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Type I interferons (IFNs) are known to mediate antitumor effects against several tumor 
types and have therefore been commonly used in clinical anticancer treatment. However, 
how IFN signaling exerts its beneficial effects is only partially understood. The clinically 
relevant activity of type I IFNs has been mainly attributed to their role in tumor immune 
surveillance. Different mechanisms have been postulated to explain how type I IFNs 
stimulate the immune system. On the one hand, they modulate innate immune cell 
subsets such as natural killer (NK) cells. On the other hand, type I IFNs also influence 
adaptive immune responses. Here, we review evidence for the impact of type I IFNs on 
immune surveillance against cancer and highlight the role of NK cells therein.
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iNTRODUCTiON

Type I interferons (IFNs) have been initially identified 60  years ago as antiviral substances (1). 
They are a family of monomeric cytokines consisting of 14 IFNα subtypes, IFNβ, IFNε, IFNκ, and 
IFNω. While IFNα and IFNβ have been extensively studied during the past decades, the functions 
of IFNε, IFNκ, and IFNω remain poorly understood (2, 3). The term type I IFNs in this review 
therefore refers to the well-characterized forms IFNα and IFNβ, whereas the other type I IFN 
subtypes have been reviewed elsewhere (4, 5).

Type I IFNs can be secreted by most cell types in the body in response to activation of host 
pattern recognition receptors such as toll-like receptors (TLRs) and retinoic acid inducible gene-
I-like RNA helicases that are triggered by bacterial or viral components (6–8). IFNα and IFNβ 
signal through the interferon α/β receptor (IFNAR), a heterodimeric transmembrane receptor that 
is composed of the two subunits IFNAR1 and IFNAR2. Following receptor binding, downstream 
signals lead to the phosphorylation and translocation of signal transducer and activator of tran-
scription (STAT) factors to the nucleus to drive the expression of IFN-regulated genes (IRGs). 
For type I IFNs, the main STAT signaling complex is formed by IFN-stimulated gene factor 3 
consisting of STAT1, STAT2, and IFN regulatory factor (IRF)-9 (3, 9, 10) (Figure  1), however, 
alternative pathways of IRG stimulation have been described as well (11–13).

It has become well-accepted that functions of IFNα and β reach far beyond antiviral and 
microbial defense and include the regulation of physiological processes such as cell survival (12), 
immune cell homeostasis and functions (14), cell cycle, and differentiation (15–17). Many years 
back, it came as a surprise that constitutively released endogenous IFNα and IFNβ contribute 
to tissue homeostasis and inhibit malignant cellular transformation (14, 18, 19). Consequently, 
the finding that type I IFNs have antineoplastic functions stimulated the clinical development of 
type  I IFN anticancer therapies for certain neoplasias.
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FigURe 1 | Type i interferons (iFNs) and different other cytokines are essential for natural killer (NK) cell homeostasis and function. Although type I 
IFNs are in focus of this review, additional cytokine pathways such as interleukin (IL)-2, IL12, IL15, IL18, and IL21 are schematically indicated here as important 
mediators of NK cell function. Cytokine receptor binding triggers downstream signaling pathways such as the Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT) or nuclear factor kappa B (NFκB) pathway. The respective activated transcription factor complex—IFN-stimulated gene factor 3 (ISGF3) (type I 
IFNs), STAT dimers (IL2, IL15, IL21, and IL12), and NFκB (IL18)—translocates into the nucleus and induces target gene transcription leading to expression of genes 
that are crucial for survival, proliferation, differentiation, and cytotoxic function of NK cells. For reasons of simplicity, IL2R, IL15R, and IL21R were summarized in this 
graph. The receptor-specific subunit(s) in case of IL2R and IL15R refer to the β- and high-affinity α chain and for IL21R only to one specific subunit. Of note, IL15Rα 
chain is mainly expressed by other cells such as DCs, which is not displayed here. Abbreviations: ISRE, interferon stimulated response element; γc, common 
gamma chain; MyD88, myeloid differentiation primary response 88; TRAF6, TNF receptor associated factor 6; IKK, I kappa B kinase; NFκB, nuclear factor kappa B.
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However, unraveling molecular key mechanisms underlying 
the antitumor function of type I IFNs remained very challenging 
for a long time. Recent advances in the development of geneti-
cally engineered mouse models have provided useful tools for 
investigating these mechanisms and continuously improved 
our understanding of how IFN signaling interferes with tumor 
development.

