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Abstract

Lactoferrin (LF) is a multifunctional protein with a broad spectrum of antimicrobial activities.

In this study, we investigated the antimicrobial activity of LF against the potato common

scab pathogen Streptomyces scabiei, which causes severe damage to potato tubers. LF

derived from bovine (bLF) had much higher activity against S. scabiei than human LF. The

minimal inhibitory concentration of bLF was 3.9 μM. The effects of both apo-bLF (iron-free)

and holo-bLF (iron-saturated) on S. scabiei were not different. Bovine lactoferricin (LFcinB),

a short peptide with a length of 25 amino acid residues located in the N-terminal region of

bLF, showed antimicrobial activity against S. scabiei, similar to that of bLF. These results

indicated that the antimicrobial activity of bLF against S. scabiei cannot be attributed to its

iron-chelating effect but to the bioactivity of its peptides. When S. scabiei was treated with

the fusion protein of mCherry-LFcinB (red fluorescent protein) expressed in Escherichia

coli, the pseudohyphal cells instantly glowed, indicating that the peptide electrostatically

binds to the surface of S. scabiei. An assay of synthetic peptides, with modified number of

arginine (Arg) and tryptophan (Trp) residues based on the antimicrobial center (RRWQWR)

of LFcinB showed that Trp residues are implicated in the antimicrobial activity against S.

scabiei; however, Arg residues are also necessary to carry Trp residues to the cell surface

to fully exert its activity. Although the single amino acid effect of Trp had low activity, Trp

derivatives showed much higher activity against S. scabiei, suggesting that the derivatives

effectively bind to the cell surface (cell membrane) by themselves without a carrier. Thus,

amino acid derivatives might be considered effective and alternative antimicrobial

substances.

Introduction

Lactoferrin (LF), a member of the transferrin family, is a multifunctional glycoprotein present

in milk, sudor, lacrima, saliva, and blood. LF has various properties, including antioxidant,

anticancer, and wound healing [1–3]. In particular, it performs a wide range of antimicrobial

activities, thereby, playing a critical role in protecting newborn infants from infection [4]. To

date, the antimicrobial activity of LF has been studied mainly against human pathogens,
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including viruses, bacteria, and fungi [5–10]. Recently, the antiviral activity of LF against the

novel coronavirus SARS-Cov2 (COVID-19) has also been intensely studied [11–13]. Indeed,

LF has a wide spectrum of activities against many types of pathogens, including plant patho-

gens, such as Fusarium graminearum (fungus) [14], Pseudomonas syringae (bacterium) [15],

and Tobacco mosaic virus [16]. However, the antimicrobial effect of LF on actinomycetes has

not been determined in both medical and plant pathology. On the contrary, bifidobacteria

belonging to actinomycetes have been reported to exploit LF for effective growth [17]; how-

ever, the effect of LF on plant pathogens belonging to actinomycetes is unclear. Therefore, in

this study, we investigated the effect of LF on the potato common scab pathogen Streptomyces
scabiei, an actinomycete, which causes an economically important disease in potato tubers

worldwide and is difficult to control in the field [18, 19].

The mechanisms underlying the antimicrobial action of LF are related to its ability to

strongly bind to iron [20] or to the direct killing effect of some bioactive peptides present in it

[21, 22]. Siderophore-mediated iron acquisition is critical for the successful infection of hosts

by both human and plant microbial pathogens [23]. In some microbial pathogens, growth is

inhibited by the ability of LF to sequester iron [24]. LF harbors antimicrobial peptides, such as

LF1-11 [25], lactoferampin [26], and lactoferricin [27]. These peptides are rich in hydrophobic

and cationic amino acids, which are thought to be important for antimicrobial effects [28–30].

In this study, we focused on bovine lactoferricin (LFcinB) (S1 Fig), which is well studied, and

sought to understand the contribution of the core motif (RRWQWR) [31–33] situated in the

peptide to the antimicrobial activity against S. scabiei.
This study is the first to report the antimicrobial effect of LF on S. scabiei and to clarify the

mechanism underlying its action. We also examined the potential of amino acid derivatives as

alternative antimicrobial agents to control S. scabiei from the perspective of LF properties.

