (DakoCytomation) and the Super-
Signal detection system (Rockford).

Treatment of hippocampal cells
Ab1-40, Ab1-42 (American Peptides), Ab29-40 peptide
(VWR International) and labeled Ab1-40 (Ab HiLyte
Fluor™ 555-labeled, Anaspec) were prepared as
described previously [13] and snap frozen at -20°C. As
reported in several previous studies, the predominant
aggregates in such preparations consist of low N-oligo-
mers (mainly monomeric to tetrameric). Experiments
were done with primary hippocampal neurons at
DIV15-17 as indicated. Aliquots of Ab were diluted in
culture medium to a final concentration of 1 μM or 10
μM immediately before use.
To assess Ab cell toxicity, hippocampal DIV15 neu-

rons were treated with Ab1-40 (Ctrl, +1 μM ZnCl2 or 1
μM CaEDTA), Ab1-42 and Ab29-40 for 48 h and fixed at
time-points 0 h, 6 h, 24 h and 48 h. The number of
cells per optic field was determined counting DAPI
positive nuclei and the number of neurons assessed by
MAP2 staining. The mean of five different fields of view
was calculated for each condition and time-point.

Synapse measurements
Pictures and were taken from neuronal synapses of hip-
pocampal neurons with an upright Axioscope micro-
scope equipped with a Zeiss CCD camera and a
spinning disk confocal microscope from Zeiss. Quantifi-
cation of fluorescence data was performed using Meta-
Morph (Universal Imaging), Image J 1.44e for
Macintosh, Axiovision and Noam Ziv’s Openview
software.
Statistical analysis in this paper was performed using

Microsoft Excel for Macintosh and tested for signifi-
cance using t tests followed by ANOVA with an a level
of significance set at 0.05 (< 0.05*; < 0.01**; < 0.001***).
For evaluation, fluorescent puncta positive for a presy-
naptic marker (Bassoon, VGluT) and postsynaptic

marker (ProSAP2/Shank3, Shank1, Homer1, PSD-95)
along primary and secondary dendrites within the field
of view were counted. Additionally, grey values and the
signal area of post- and presynaptic proteins were mea-
sured and the results for the different conditions were
evaluated in a blinded comparison. Pictures were all
taken with the same acquisition time.

Zinc staining
Zinypr-1 was stored as a 5 M stock solution in DMSO
at -20°C. For cell culture neurons, growth medium was
discarded and the cells were washed three times with
HBBS. Hippocampal sections were incubated with a
solution of 5 μM Zinquin ethyl ester or Zinpyr-1 in
HBSS for 30 min. Zinpyr-1 (C46H36Cl2N6O5, MW:
823.22 g*mol-1) is a membrane-permeant fluorescent
sensor for Zn2+ with a high specificity and affinity for
zinc (Kd = 0.7 ± 0.1 nM). Zinquin ethyl ester was
stored as a 5 M stock solution in DMSO at -20°C.
Hippocampal neurons were incubated with a solution
of 25 μM Zinquin ethyl ester in HBSS for 20 min at
37°C [28].

Cos7 cell assay
Cos7 cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) with high glucose (Invitrogen),
supplemented with 10% (v/v) fetal calf serum, 2 mM L-
glutamine and 5 μM ZnCl2. Cells were grown on com-
mercially available chamber-slides (Nunc) treated with
poly-L-lysine (0.1 mg/ml; Sigma). Transfection experi-
ments with GFP-ProSAP2 (aa1-1806; full-size ProSAP2/
Shank3) were performed using the transfection-agent
Lipofectamine 2000 (Invitrogen) according to the manu-
facturer’s recommendations. At 16 h post-transfection,
zinc-staining using Zinquin ethyl ester was performed (t
= 0 min) or cells were treated for 10 min with TPEN (t
= 10 min) followed by either zinc-staining or application
of 10 μM fluorescent Ab1-40 (b HiLyte Fluor™ 555-
labeled) for 20 min. After application of fluorescent
Ab1-40, an equimolar amount of ZnCl2 (10 μM) was
supplemented for 20 min and subsequently, zinc-stain-
ing (t = 50 min) was performed; Alternatively, 10 μM
fluorescent Ab preincubated for 1 h with 10 μM ZnCl2
was applied for 20 min followed by supplementation of
10 μM ZnCl2 for 20 min and subsequent zinc staining.
After this, cells were fixed with 4% PFA and mounted in
VectaShield without DAPI.