Type i iFNs in Tumor Development
Type I IFNs have been shown to prevent cellular transformation 
in premalignant cells in  vitro by sustaining the expression of 
the tumor suppressor gene p53 (20). Moreover, cell-intrinsic 
roles for type I IFN signaling in negatively regulating tumor 

cell proliferation and in triggering apoptosis in different human 
cancer cell lines have been suggested as well (21). In  vitro 
generated findings on direct antineoplastic effects of type I 
IFNs were substantiated by more recently performed in  vivo 
studies, where tissue-specific deletion of IFNAR1 from intesti-
nal epithelial cells increased tumor formation in mice treated 
with dextran sodium sulfate and the carcinogen azoxymethane 
to induce colitis (22).

However, a growing number of studies during the past 
decades provided solid evidence that type I IFNs execute anti-
tumor functions mainly indirectly via stimulating immune cells 
to rapidly eliminate malignant cells. Owing to the ubiquitous 
IFNAR expression, type I IFNs have been shown to have crucial 
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regulatory effects on immune cells in the context of inflam-
matory and viral diseases (2, 23). Thus, cellular mediators of 
the innate as well as the adaptive immune response may be 
regulated by type I IFNs in the protection of the host against 
malignant diseases. Indeed, an increasing number of studies 
performed during the past decades have supported the idea of 
an anticancer immune response analogous to the reaction of the 
host against pathogens.

A study performed by Dunn and colleagues elegantly dem-
onstrated for the first time an essential role of endogenously 
produced type I IFNs in a process widely known as tumor 
immune surveillance (24). Unexpectedly and in contrast 
to IFNγ, type I IFNs were found in bone marrow transfer 
experiments to act on host hematopoietic cells and not on the 
tumor cell itself during the formation of a protective antitumor 
immune response.

The knowledge on how type I IFNs impact on cells of the 
innate and adaptive immune system in the context of tumor 
surveillance has been refined in numerous subsequent studies 
[reviewed in Ref. (21, 25)]. Some of the earliest studies identified 
an essential role of type I IFNs, particularly, for the function of 
host antigen presenting cells (26–28). Early produced type I IFNs 
act on the level of CD8α+ dendritic cells (DCs) that are required 
for the successful activation of tumor antigen-specific cytotoxic 
CD8+ T  lymphocytes (CTLs). Based on in  vitro data, it was  
demonstrated that type I IFN signaling specifically enhances the 
ability of CD8α+ DCs to cross-present antigens (27), most likely by 
promoting survival of DCs and enhancing antigen persistence on 
the cell surface during cross-presentation (21, 29, 30). Moreover, 
type I IFNs have been shown to promote DC maturation, dif-
ferentiation, and migration (28).

Finally, type I IFNs induce the release of interleukin 15 (IL15) 
by DCs (31), thus promoting the survival of CD8+ memory cells 
and NK cells (32), which will be discussed in more detail later on. 
In response to type I IFNs, CTLs have also been shown to acquire 
full effector functions (26, 33). Also by impacting on other innate 
immune cell subsets such as neutrophils (34–38), NKT, and γδ 
T cells (39), type I IFNs exhibit tumor-growth limiting properties.

In addition, type I IFNs promote a protective antitumor 
response by inhibiting cells of the tolerogenic tumor microenvi-
ronment such as myeloid-derived suppressor cells (MDSCs) (40, 
41) and regulatory T  cells (Tregs) (42–45) that might interfere 
with the host tumor immune response.

Type I IFNs are released very early during infections (46), thus 
it was not surprising that they are important regulators specifi-
cally of innate immune cell subsets such as DCs and NK cells in 
anticancer host responses. For NK cells, type I IFNs have already 
been demonstrated in viral infection to be critical for early 
responses and are thought to enhance NK cell cytotoxicity and 
cytokine production (47, 48). However, how type I IFNs regulate 
NK  cell function in the context of tumor development will be 
outlined in detail in the following sections.