Materials and methods

Bacterial strains and culture

S. scabiei S58, isolated from potatoes grown in Kagoshima, Japan [34], was used in this study.

The S58 isolate was cultured at 28 ˚C for 7 days on starch agar (STA) (1% starch, 0.1% sucrose,

0.1% yeast extract, 0.01% NaNO3, 0.01% MgSO4�7H2O, 0.01% KH2PO4, 0.01% KCl, 1.5%

agar) to obtain spores. For antimicrobial assays, the spores of the isolate were incubated at 28

˚C in tryptic soy broth (TSB) (Becton Dickinson, Sparks, USA). Escherichia coli strains JM109

and BL21(λDE3) were grown at 37 ˚C in Luria-Bertani broth supplemented with 100 μg/mL

ampicillin for propagation.

Preparation of antimicrobial test substances

Human-derived LF (hLF) and bovine-derived LF (bLF) were purchased from FUJIFILM

Wako Pure Chemical Corporation, Osaka, Japan. Iron-depleted (apo) bLF and iron-saturated

(holo) bLF were prepared using the method described by Wang et al. (2013) [35]. The iron

content of apo- and holo-LFs was confirmed using an FeC-test kit (FUJIFILM Wako); consid-

ering the theoretical value of 2 M iron per 1 M LF as 100% saturation, the saturation of apo-

and holo-LFs was determined to be 0.35% and 95.5%, respectively. For bLF hydrolysis, 50 mg/

mL bLF was hydrolyzed in 3% (w/w) porcine pepsin (Merck/Sigma-Aldrich, St. Louis, MO,

USA) according to the procedure described by Tomita et al. (1991) [36]. LFcinB (purity

�95%) was purchased from Merck/Sigma-Aldrich. Synthetic peptides (RRWQWR, RRWQRR,

RRRQRR, RRWWWR, and QQWWWQ) were also manufactured by Merck/Sigma-Aldrich. Amino

acid derivatives were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). All

the synthetic peptides were easily soluble in water.

PLOS ONE Antimicrobial effect and mechanism of lactoferrin against Streptomyces scabiei

PLOS ONE | https://doi.org/10.1371/journal.pone.0264094 February 25, 2022 2 / 16

https://doi.org/10.1371/journal.pone.0264094


Antimicrobial assays

A 12-well plate was used to assess the antimicrobial activity of LF, hydrolysate, LFcinB, and

synthetic peptides. One milliliter of TSB containing each test substance was added to each well

and then the spores of S. scabiei S58, prepared as described above, were added into each well at

a final concentration of 2 × 105 spores/mL. The mixture was incubated at 28 ˚C for 72 h, and

the absorbance was measured at 600 nm to monitor bacterial growth. To further confirm

whether the antimicrobial activity is due to growth inhibition or bactericidal effect, 1 mL of

TSB containing 2 ×103 spores and bLF (1 mg/mL) was incubated at 28 ˚C and directly cultured

on STA after 5, 10, 15, 24, 48, and 72 h of incubation to count the emerging colonies. All assays

were performed in duplicate and were repeated three times.

Protein expression in E. coli
The gene fragment encoding LFcinB was constructed by overlap extension (OE)-PCR using

the deoxyoligonucleotides LFcinB-FW (50-TTCAAATGCCGCCGTTGGCAGTGGCGTATG
AAAAAACTGGGTG-30) and LFcinB-RV (50-GAACGCGCGACGCACGCAGGTAATAGACG
GCGCACCCAGTTT-30), the codon usage of which was optimized for expression in E. coli.
These two deoxyoligonucleotides have a ten-base complementary overlap at their 30-end.

The gene encoding mCherry (a red fluorescent protein) was amplified by pmCherry (Takara

Bio, Otsu, Japan) using primers mCherry-pET23-FW (50-AAGGAGATATACATATGGTGAGC
AAGGGCGAGGAGGA-30)/mCherry-pET23-RV (50-GGTGGTGGTGCTCGAGCTTGTACAGC
TCGTCCATGC-30). The gene encoding the fusion protein mCherry-LFcinB was constructed

by OE-PCR. First, the two fragments were amplified from the above mCherry and LFcinB

fragments using primers mCherry-pET23-FW/mCherry-LFcinB-B (50-ACGGCGGCATTTGAA
CTTGTACAGCTCGTCCATGC-30), and mCherry-LFcinB-C (50- GACGAGCTGTACAAGTTC
AAATGCCGCCGTTGGCA-30)/LFcinB-pET23-RV (50-GGTGGTGGTGCTCGAGGAACGCGCG
ACGCACGCAGG-30), and the two newly obtained fragments were joined with mCherry-

pET23-FW/LFcinB-pET23-RV. The nucleotides in italics in the above primer sequences indi-

cate restriction enzyme sites. PrimeSTAR GXL DNA polymerase (Takara Bio) was used for

