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Transport properties 
through graphene with sequence 
of alternative magnetic barriers 
and wells in the presence 
of time‑periodic scalar potential
Fatemeh Pakdel & Mohammad Ali Maleki*

We investigate the electronic transport properties of a graphene sheet under the magnetic barriers 
and wells through the oscillating scalar potential combined with the static scalar potential barrier 
having two types of uniform and alternative profiles. We compute the total sideband transmission 
of the system by additional sidebands at energy, in presence of oscillating potential, V

1
 , using the 

transfer-matrix formalism and the Floquet sidebands series. The oscillating potential, generally, 
suppresses the Klein tunneling and the confinement of the charge carriers. In the absence of V

1
 , both 

profiles show the wave vector filtering effect for the carriers by controlling the energy E relative to 
the potential barrier height, V

0
 . The (N − 1)-fold resonance splittings are observed through a region 

around E = V
0
 with reduction of the transmission. The transmission vanishes in this region upon 

increasing the number of magnetic blocks N, strength of the magnetic field B in both configurations. 
We present an estimate relation for the width of the reduction region expressed in terms of E, V

0
 , 

B and the angle of incidence of the quasiparticles. We observe, in the second profile, (N − 1)-fold 
resonances in the transmission for special values of E = V

0
 with a separation depending on the width 

of the magnetic blocks. The magnetic field and the width of the magnetic blocks have critical values, 
where the transmission reduces to zero. All the features observed in the transmission reflect to the 
conductance. In both configurations, there are some peaks in the conductance corresponding to the 
resonances of the transmission. The oscillations of the conductance are obtained which was observed 
in the experimental results. We, also, find the possibility for switching the transport properties of the 
system by changing the characteristic parameters of the magnetic system.

The electronic transport properties of graphene subjected to inhomogeneous external scalar and vector potentials 
has opened a new era in graphene-based investigations1–5. The charge carriers in graphene with a linear disper-
sion near the Fermi points behave as massless fermions called as Dirac-Weyl (DW) quasiparticles6. Because 
of their different chirality, the Klein tunneling occures1,7–9. It causes perfect transmission and high mobility of 
graphene, but it sometimes makes the electrostatic confinement of the Dirac fermions difficult. The inhomoge-
neous magnetic field in graphene system can confine the charge carriers and control the transport properties of 
the system3,6,10–13. The combined effect of applied electrostatic potential and magnetic field induces interesting 
results upon transmission in the graphene junctions, such as Fabry-Pérot interference14–16, the collapse of Landau 
levels17 and other new transport phenomena18–20. Recently, the study of periodically driven quantum systems21 
has found particular importance for devices and optical applications as, experimentally, the time dependent 
effects22–24 and periodically driven tunnelling25–29.

Some theoretical literatures has studied the transport properties of monolayer graphene under influence 
of magnetic barriers and wells like wave vector filtering3,6,30–33 and resonance splitting effect through magnetic 
superlattices in absence of scalar potential34. The Klein tunneling in graphene heterojunctions has been investi-
gated under the influence of perpendicular magnetic field via the non-equilibrium Green’s function method16. 
It has been found that in pnp graphene junctions with the perpendicular magnetic field, the strength of the 
magnetic field has a critical value in which the conductance vanishes. Also, a constriction region with low 
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transmission is induced by potential barrier when the static scalar potential is close to the Fermi energy, so called 
the equal-barrier case. Harmonically driven scalar potential has been investigated in the monolayer graphene35. 
The perfect normal transmission which was observed in the static barrier case persists for the oscillating scalar 
potential barrier. Over the last decade, many theoretical works have been concentrated on the graphene sheet 
subjected to a magnetic field and an external time harmonic scalar potential36,37. Recently, through an experimen-
tal work, it has been reported that a magnetic field can control the negative differential conductance in scanning 
tunneling spectroscopy of graphene npn junction resonators38.

Motivated by the above issues, here, we focus on multiple magnetic barriers and wells (magnetic blocks) 
through the scalar square potential barrier harmonically oscillating in time as two types of one-dimensional 
profiles. A uniform scalar potential barrier is considered throughout the magnetic blocks in the former configu-
ration while multiple scalar potential barriers alternatingly fit the magnetic barriers are considered in the latter 
profile. In order to calculate the total transmission probability, the Floquet sidebands series are used due to the 
numerical difficulties25,26. The external oscillating scalar potential is found, in both profiles, to act as a switch for 
the transport properties in the studied magnetic systems. The transmission and conductance are turned on or off 
by tuning the number of the magnetic blocks, strength of the magnetic field and width of the magnetic blocks. 
The wave vector filtering effect is observed in both profiles while, in the former configuration, the resonance 
effects are observed and a perfect transmission exists over a wide angular range. The Klein tunneling, in both 
configurations, is suppressed for magnetic fields weaker than a critical value and the conductance drops to zero. 
For weak magnetic fields, the transmission and the conductance are reduced by increasing width of the magnetic 
blocks and are suppressed for larger thicknesses. The (N − 1)-fold resonance splitting peaks are observed for 
the magnetic system with N magnetic blocks. Moreover, in the latter profile, these resonance peaks are seen for 
special values of the energy in the equal-barrier case. The wave vector filtering limitation is suppressed by apply-
ing the oscillating scalar potential and the resonances are replaced by peaks. The transmission and conductance, 
in the equal-barrier case, are increased by applying the oscillating scalar potential and reduced by increasing 
strength of the magnetic field and number of the blocks. The (N − 1)-fold resonances are appeared by changing 
the magnetic field and are, also, observed in the incident angular distribution range.