NK CeLLS AND TYPe i iFNs

The importance of NK  cells in tumor immune surveillance 
was initially demonstrated via depletion of NK cells from mice 

rendering them more susceptible to transplanted tumor cells 
or methylcholanthrene (MCA)-induced sarcomas (49, 50). 
Furthermore, NK cells have been shown to control the develop-
ment of B cell lymphomas that arise in mice deficient for perforin, 
and NK cells were able to recognize and eliminate some of the 
tumors in the absence of major histocompatibility complex class 
I (MHC I) (49, 51, 52). Importantly, impaired type I IFN signaling 
in NK cells leads to a substantial loss of mature NK cell functions 
that are essential for efficient tumor cell killing. Initially, the effect 
of type I IFNs on NK cell homeostasis and development has been 
studied in mice deficient for IFNAR1 or IFNAR2. In the spleens 
of those mice, NK cell proportions were significantly decreased 
and mature NK cells of both genotypes expressed lower levels of 
the surface molecules CD122, CD11b, and Ly49 C + I (53). Thus, 
IFNAR-deficient NK  cells are reduced in numbers and exhibit 
impaired cytotoxic capacity (24, 53). The cellular and molecular 
mechanisms of how type I IFN signaling impacts on NK  cells 
and their effector functions are discussed in detail in this and the 
following section.

NK Cell Development and Type i iFN 
Signaling
Murine NK cells develop in the bone marrow and at alternative 
sites such as thymus and liver (54–57). However, the majority of 
NK cells detected in the periphery is likely to have developed in 
the bone marrow. There, common lymphoid progenitor cells lose 
their potential to develop into precursor cells of other lineages 
and differentiate toward an NK  cell-restricted precursor cell 
(NKP) via intermediate stages (58–60). Based on the expres-
sion of cell-specific markers and the acquisition of functional 
competence, NK  cell differentiation is subdivided into distinct 
developmental stages. Natural killer cell-restricted precursor 
cells express CD122 that enables the cell to respond to IL15, 
which is the hallmark cytokine of NK cell lineage specification. 
Natural killer cell-restricted precursor cells progress to a transi-
tory immature NK cell (iNK) stage that is characterized by the 
upregulation of the pan-NK  cell marker NK1.1. The terminal 
maturation step from iNK  cells to mature NK  cells (mNK) 
involves the upregulation of Ly49 receptor family members 
together with CD11b and DX5. Following their complete matura-
tion, mNK cells egress from the bone marrow and reside in the 
blood, spleen, liver, lung, and various other organs, where they 
continue to mature to tissue-specific and functionally distinct 
NK cell subsets (54). In the periphery, classical stages of NK cell 
maturation are described based on the expression of CD11b 
and killer cell lectin-like receptor subfamily G, member 1 as 
well as loss of CD27 and TNF-related apoptosis inducing ligand 
(TRAIL) expression (61–64).

We have previously identified an unexpected role for type I 
IFNs in NK cell development. In IFNAR-deficient mice, type I 
IFN signaling was dispensable for NK cell maturation in the bone 
marrow, but lack of IFNAR1 expression on NK cells significantly 
abrogated peripheral maturation in the spleen. Of note, late stage 
deletion of Ifnar1 in mature NK cells (Ifnar1f/f Ncr1-iCre mice) 
did not interfere with splenic NK cell maturation indicating that 
type I IFNs are required at an earlier stage or by other cells for 
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full NK cell maturation in the spleen (65). The impact on NK cell 
maturation by systemic type I IFNs was also evidenced by Guan 
and colleagues (66). By generating mixed bone marrow chimeric 
mice from Ifnar−/− and wild-type animals, they showed an intrin-
sic effect of IFNAR signaling on early NK cell maturation in the 
bone marrow and also in the liver. In line with results from our 
study (65), mature NK  cell numbers remained unchanged in 
spleen and blood.

Memory NK Cells and Type i iFNs
Similar to T cells, NK cells as part of the innate immune system 
are also able to form an immunological memory and terminally 
differentiate into memory NK cells. Different educational routes 
have been described that lead to the formation of NK cell memory 
by antigen-dependent (hapten- and virus-induced) or antigen-
independent (cytokine-induced) mechanisms (67, 68).

Sensitization of mice with haptens in the presence of the 
pro-inflammatory cytokines IL12, IFNγ, and IFNα leads to 
hapten-specific memory NK  cells in the liver (67, 68). Type I 
IFNs play an important role herein as hepatic NK cells in hapten-
sensitized Ifnar1−/− (and Il12−/−, Ifng−/−) mice failed to induce 
contact hypersensitivity after adoptive transfer to the challenged 
host (69).