DNA amplification. The amplified fragments were cloned into pET-23b (Merck/Novagen,

Madison, WI, USA), digested with NdeI and XhoI, via an In-Fusion HD Cloning kit (Takara

Bio). The expression vectors obtained were transferred into E. coli BL21 (λDE3) cells (Merck/

Novagen) via electroporation. Protein expression was induced with 1 mM isopropyl β-D-

1-thiogalactopyranoside and incubated for 12 h at a low temperature (15 ˚C) to reduce its tox-

icity to the cells. The expressed proteins were purified using a Capturem His-Tagged Purifica-

tion kit (Takara Bio) and adjusted to a concentration of 75 μg/mL before treatment against the

pseudohyphal cells of S. scabiei S58.

Results

Antimicrobial activity of LF

We first tested the antimicrobial activities of hLF and bLF on S. scabiei. The results showed

that both hLF and bLF had antimicrobial activity against S. scabiei and bLF was more potent

than hLF (Fig 1). Therefore, we used bLF in further experiments. To understand whether the

iron-chelating effect is involved in the antimicrobial action of bLF, we used apo-bLF (iron-

free) and holo-bLF (iron-saturated); however, both apo- and holo-bLFs showed the same pro-

files in their antimicrobial activities (Fig 2), indicating that iron-chelating effect is not involved

in its antimicrobial action. Next, we cultured the spores of S. scabiei on a solid medium in a

time-dependent manner after treatment with bLF and counted the number of colonies
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formed. There was a sharp decrease in the number of colonies at 5 h and only a few colonies

remained at 48 h (Fig 3A), indicating that the antimicrobial activity of bLF against S. scabiei is

attributable to its bactericidal effect. The minimal inhibitory concentration of bLF against S.

scabiei was also investigated. No growth of S. scabiei was observed at a concentration of 3.9 μM

and above (Fig 3B).

Fig 1. Comparison of the antimicrobial effects of human-derived lactoferrin (hLF) (A) and bovine-derived lactoferrin (bLF) (B) on

Streptomyces scabiei S58. The mixture of lactoferrin and spores (2 × 105/mL) was incubated at 28 ˚C for 72 h in tryptic soy broth and the

absorbance was measured at 600 nm to monitor bacterial growth. Error bars indicate the mean ± standard division of three independent

experiments. Asterisks show a significant difference with respect to the control at �p< 0.05 and ��p< 0.01 (Student’s t test).

https://doi.org/10.1371/journal.pone.0264094.g001

Fig 2. Comparison of the antimicrobial effects of bovine-derived lactoferrin with iron-free (apo-bLF) (A) and bovine-derived

lactoferrin saturated with iron (holo-bLF) (B) on Streptomyces scabiei S58. The mixture of lactoferrin and spores (2 × 105/mL)

was incubated at 28 ˚C for 72 h in tryptic soy broth and the absorbance was measured at 600 nm to monitor bacterial growth.

Error bars indicate the mean ± standard division of three independent experiments. Asterisks show a significant difference with

respect to the control at �p< 0.05 and ��p< 0.01 (Student’s t test).

https://doi.org/10.1371/journal.pone.0264094.g002
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Antimicrobial activity of bLF hydrolysate and LFcinB

The effects of the hydrolysate of bLF digested with porcine pepsin and LFcinB (25 amino

acids), one of the peptides present in the hydrolysate, against S. scabiei were assessed. The bLF

hydrolysate showed a strong activity and S. scabiei was unable to grow at a concentration of

1.3 μM (Fig 4A). LFcinB was also effective and no growth of S. scabiei was observed at a