Quantitative Real-time PCR
Isolation of total RNA from primary neuronal cell cul-
tures was performed using the RNeasy kit as described
by the manufacturer. Isolated RNA was eluted in a total
of 20 μl RNase-free water (supplied with the kit) and
stored at -80°C.
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For the reverse transcriptase-mediated PCR studies, first
strand synthesis and real-time quantitative RT-PCR ampli-
fication were carried out in a one-step, single-tube format
using the QuantiFast SYBR Green RT-PCR kit. Thermal
cycling and fluorescent detection were performed using
the Rotor-Gene-Q real-time PCR machine (model 2-Plex
HRM) (Qiagen). The qRT-PCR was assayed in 0.1 ml strip
tubes in a total volume of 20 μl reaction mixture contain-
ing 1 μl of undiluted total RNA, 2 μl of QuantiTect Primer
Assay oligonucleotides, 10 μl of 2x QuantiFast SYBR
Green RT-PCR Master Mix supplemented with ROX (5-
carboxy-X-rhodamine) dye, 6.8 μl of RNase-free water
(supplied with the kit) and 0.2 μl of QuantiFast RT Mix.
RT. Amplification conditions were as follows: 10 min at
50°C and 5 min at 95°C, followed by 40 cycles of PCR for
10 s at 95°C for denaturation, 30 s at 60°C for annealing
and elongation (one-step). During the extension real-time
fluorescence measurements were recorded by the PCR
machine, thus monitoring real-time PCR amplification by
quantitative analysis of the fluorescence emission. The
SYBR Green I reporter dye signal was measured against
the internal passive reference dye (ROX) to normalize
non-PCR-related fluctuations in fluorescence which occurs
from reaction tube to reaction tube. Resulting data were
analysed utilizing the hydroxymethylbilane synthase gene
as an internal standard to normalize transcript levels.
Cycle threshold (ct) values were calculated by the Rotor-
Gene-Q Software (version 2.0.2). Cycle threshold values
indicate the PCR cycle number at which the measured
fluorescence of the indicator dye (SYBR Green I), accor-
dant to the quantity of amplified PCR products, is increas-
ing in a linear fashion above background. All qRT-PCR
reactions were run in duplicates in three independent
experiments and mean ct values for each reaction were
taken into account for calculations of data analysis. To
ascertain primer specificity a melting curve was obtained
for the amplicon products to determine their melting tem-
peratures. Melting curve was driven from 60°C to 95°C ris-
ing in 1°C steps while fluorescence was recorded
continuously. For negative controls and to check for
reagent contamination a complete reaction mixture was
used in which the RNA sample was replaced by RNase-
free water. Real-time quantitative PCR was carried out
using oligonucleotides allowing to investigate expression
of the following genes: Shank1 and ProSAP2/Shank3 (vali-
dated primer pairs, Quantitect primer assay, Qiagen). All
consumables used for the extraction of total RNA and
real-time PCR analysis were purchased from Qiagen.