Interestingly, in a murine cytomegalovirus (MCMV) infec-
tion model, type I IFNs have been proposed to play a role in the 
differentiation of antigen-dependent memory NK  cells. Acute 
MCMV infection stimulates the production of type I IFNs and 
other pro-inflammatory cytokines (IL12, IL18, IFNγ, IL21) (70, 
71). These pro-inflammatory signals drive the expression of the 
BTB-ZF transcription factor Zbtb32 (also known as ROG, FAZF, 
TZFP, PLZP) in antigen-specific NK cells, which is essential for 
their proliferation and protective function during MCMV infec-
tion (72). By using NK cells deficient for IFNAR1 in mixed bone 
marrow chimeric mice, Madera et al. demonstrated that direct 
type I IFN signaling in NK cells promotes their optimal activa-
tion and function during MCMV infection. However, type I IFNs 
were shown to be dispensable for the survival of NK cells and NK 
memory formation (73).

Also in other virus infection models, type I IFNs and 
NK cells play important roles. In mice, lytic infection in mac-
rophages with gammaherpesvirus was restricted by NK  cells 
independently of type I IFNs, but spreading of virions to the 
spleen was only possible in the absence of both, type I IFNs 
and NK  cells (74).

Of note, NK  cell memory against tumors has not been 
observed under physiological conditions. Receptors such as 
NKG2D that are involved in the recognition of tumor cells by 
NK cells may not be capable of efficiently generating memory. 
Moreover, it is also conceivable that host-derived factors such 
as cytokines in addition to specific ligands for activating NK 
receptors are needed for the generation of memory NK  cells 
against tumors and that these factors are under-represented in 
the tumor microenvironment (68). Still, memory NK cells bear 
the potential to be further manipulated to target tumor cells 
(see section “Type I IFNs and Anticancer Therapies—A Role 
for NK Cells Therein?”).

iNTeRPLAY OF TYPe i iFNs AND NK 
CeLLS AS PART OF THe TUMOR iMMUNe 
SURveiLLANCe SYSTeM

Direct Type i iFN effects on NK Cell 
Cytotoxicity
As mentioned above, IFNAR1 as well as IFNAR2-deficient 
NK  cells are diminished in numbers and exhibit consider-
ably reduced cytotoxic capacity. These defects finally translate 
into severely impaired tumor surveillance in Ifnar1−/− and 
Ifnar2−/− mice, which succumb earlier to carcinogen-induced 
fibrosarcoma and RMA-S lymphoma (24, 53). These findings 
were substantiated by the importance of type I IFN signaling on 
NK cell-mediated v-Abl oncogene-driven B cell leukemogenesis 
(65). In this context, mice with impaired type I IFN signaling 
(i.e., Ifnar1−/− and Ifnb−/− mice) had an increased susceptibility 
to v-Abl-induced leukemia/lymphoma and B16F10 melanoma. 
Increased tumor incidence in these models is linked to defects 
in NK cell-mediated tumor surveillance, which is dependent on 
their reduced cytotoxic capacity. Indeed, NK cells derived from 
Ifnar1−/− and Ifnb−/− animals display impaired cytotoxic effector 
function against their target cells in vitro (24, 53, 65).

In line with reduced cytotoxicity observed in NK cells lack-
ing either IFNAR1 or IFNβ expression, a similar effect has been 
reported for NK cells deficient for downstream components of 
the type I IFN pathway, such as TYK2 (75) or STAT1 (47, 76).

Similar to NK  cells derived from IFNAR1-deficient mice, 
NK  cells isolated from mice lacking type I IFN signaling only 
at the mature NK  cell stage (Ifnar1f/f Ncr1-iCre mice) (65, 
77) display a substantial defect in cytolytic capacity against  
hematopoietic tumor cell lines (YAC-1, RMA-S) in  vitro. 
However, challenging these Ifnar1f/f Ncr1-iCre mice with the 
v-Abl oncogene revealed that IFN signaling in mature NK cells 
is dispensable for the surveillance of leukemia (65). This result 
might be explainable by the complex cytokine milieu in  vivo  
compensating for the obvious defects under IL2-dependent 
in vitro culturing. Previous studies showed that Ifnar1 deficiency 
severely curtails NK  cell cytotoxicity even in the presence of 
high doses of IL2 (53). Interestingly, exogenous IL12 stimulation  
significantly enhances the cyto toxicity of Ifnar1−/− and Stat1−/− 
NK  cells. Moreover, IL15 stimulation completely restores 
cytotoxic activity of Stat1−/− NK cells in vitro (47). These findings 
clearly show that NK cell defects in Ifnar1−/− or Stat1−/− animals 
cannot be overcome by IL2 stimulation, but might be partially 
compensated by other cytokines in  vivo. This underscores the 
importance of other cytokines in NK cell biology such as IL15 and 
IL21 that are known to increase the cytolytic activity of NK cells 
in vivo (52, 78, 79) (Figure 1). An additional possible explanation 
is that in Ifnar1−/− mice other cell types that do require type I IFNs 
are critically involved in tumor surveillance.

indirect Type i iFN effects on NK Cells via 
Other immune Cells
Natural killer cells do not possess immediate and permanent 
effector functions. A process called “priming” is required to 
induce the establishment of the entire NK cell competence (80, 
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81). Natural killer cell priming is dominated by type I IFNs, which 
provide essential signals for DCs to produce IL15, the master 
cytokine for promoting NK cell development, proliferation, and 
function (54, 80, 82–84).