Fig 3. Bactericidal effect of bovine-derived lactoferrin (bLF) (A) and minimal inhibitory concentration (MIC) of bLF (B) on Streptomyces scabiei
S58. For the assay of bactericidal effect, the mixture of bLF and spores (2 × 103/mL) was incubated at 28 ˚C and directly cultured on starch agar in a

time-dependent manner. The number of colonies emerging on the plates was counted. For the MIC assay, the mixture of bLF and spores (2 × 105/mL)

was incubated at 28 ˚C for 72 h in tryptic soy broth and the absorbance was measured at 600 nm to monitor bacterial growth. Error bars indicate the

mean ± standard division of three independent experiments. Asterisks show a significant difference with respect to the control at ��p< 0.01 (Student’s t
test).

https://doi.org/10.1371/journal.pone.0264094.g003

Fig 4. Antimicrobial effects of the hydrolysate of bovine-derived lactoferrin (bLF) digested with porcine pepsin (A) and bovine-derived

lactoferrcin (LFcinB) (B). The mixture of each test substance and spores (2 × 105/mL) was incubated at 28 ˚C for 72 h in tryptic soy broth and

the absorbance was measured at 600 nm to monitor bacterial growth. Error bars indicate the mean ± standard division of three independent

experiments. Asterisks show a significant difference with respect to the control at �p< 0.05 and ��p< 0.01 (Student’s t test).

https://doi.org/10.1371/journal.pone.0264094.g004
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concentration of 3.2 μM (Fig 4B). These results indicated that the antimicrobial activity of bLF

against S. scabiei is based on bLF-derived peptides.

Binding ability of LFcinB to the cell surface

To investigate whether LFcinB binds to the cell surface of S. scabiei, we constructed a fusion

protein of mCherry-LFcinB (S2 Fig). Upon adding the fusion protein to S. scabiei, the pseudo-

hyphal cells instantly started to glow (Fig 5), and the fluorescence of the cells treated with

mCherry alone was not observed even at a longer exposure time (Fig 5, under the left image),

indicating that the adhesion of LFcinB to the cell surface is necessary for its lethal effect.

Antimicrobial activity of synthetic peptides

We synthesized the following five peptides: RRWQWR (the original core sequence situated in

LFcinB), RRWQRR, RRRQRR, RRWWWR, and QQWWWQ. The antimicrobial effect of each peptide

on S. scabiei is shown in Fig 6. The RRWQRR peptide, containing only one Trp residue, had less

activity than the original peptide containing two Trp residues (Fig 6A and 6B). The peptide

without Trp residue (RRRQRR) completely lost its activity (Fig 6C). On the contrary, the pep-

tide of RRWWWR containing three Trp residues had the highest activity among the synthetic

peptides (Fig 6D). Intriguingly, even if the QQWWWQ peptide contains three Trp residues, in the

absence of Arg residue, it caused a complete loss of activity (Fig 6E). These results indicated

that Trp residue itself has antimicrobial activity but Arg residue is necessary for its activity at

the peptide level.

Fig 5. The ability of bovine-derived lactoferrcin (LFcinB) to bind to the cell surface of Streptomyces scabiei S58.

LFcinB and the fusion protein of mCherry-LFcinB (red fluorescence) were expressed in Escherichia coli respectively

and adjusted to the concentration of 75 μg/mL before treatment against the pseudohyphal cells of S. scabiei. The

fluorescent image of mCherry-treated cells (lower left) was taken at a longer exposure time (3 s) than that of mCherry-

LFcinB-treated cells (1/2 s) (lower right). Upper images were taken in the bright field.

https://doi.org/10.1371/journal.pone.0264094.g005
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Antimicrobial activity of single amino acids (Arg and Trp) and their

derivatives

Unlike the synthetic peptide assay, Arg had a higher activity than that of Trp; however, a high

concentration (40 mM) was necessary to completely inhibit the growth of S. scabiei (Fig 7A

and 7B). We also used the derivatives of Arg and Trp to investigate whether the changes in

chemical structure affect their antimicrobial activity. As a result, arginine hydrochloride

showed a complete loss of activity (Fig 7C), whereas tryptophan methyl ester hydrochloride

and tryptophan ethyl ester hydrochloride showed much higher activity than that of tryptophan

(Fig 7D and 7E). Tryptophan ethyl ester hydrochloride was the most effective. The assay of

these derivatives showed exactly opposite results to those of single amino acids.