Additional material

Additional file 1: Synapse number and protein composition of
neurons treated with Ab1-42. Hippocampal neurons (DIV15) were
treated with 1 μM Ab1-42 (soluble oligomers) and fixed after 0, 6, and 24

h. Immunocytochemistry was performed using anti-ProSAP2/Shank3 with
anti-Bassoon as presynaptic marker. Images were taken with the same
acquisition time and the mean grey value and mean area of ProSAP/
Shank signals opposite Bassoon signals was measured. A) The synapse
density was calculated measuring the number of synapses per unit
dendrite length of ten cells of three independent experiments for every
time-point and condition. The ratio of the mean synapse density
between treated and untreated neurons shows a significant decrease in
synapse density starting at 6 h exposure to Ab1-42. B) The ratio of mean
grey values between treated and untreated neurons shows a significant
downregulation of ProSAP2/Shank3 at the synapse after 24 h treatment
with Ab1-42. C) Cultured hippocampal neurons were immunostained with
antibodies against Homer1 and PSD-95 and the ratio of mean grey
values between treated and untreated neurons was measured after 0 h,
1 h and 24 h treatment with Ab1-40. A significant decrease is seen after
24 h of treatment. D) The mean signal intensity of Homer1, ProSAP2/
Shank3 or Shank1 signals opposite Bassoon puncta was measured at
time-point 0 h, 1 h and 24 h after Ab1-40-treatment of cortical neurons.
The ratio of signal intensity between treated and untreated synapses is
shown. A decrease of ProSAP2/Shank3 and Shank1 levels can be seen as
early as 1 h after treatment. E) The mean area of ProSAP2/Shank3 or
Shank1 signals opposite Bassoon puncta was measured after Ab1-40-
treatment. The change in the ratio of mean grey values per mean area
between treated and untreated synapses (see Figure 1C) is based on a
change in grey values, since the mean signal area is found to be the
same for all time-points and conditions. The results show no significant
changes between treated and untreated neurons. F) ProSAP2/Shank3
levels in immature vs. mature spines was measured using fluorescence
grey values after 24 h Ab1-40 treatment and compared to control
conditions (24 h treatment with DMSO). Fluorescence grey values were
normalized against presynaptic marker (Bassoon) grey values. Immature
synapses show lower levels of ProSAP2/Shank3, increasing from
filopodia-like to thin and mushroom/stubby spines. Treatment with Ab1-
40 significantly decreases the amount of ProSAP2/Shank3 in all spine
types (significance indicated for comparison between “filopodia like” and
“filopodia like after treatment”, “thin” and “thin after treatment” etc.).

Additional file 2: Evaluation of PSD proteins after Ab1-40 treatment.
A) Western blots of S2 soluble fractions from hippocampal neurons
cultured for 15 DIV and then treated for 6 h and 24 h with Ab1-40 (P2
fractions presented in Figure 2A). Compared to untreated cells at time-
point 0, no decrease in the amount of ProSAP2/Shank3 and Shank1
could be detected after 6 h or 24 h of Ab-treatment. Note, Homer1 and
PSD-95 levels did not change. Lysates from 3 independent experiments
were quantified via Western Blot analysis by measuring the integrated
density. The values were normalized against b-III Tubulin and 0 h was set
to 100%. B) The reduction of ProSAP2/Shank3 and Shank1 at the synapse
is independent of both, proteasomal degradation and protein synthesis,
since treatment with the proteasome inhibitor MG132 and protein
synthesis inhibitor CHX did not prevent Ab1-40 induced changes in
synaptic signal intensities of ProSAP2/Shank3 and Shank1. MK801, a
NMDAR antagonist showed a tendency to prevent Ab1-40 induced
changes in ProSAP2/Shank3 (although statistically not significant), but
significantly decreased the amount of Ab1-40 induced changes in Shank1
levels. The ratio between two sets of untreated control cells is shown
and compared to the ratio between cells treated with Ab and untreated
cells as well as cells treated with MG132, CHX or MK801 in presence of
Ab and cells treated with MG132, CHX or MK801 alone.

Additional file 3: Zinquin signals of neurons treated with Ab1-40. A)
Zinquin ethyl ester detects synaptic Zn2+ signals. Co-labeling with FM
dye reveals that the Zn2+ staining is mostly opposed to FM, thus
marking postsynaptic compartments. B) After treatment of hippocampal
neurons with 1 μM and 10 μM Ab1-40, a reduction in dendritic Zn2+

signal area above a fixed fluorescent threshold can be seen. The mean
area of Zinquin signals above a fluorescence limit was measured from
five cells and the ratio between cells treated for 6 or 24 h and untreated
cells is shown. A significant reduction can be seen after 6 h (10 μM) and
24 h (10 μM) treatment.