The activation of NK  cells can be induced by DCs through 
pathways that require cell–cell contact (NKG2D-MICA and/
or MICB) and cytokines such as IFNα, IFNβ, IL2, IL12, IL15, 
and IL18 (82) (Figure  1). Dendritic cell-derived signals elicit 
both NK-cell-mediated cytolysis as well as cytokine production. 
Resting and activated DCs are capable of activating NK  cells, 
however, the latter far more potently. The interaction between 
activated DCs and NK cells has been shown to augment the effi-
ciency of NK cell antitumor effector function in different in vitro 
and in vivo models (85, 86). Upon type I IFN signal recognition, 
DCs produce IL15 and trans-present IL15 to resting NK  cells 
(80). Thus, the interaction with DCs equips NK  cells for full 
effector function. In turn, NK cells are also capable of affecting 
DC functions through their involvement in DC maturation and 
DC elimination (82).

More recently, myeloid cells came again into focus as a mecha-
nism was proposed on how cells such as DCs and macrophages 
could assist NK  cell-mediated tumor control (87). Dectin-1 
expressed on myeloid cells is critical for NK cell-mediated killing 
of tumor cells that express high levels of N-glycan structures. 
Receptor recognition of such tumor cells led to activation of 
IRF5, an IRF best known for its function in pathogen-induced 
immunity via activation of MyD88-dependent TLR pathway. This 
Dectin-1-IRF5 pathway activation in myeloid cells led to activa-
tion and efficient tumoricidal function of NK cells. The interaction 
of myeloid cells and NK cells here may be partially dependent on 
the expression of the IRF3-dependent NK activating molecule, 
a membrane-bound protein known to activate NK  cells via its 
homophilic interaction (88).

Apart from effects elicited by type I IFNs on myeloid cells, 
the following mechanisms could also affect NK  cell-mediated 
tumor surveillance. Although most of those mechanisms have 
been identified in the context of viral infections, they might be of 
significant importance in the tumor setting.

The interaction of NK and T cells is also influenced by type 
I IFN signaling. Type I IFNs keep NK  cells from eliminat-
ing antigen-activated CTLs by modulating the expression of 
NK cell receptor ligands (89, 90). In the context of lymphocytic 
choriomeningitis virus infection, Crouse et  al. demonstrated 
that direct sensing of type I IFNs by T cells prevents them from 
NK  cell-mediated killing by keeping the expression of NCR1 
ligands on the CTLs low (89). With the same viral infection 
setting, Xu et al. showed that the elimination of virus-activated 
T cells by NK cells was inhibited by type I IFN-induced expres-
sion of selected inhibitory NK cell receptor ligands, i.e., classical 
and nonclassical MHC molecules (MHC I and Qa-1b) (90). An 
effect of type I IFN signaling on MHC I expression and therefore 
antigen presentation was reported already earlier, however, the 
differences in MHC I expression on IFNAR1-deficient cells 
appeared to be of minor extent (91–93).

Another NK  cell surface molecule, TRAIL, was reported 
to be critical for NK antitumor function in mice and humans 
(94–96). For example, murine liver NK  cells contribute to 

natural antimetastatic function against TRAIL sensitive tumor 
cells and constitutive TRAIL expression on these NK cells is IFNγ 
dependent (96, 97). During viral infection, type I IFNs were also 
described to enhance antiviral response by NK cell cytotoxicity 
through induction of TRAIL on NK cells (98).

Another aspect of tumorigenesis influenced by type I IFN 
signaling is oncogene-induced senescence. In this context, 
DNA-damage-induced production of type I IFNs enhances 
cellular senescence (99). In addition, type I IFNs produced by 
senescent cells indirectly stimulate NKG2D ligand expression 
on senescent malignant cells, thus promoting the elimination by 
NK cells (100). However, IFNα has been shown to downregulate 
the expression of NKG2D ligand H60 in MCA-induced tumors 
in 129/Sv mice resulting in reduced effectiveness of NK target 
recognition and NK-dependent killing (101). This indicates that 
depending on the tumor model, type I IFNs differentially regulate 
NKG2DL expression.