Fig 6. Antimicrobial effects of synthetic peptides on Streptomyces scabiei S58. The mixture of each synthetic peptide and spores (2 × 105/mL) was

incubated at 28 ˚C for 72 h in tryptic soy broth and the absorbance was measured at 600 nm to monitor bacterial growth. (A) The original sequence

(RRWQWR) situated in bovine-derived lactoferricin. (B) RRWQRR containing only one Trp residue. (C) RRRQRR containing no Trp residue. (D)

RRWWWR containing three Trp residues. (E) QQWWWQ containing three Trp residues and no Arg residue. Error bars indicate the mean ± standard

division of three independent experiments. Asterisks show a significant difference with respect to the control at �p< 0.05 and ��p< 0.01 (Student’s t
test).

https://doi.org/10.1371/journal.pone.0264094.g006
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Discussion

The antimicrobial effect of LF on many bacteria, including species pathogenic to humans and

plants, has been reported [14–16]. However, the effect of LF on pathogenic actinomycetes has

not yet been investigated. This is the first study to report the antimicrobial activity of LF on the

potato common scab pathogen S. scabiei belonging to actinomycetes. The following two main

functions are involved in the antimicrobial properties of LF: (i) ability to bind two atoms of

ferric iron, leading to the inhibition of bacterial growth via restriction of the availability of iron

as a nutrient [24], and (ii) ability to electrostatically bind to the bacterial surface at the peptide

level, leading to a direct killing effect by disruption of bacterial membranes [37, 38]. First, we

checked whether LF has an antimicrobial effect on S. scabiei using human and bovine strains

and found that LF has antimicrobial activity against S. scabiei and bLF (bovine) is more effec-

tive than hLF (human) (Fig 1). Therefore, we decided to use bLF for further experiments. To

clarify whether the iron-chelating property of bLF is involved in its antimicrobial activity (bac-

teriostatic action) on S. scabiei, apo-bLF (iron-free) and holo-bLF (iron-saturated) were exam-

ined. In some bacterial pathogens, such as Actinobacillus pleuropneumoniae and Cronobacter
sakazakii, iron sequestration by LF inhibits their growth [39, 40]. In this study, the activities of

apo- and holo-bLFs against S. scabiei showed almost the same profiles (Fig 2), indicating that

the ability of bLF to bind ferric iron is not responsible for its antimicrobial effect on S. scabiei.
The reason why apo- and holo-bLFs showed lower antimicrobial activity than bLF is that

Fig 7. Antimicrobial effects of single amino acids Arg (A) and Trp (B), and their derivatives (C-E) on Streptomyces scabiei S58. The mixture of

each single amino acid or derivative and spores (2 × 105/mL) was incubated at 28 ˚C for 72 h in tryptic soy broth and the absorbance was measured at

600 nm to monitor bacterial growth. Error bars indicate the mean ± standard division of three independent experiments. Asterisks show the significant

difference with respect to the control at �p< 0.05 and ��p< 0.01 (Student’s t test).

https://doi.org/10.1371/journal.pone.0264094.g007
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when they were prepared from bLF, their protein structures may have changed slightly, which

might have affected their binding ability to the cell surface of S. scabiei.
Next, to investigate whether its antimicrobial activity is attributable to a direct killing effect,

we counted the colony-forming units of S. scabiei on plates after treatment with bLF in a time-

dependent manner. The number of colonies drastically declined at 5 h, and only a few colonies

were observed at 48 h (Fig 3A). Thus, bLF has a direct bactericidal effect on S. scabiei. The bac-

tericidal activity of LF is attributed to its peptides such as LF1-11 [25], lactoferrampin [26],

and LFcinB [27]. These three peptides are located in the N1-domain of LF and exhibit a broad

antimicrobial action against several gram-negative and gram-positive bacteria, and fungi,

including E. coli [41, 42], Pseudomonas aeruginosa [43], Staphylococcus aureus [44, 45], Bacillus
subtilis [46], and Candida albicans [47, 48]. Notably, LFcinB, a fragment of 25 residues (LF

amino acids 17–41), has a wider spectrum of activity even against viruses [49, 50] and protozoa

[51, 52], in addition to microbes. In this study, we used the pepsin hydrolysate of bLF contain-

ing fragments of the three peptides and LFcinB alone. Both the hydrolysate and LFcinB were

effective against S. scabiei (Fig 4), indicating that the killing effect of bLF on S. scabiei is attrib-

utable to the bactericidal activity of the peptides. In this study, although we used LFcinB, the

other two peptides, LF1-11and lactoferrampin, may also have activities because the bLF hydro-

lysate had a greater effect than that of bLF (Figs 1B and 4A).