Additional file 4: Zinc supplementation experiments in vitro. A)
Coomassie staining, showing that similar amounts of protein were
loaded for the quantification of changes in synaptic protein levels by
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Western blot analysis presented in Figure 5E. B-D) Hippocampal neurons
(DIV15) were treated with 1 μM Ab29-40 and fixed after 0, 6, and 24 h.
Immunocytochemistry was performed using anti-ProSAP2/Shank3 with
anti-Bassoon as presynaptic marker. Images were taken with the same
acquisition time and the mean grey value and mean area of ProSAP/
Shank signals opposite Bassoon signals was measured. B) Effect of Ab
and Zn2+ on ProSAP2/Shank3 levels are independent of protein
synthesis. Cultured hippocampal neurons were immunostained with
antibodies against ProSAP2/Shank3 and the ratio of mean grey values
between treated and untreated neurons was measured after 24 h
treatment with Ab1-40 or Ab1-40 with equimolar ZnCl2 supplementation
(see Figure 5) with and without application of the protein synthesis
inhibitor CHX (15 μM). The presence of CHX does not prevent rescue of
ProSAP2/Shank3 levels by ZnCl2 supplementation. C) Cultured
hippocampal neurons (DIV 15) were immunostained with antibodies
against Shank1 and Homer1 and the ratio of mean grey values between
treated and untreated neurons was measured after 24 h treatment with
Ab1-40 or Ab1-40 with equimolar ZnCl2 supplementation (see Figure 5).
ZnCl2 supplementation leads to a significant increase in Shank1 signal
intensity at the synapse. Although Homer1 levels are also increased,
there is still a significant difference to control cells and no statistically
significant difference to Ab treated cells. D) The synapse density was
calculated measuring the number of synapses per unit dendrite length
of ten cells of three independent experiments for every time-point and
condition. The ratio of the mean synapse density between treated and
untreated neurons shows no significant decrease in synapse density. E)
The ratio of mean grey values between treated and untreated neurons
shows no significant downregulation of ProSAP2/Shank3 at the synapse
after 24 h treatment with Ab29-40. F) Hippocampal neurons (DIV15) were
treated with Ab1-40 Ab1-42 and Ab29-40 and fixed after 0, 6, and 24 h. The
number of cells per optic field was identified by DAPI staining of nuclei
and labeling of neurons by MAP2. No significant reduction is seen after
24 h (magnification of typical field of view of Ab1-40 treated neurons,
right panel) (scale bar = 200 μm). G) However, after 48 h, Ab1-40 Ab1-42
and Ab29-40 treated neurons show signs of cell death (arrows,
magnification of typical field of view of Ab1-40 treated neurons, right
panel). Supplementation of cultures with 1 μM ZnCl2 or zinc depletion
using the cell impermeable Zn2+ chelator CaEDTA did not lead to any
changes in the amount of cell death (scale bar = 200 μm).

Additional file 5: Zinpyr-1 staining of human brain sections. Zn2+

ions were visualized by Zinpyr-1 in human (and mouse, data not shown)
brain sections and the fluorescence of intracellular Zn2+ staining
measured in control sections with and without application of TPEN prior
to Zn2+ staining. The fluorescence of the Zinpyr-1 dye is mostly absent
in TPEN-treated section revealing the high specificity of the Zn2+-staining
in brain sections.

Additional file 6: Zinpyr-1 staining of APP-PS1 mouse hippocampal
brain sections. Zn2+ ions were visualized by Zinpyr-1 and the
fluorescence of intracellular Zn2+ staining measured in APP-PS1 mouse
hippocampal brain sections from dentate gyrus (dg) and CA3 region in
mice 3, 6 and 12 m.o.a (Inset on the upper right: p = pyramidal cells, g =
granule cells).
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