Finally, ligands for receptors of immune checkpoints such as 
those of the programmed cell death protein 1 (PD1) family are 
induced by type I IFNs (102, 103). This immunoregulatory func-
tion of type I IFNs is of great relevance and needs to be taken into 
consideration for the design of clinical anticancer treatments. 
Recently, targeting of PD1-ligand (PDL1), which is recognized 
by its inhibitory receptor PD1 expressed on NK cells and other 
immune cell subsets gained a lot of attention in oncology and will 
be discussed in more detail later on.

The mechanisms involving NK cells and type I IFN signaling 
in tumor surveillance are summarized in Figure 2.

TYPe i iFNs, NK CeLLS, AND MeTASTASiS

Metastasis as the dreadful consequence of tumorigenesis has 
recently been shown to be controlled by antitumor immune 
responses. In this context, NK and CD8+ T  cells as the main 
cellular mediators of tumor immune surveillance have been 
described to be capable of restricting metastatic tumor growth. 
Therefore, depletion of CD8+ T cells or NK cells increased metas-
tasis formation in a breast cancer mouse model without affecting 
primary tumor growth (104). One mechanism proposed for the 
metastasis surveillance function of NK cells relies on the inhibi-
tion of the MERTK (also known as TAM; TYR3, AXL, and MER) 
family tyrosine kinase receptors that suppress NK cell activation 
(105, 106). Of note, the protective function of NK cells against 
metastases can be also linked to and is partially dependent on 
type I IFN signaling. In a syngeneic mouse model of mammary 
tumor metastasis using 4T1.2 cells, Bidwell and coworkers iden-
tified a number of IRF7 target genes that are suppressed in bone 
metastases (104). Consequently, metastasis formation in sponta-
neous (MMTV-PyMT) and orthotopic mammary tumorigenesis 
models was accelerated in mice deficient for IFNAR1, NK cell, 
or CD8+ T cell responses (104, 107). Conversely, enforced 
expression of IRF7 in tumor cells or treatment with type I IFNs 
enhanced the immune activity and suppressed bone metastasis, 
thus prolonging survival of the diseased mice. Of note, depletion 
of both CD8+ T and NK cells significantly accelerated metastasis 
and shortened survival time in mice harboring 4T1.2 tumors 
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ectopically expressing IRF7. This indicates that IRF7-induced 
and type I IFN-dependent inhibition of bone metastasis was 
mediated by CD8+ T and NK cells (104). In line with the data 
obtained from metastasis studies in mice, loss of IRF7-associated 
gene signature in primary tumors of breast cancer patients pre-
dicted an increased risk of bone metastasis and also additional 
studies suggest a suppressive role for type I IFN signaling on 
breast cancer progression (25).

However, tumor cells use different immune evasive strate-
gies to survive at distinct metastatic sites. The recruitment of 
immunosuppressive cells is one major mechanism to overcome 
the immune surveillance system (108). For example, systemic 
factors from hypoxic breast cancer cells increase myeloid 
CD11b+ cell accumulation and reduce the cytotoxic functions of 
NK cells in the premetastatic lung (109). Myeloid cells, especially 
MDSCs, have the capacity to suppress immune responses, thus 
it is conceivable that recruited myeloid cells establish a premeta-
static immune-suppressive niche to promote tumor metastasis. 
Moreover, platelet activation and the resulting fibrin clot forma-
tion support survival of tumor cells that are nested at metastatic 
sites by protecting them from NK cells (108, 110).

In mice engrafted with mammary tumor cell lines, type I 
IFN treatment has been shown to reduce metastasis to bone. 
Interestingly, while MDSC accumulation was substantially 
decreased, there was an increase in numbers of NK cells present 
in the bone marrow of these mice (104). Hence, the authors 
proposed that type I IFNs specifically inhibit bone metastases of 
mammary cancer by a selective modulation of MDSCs and NK 
effector cells in the bone marrow (104).

A consecutive study demonstrated that endogenous type I 
IFN signaling in the host hematopoietic system is indispensable 

for the responsiveness of circulating NK  cells and therefore 
essential for metastasis-free survival. Consistently, in  vivo 
stimulated NK  cells derived from Ifnar1−/− mice but not from 
wild-type counterparts failed to eliminate the 4T1 and 66cl4 
mammary tumor cell lines in vitro (107).