Antimicrobial peptides are rich in cationic and hydrophobic amino acids and are expected

to interact with negatively charged elements [53]. Bacterial cell walls have a negative charge;

the cell surface components, such as lipopolysaccharides in gram-negative bacteria [54] and

teichoic and lipoteichoic acids in gram-positive bacteria, are negatively charged [55]. To test

whether LFcinB can bind to the cell surface of S. scabiei, we expressed an mCherry-LFcinB

fusion protein and administered it to the pseudohyphal cells of S. scabiei. Immediately after

adding the fusion protein, the cells started to glow (Fig 5), indicating that LFcinB was electro-

statically attracted to the bacterial cell surface.

LFcinB contains eight cationic and 11 hydrophobic amino acids out of the 25 residues (S1

Fig). Strøm et al. (2001) reported that two Trp resides in LFcinB cannot be replaced by Ala res-

idue to exert the full antimicrobial activity against E. coli [56]. The RRWQWR motif containing

the two Trp resides in LFcinB is the core site for the antimicrobial activity of the peptide [31–

33, 57]. Many studies have reported that positively charged Arg residues first interact with the

negatively charged bacterial cell surface, and then hydrophobic Trp residues may provide bio-

logical activities using their indole ring, leading to membrane destabilization and subsequent

cell lysis [44, 58–61]. Therefore, we synthesized four different peptides by changing the num-

ber of Arg and Trp residues in addition to the original motif of RRWQWR. The peptide of

RRWWWR containing three Trp residues showed the highest antimicrobial activity against S.

scabiei among the synthetic peptides; the lesser the number of Trp residues, the lower was the

effect (Fig 6A, 6B and 6D), and the RRRQRR peptide with no Trp residue completely lost its

activity (Fig 6C), indicating that Trp residue is important for the antimicrobial activity against

S. scabiei. In contrast, the QQWWWQ peptide containing three Trp residues but no Arg residue

also completely lost its activity, indicating that Arg residue is necessary as well (Fig 6E). In

other words, because Trp residue itself cannot bind to the bacterial cell surface, it must be car-

ried by a cationic Arg residue to bind to the negative cell surface (Fig 8A). In the assay per-

formed to compare the antimicrobial activities of hLF and bLF against S. scabiei (Fig 1), hLF

was less effective than bLF, probably because hLF harbors only one Trp residue in its lactoferri-

cin (S1 Fig).

Interestingly, in the antimicrobial assay of single amino acids, Arg showed higher activity

than Trp (Fig 7A and 7B); this could be because at a high concentration cationic Arg coated

the overall cell surface of S. scabiei resulting in an electric potential difference across the
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membrane that leads to membrane destabilization (Fig 8B). On the contrary, in the assay of

Trp alone at high concentrations, because Trp cannot bind to the cell surface by itself, only a

few numbers could reach the membrane (Fig 8C). In summary, Trp must reach the cell

membrane to exert its antimicrobial activity. We speculated that the change in the chemical

structures and properties of Arg and Trp may affect their antimicrobial activity, that is, the

ability to bind to the bacterial cell surface. Therefore, we used Arg and Trp derivatives,

namely arginine hydrochloride, tryptophan methyl ester hydrochloride, and tryptophan

ethyl ester hydrochloride, which are easily available. Intriguingly, arginine hydrochloride

completely lost the antimicrobial activity against S. scabiei shown by Arg (Fig 7A and 7C).

Sephai et al. (2017) reported that the antimicrobial activity of poly-arginine is influenced by

pH; at mild acidic pH (5 and 6), its MIC values decreased [62]. We measured the pH of the

Fig 8. Schematic illustration of the speculated mechanisms for the antimicrobial activities of synthetic peptides, single amino acids, and

derivatives against Streptomyces scabiei S58. (A) The peptide containing Arg and Trp residues is carried by the cationic Arg residue to the negatively

charged bacterial cell surface (teichoic and lipoteichoic acids), and subsequently, Trp residue penetrates the interface layer of the membrane. (B) At a

high concentration, cationic Arg may cover the entire negatively charged cell surface and cause an electric potential difference across the membrane,

leading to membrane destabilization. (C) Trp, even at a high concentration, cannot effectively reach the cell surface because it is not positively charged.