In summary, these studies clearly highlight an essential role 
for IFN signaling and NK cells during metastasis formation and 
could pave the way for type I IFNs for new therapeutic means in 
metastatic cancer.

TYPe i iFNs AND ANTiCANCeR 
THeRAPieS—A ROLe FOR NK CeLLS 
THeReiN?

As outlined above, ample evidence substantiates the importance 
of type I IFN signaling in NK  cell-mediated tumor surveil-
lance. Interferons mainly function by modulating the immune 
system rather than executing direct anticancer effects. In the 
clinics, type I IFNs have been used for decades as anticancer 
therapy, however, the exact mechanism of action of type I 
IFNs has not been clarified yet (111, 112). IFNα has been 
and is still used mainly for the treatment of hematopoietic 
neoplasms. Especially, before the advent and breakthrough of 
the BCR-ABL inhibitor imatinib as therapy for chronic myeloid 
leukemia (CML), IFNα was the treatment of choice for patients 
not suitable for bone marrow transplantation. Interestingly, in 
chronic myeloproliferative neoplasms the positive effect of IFNα 
coincided with a substantially higher frequency of circulating 
CD56bright NK  cells that produced increased levels of IFNγ 
(113). Recently, IFNα has gained attention for further use as 
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therapeutic option in CML, preferably in combination with 
imatinib or its next generation inhibitors (114).

Trials with IFN therapies in solid malignancies have met with 
varied success. However, besides virus-related cancers at least in 
melanoma as one type of solid tumors, IFNα is clinically used 
(21). In high-risk melanoma patients, high-dose IFNα treatment 
leads to an extension of relapse-free survival and is therefore con-
sidered a valid therapeutic option. Interestingly, IFN therapy is 
more effective at targeting disseminated cancer cells and minimal 
residual disease before they form large proliferative metastases, 
emphasizing again that promotion of antitumor immunity rather 
than direct antiproliferative effects is the predominant mecha-
nism of action (25).

Data obtained mainly from tumor studies in mice strongly 
suggest that the success of conventional chemotherapeutics 
(such as anthracyclines, cyclophosphamide), targeted anticancer 
agents, radiotherapy, and immunotherapy depends on type I 
IFN signaling (21, 115). Under certain circumstances, this mode 
of action of IFN signaling involves NK  cells. For example, 
some immunogenic chemotherapeutics lead to the activation 
of TLR3 in malignant cells by cancer-cell derived RNA which 
results in type I IFN production. Subsequently, IRGs such as 
CXC-chemokine ligand 10 (CXCL10) are expressed, which in 
turn are crucial for recruitment in NK  cell-mediated tumor 
control (116, 117).

The concept of tumor immune surveillance has triggered an 
increasing interest in immunomodulatory treatment strategies. 
However, immune-activating therapies are likely to induce the 
expression of immunosuppressive ligands and receptors such as 
PDL1, PD1, and CTLA4. Since type I IFNs have immunostimu-
latory functions, they can promote the upregulation of such 
surface molecules (102, 118), thus preventing prolonged anti-
tumor immune responses. In this case, a sustained therapeutic 
antitumor response could be achieved by the combination of 
type I IFN therapy with other therapeutic means targeting 
the PD1–PDL1 axis to block secondary immune suppres-
sion. Programmed cell death protein 1- and CTLA4-targeted 
therapeutics have been proven in some cancers to significantly 
prolong survival of the patients. Combining these agents with 
type I IFNs could be a suitable strategy to overcome immu-
nosuppression and raise patient responsiveness. Programmed 
cell death protein 1 is well documented in the context of T-cell 
responses and has recently been shown to be upregulated on 
NK cells, which leads to downregulation of anticancer function 
(110, 119, 120).

On the contrary, IFN signaling seems to be also important for 
the success of checkpoint immunotherapy, which is illustrated 
by a recent study on late relapses of PD1 blockade treatment in 
metastatic melanoma. Here, a loss-of-function mutation in the 
Janus kinase 1 has been identified in one patient, suggesting that 
disruption of type I and type II IFN signaling might be involved 
in preventing the success of checkpoint immunotherapies (121). 
If this turns out to be a more frequent observation, the combina-
tion of type I IFNs with checkpoint inhibitors would be desirable 
for an improved treatment outcome. Furthermore, in anticancer 
virotherapy, type I IFNs play a key role, as intratumoral injection 
of the oncolytic Newcastle disease virus combined with systemic 

CTLA4 blockade leads to regression of murine B16 melanomas. 
Interestingly, this effect has been reported to be dependent on 
CTLs, NK cells, and IFNAR signaling (122).