Only a few numbers reach the surface. (D) Trp derivatives may be able to effectively bind to the cell surface without a carrier, such as Arg residues. The

change in the chemical structure of Trp may affect its binding ability.

https://doi.org/10.1371/journal.pone.0264094.g008
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medium in which arginine or arginine hydrochloride was dissolved and found it to be 9.5

and 5.5, respectively. Streptomyces spp. can grow at pH values ranging from 4.0 to 11.5 [63].

Teichoic and lipoteichoic acids in gram-positive bacterial cell walls are esterified to D-Ala

residues and at neutral or lower pH, the amino group of D-Ala (pKa 8.42) is protonated,

conferring a neutral or positive charge to the cell walls [64, 65]. Thus, positively charged Arg

may have been unable to bind to the cell surface in the medium containing arginine hydro-

chloride. On the contrary, Trp derivatives showed much higher activity than Trp (Fig 7B,

7D and 7E), indicating that the change in the chemical structures of Trp affects the binding

ability to the bacterial cell surface and Trp derivatives can reach the surface by themselves

without a carrier (Fig 8D). However, how they reach the cell membrane without the help of

a carrier is unclear. As more than 100 commercially available Trp derivatives exist (https://

www.chemicalbook.com/ProductCatalog_EN/151727.htm), further effective derivatives

need to be investigated. Qin et al. (2020) also reported that indole-based derivatives have

great potential as new antimicrobial agents [66]. Amino acid derivatives have the advantage

of being inexpensive compared with synthetic peptides, which is useful in reducing the oper-

ational costs of a farm. We are currently investigating more effective and safe derivatives to

control S. scabiei. The IC50 values of all the test substances used in this study are summarized

in Table 1.

Table 1. Antimicrobial activity (IC50) of test substances used in this study against Streptomyces scabiei S58.

Test substances IC50

Proteins (μM)

Human lactoferrin (hLF) 138.035±7.956

Bovine lactoferrin (bLF) 0.458±0.074

Apo-bLF 2.388±0.203

Holo-bLF 2.177±0.428

Peptides (μM)

bLF hydrolysate 0.257±0.038

Bovine lactoferricin (LFcinB) 1.222±0.045

Synthetic peptides (mM)

RRWQWR 0.048±0.009

RRWQRR 25.797±13.034

RRRQRR N/A

RRWWWR 0.027±0.002

QQWWWQ N/A

Amino acids (mM)

Arginine 14.267±1.400

Tryptophan (40�)

Amino acid derivatives (mM)

Arginine hydrochloride N/A

Tryptophan methyl ester hydrochloride 2.859±0.326

Tryptophan ethyl ester hydrochloride 1.303±0.004

The half-maximal inhibitory concentration (IC50) values were determined using the probit analysis program. Each

value in the table is represented as mean ± standard division (n = 3). N/A means that there was no antimicrobial

activity.

�The maximum (saturation) concentration of tryptophan was 40mM, which inhibited the growth of S. scabiei by

40%.

https://doi.org/10.1371/journal.pone.0264094.t001
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Supporting information

S1 Fig. Protein structure of bovine-derived lactoferrin (bLF) (PDB accession number:

1BLF). The lactoferricin region in bLF (LFcinB) is shown in red. The amino acid sequences of

LFcinB and human-derived latoferricin (LFcinH) are shown. The sequence in the box is the

core motif of LFcinB and is used for the assay of synthetic peptides.

(TIF)

S2 Fig. Fusion protein of mCherry-LFcinB expressed in Escherichia coli. Native PAGE was

conducted, and the gel was illuminated with UV light so that the fluorescence of mCherry pro-

tein could be detected (left). In native PAGE, mCherry-LFcinB (lane 2) appeared as broad

bands because LFcinB, which is rich in cationic amino acids, affects the structure and mass-to-

charge ratio of the fusion protein. SDS-PAGE was also conducted (middle). It is known that

mCherry (DsRed) protein is fragmented at its chromophore group under the conditions of

SDS-PAGE (Gross et al. 2000). The largest bands are of uncut proteins (about 30 KDa). Two

other bands represent the cleaved fragments. Purified proteins were directly illuminated with

UV light (right). Reference: Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY. The

structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl

Acad Sci U S A. 2000; 97: 11990–5. 10.1073/pnas.97.22.11990. 11050230; PMCID: PMC17282.

(TIF)
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