As outlined above, there are a number of reasons pleading for 
type I IFNs as tools in anticancer treatment. However, one big dis-
advantage are dose-limiting side effects, including influenza-like 
symptoms (fatigue, fever, headache, and muscle aches), nausea, 
anorexia, dizziness, depression, and leukopenia. To avoid these 
side effects of IFN therapy, strategies are now being developed 
to deliver type I IFNs directly to the tumor microenvironment 
(21). Different types of cells can be manipulated to express type 
I IFNs to augment their own antitumor activity or to promote 
the activity of other immune effector cells of the host. This has 
been also assessed with NK cells: a genetically engineered NK cell 
line expressing human IFNα displayed improved cytotoxicity 
functions against hepatocellular carcinoma cells in vitro, as well 
as in xenograft tumor models (123). Moreover, mesenchymal 
stem cells modified to express mouse IFNα efficiently decreased 
the growth of murine B16 melanomas in vivo, an effect that was 
shown to be dependent on NK and T cells (90). However, translat-
ing this strategy to the clinics might be difficult and other means, 
such as the usage of modulators of specific immune cell subtypes 
and/or pathways might be preferred.

As described above, memory NK  cells against tumors have 
not been observed yet, but would be highly appreciable if those 
could be generated in vitro by different manipulations such as 
transduction of proliferating NK  cells with chimeric antigen 
receptors, or enhanced antibody dependent cellular cytotoxicity 
(ADCC) using newly identified human FcεRIγ-deficient adaptive 
NK cells (68). As antigen-dependent memory NK cell formation 
relies also on type I IFN signaling, this could be another strategy 
for type I IFNs and NK cells in cancer control.

The studies on type I IFNs and breast cancer metastasis (see 
section “Type I IFNs, NK  cells and metastasis”) may provide 
a rationale for targeting the endogenous type I IFN pathway 
as an antimetastatic strategy. As IFN signaling modulates the 
tumor immune response, targeting type I IFNs to a specific 
cellular compartment of the tumor mass may mediate optimal 
therapeutic effects for some cancer types. Type I IFN signaling 
within tumors is essential for both natural and therapy-induced 
immune surveillance. Thus, downstream effectors of type I IFN 
signaling would be suitable candidates for further investigation 
as prognostic and predictive biomarkers in cancer diagnosis and 
progression (21).

The high potential and importance of type I IFNs and NK cells 
in cancer is also illustrated by a glimpse on current clinical tri-
als. Searching for IFNα, NK cells, and cancer at ClinicalTrials.
gov resulted in 16 studies, half of them dealing with type I 
IFNs and NK  cells for cancer patients (https://clinicaltrials.
gov; November 2016). Already in 1997, Nagler et al. combined 
type I IFNs with NK  cell-stimulating molecules such as IL2 
and indeed showed increased survival in lymphoma patients 
after stem cell transplantation (124). Recently, a more specific 
approach using adoptive transfer of autologous or allogeneic 
NK cells is frequently tested for cancer treatment (125). Here, 
even synergistic or additive effects of type I IFNs applied in this 
context could be imagined.
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The combination of type I IFNs with other immunostimula-
tory agents such as immune checkpoint blockers, cytokines, or 
other inhibitors that target different immunosuppressive circuits 
is likely to result in optimal NK  cell anticancer function and 
tumor control.

CONCLUSiON AND PeRSPeCTiveS

Type I IFNs are essential in antitumor control and execute their 
function predominantly by modulating the activity of other 
immune cells. Although type I IFNs affect various immune 
cell subsets, the impact of type I IFNs on NK cells is especially 
crucial for efficient tumor immune surveillance. Type I IFNs not 
only positively regulate NK  cell maturation and memory, but 
also NK cell priming and NK cell-mediated tumor surveillance 
by various mechanisms. Detailed knowledge about underlying 
mechanisms of immunoregulatory cell recruitment and their 
suppressive functions in primary tumors and at metastatic sites 
should lead to more effective immunotherapies.

Thus, therapeutic approaches will need to include the evalu-
ation of immune cell profiles in individual cancers, so that drug 
targeting can be precisely tailored to maximize the response. 
In addition, tumor-type specific treatments of type I IFNs and 
other therapeutic concepts might extend the pharmacological 
armament to combat diverse cancer types.
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