The outline of the paper is organized as follows. In “Model and theoretical method section”, we introduce 
two profiles for the magnetic system and use the time-dependent DW Hamiltonian in order to calculate the 
transmission probability and the conductance. The Floquet theorem and transfer matrix technique are used in 
the framework of Landauer-Butticker formalisms. Our main physical results are, mainly, presented in “Results 
and discussion” section. Finally we draw the summary and conclusions in “Conclusion” section.

Model and theoretical method
We consider a monolayer graphene sheet in an external magnetic field subjected to a scalar potential energy. 
The magnetic field is along the z-direction as B = B(x)ez and has an alternating profile consisting of N magnetic 
barriers with heights B and widths dB and N magnetic wells with depth B and width d−B so that each barrier is 
followed by a well, as shown in Fig. 1a. The Landau gauge is chosen by considering A = A(x)ey with Bz = ∂xA(x) , 
as illustrated in Fig. 1b. We introduce the magnitude of the vector potential, for our model, by

where xn = n(dB + d−B) , running n from 0 to N. Here D = dB − d−B and DB means the net magnetic flux 
through each block formed by a magnetic barrier and a magnetic well6. The total magnetic flux, NDB, is a con-
trolling parameter for the transmission and the conductance. The scalar potential is zero in the non-magnetic 
regions while it oscillates in time around V0(x) with the frequency ω inside the magnetic region, as

We consider two types of the static scalar potential profiles, V0(x) . The first profile, shown in Fig. 1c, consists 
of a uniform constant static scalar potential, given by

It will be referred to this profile as the uniform static scalar potential and discussed in “Results and discus-
sion” section. In the second configuration, illustrated in Fig. 1d, the static scalar potential changes, alternatively, 
from zero to V0 as

It will be referred to this profile as the alternative static scalar potential and discussed in “Conclusion” section.
The model described above can be realized if we first grow the monolayer graphene on a designed ferromag-

netic sample and implant a top gate on it, then we apply the uniform or alternative voltage through the gate37. 
The two band DW Hamiltonian, including the magnetic field and the scalar potential energy is written as

(1)A(x) =











0, x ≤ 0;
(nD + x − xn)B, xn ≤ x < xn + dB;
(nD + 2dB + xn − x)B, xn + dB ≤ x < xn+1;
NDB, x ≥ xN ,

(2)V(x, t) =
{

V0(x)+ V1 cosωt, 0 < x < xN ;
0, otherwise.

(3)V0(x) = V0.

(4)V0(x) =
{

V0, xn ≤ x < xn + dB;
0, xn + dB ≤ x < xn+1.

(5)H(x, t) = vFσ .(−i�∇ + eA)+ V(x, t)I2,
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where vF is the Fermi velocity ( ∼ c/300 ), σ = (σx , σy) are the Pauli matrices1. Because of the conservation of the 
y-component of the momentum and the time periodicity of the Hamiltonian in Eq. (5), in accordance with the 
Floquet theory25,39,40, the full wave function can be written as

where EF is the Floquet energy and f(t) is a periodic function with period T = 2π/ω . Here ψ1(x) and ψ2(x) are 
the spatial parts of the full wave function for each sub-lattice.

From now on, we express all the variables in dimensionless form using a typical strength of the magnetic 
field, B0 , and the magnetic length scale, l0 =

√
�/(eB0) . So, we represent all the lengths, time, ω , ky , A(x) and 

all the energy scales in the units of l0 , l0/vF , vF/l0 , l−1
0  , l0B0 and �vF/l0 , respectively. Using these considerations, 

the DW equation takes the form

In the magnetic region, inserting Eqs. (2) and (6) in Eq. (7), the following two coupled differential equations 

 are obtained for ψ1(x) and ψ2(x) . The variables can be separated by introducing the Floquet sideband energy as

where m is an integer called the Floquet sideband index in the magnetic region26,37. So, the time dependent part 
of the wave function is obtained by solving Eq. (9) to get f (t) ∝ exp [−i(Em − EF)t − i(V1/ω) sin (ωt)] . The 
Jacob-Anger identity, exp(iz sin θ) =

∑∞
n=−∞ Jn(z) exp(inθ) , and periodicity of f(t) yield Em = EF +mω . Then, 

the time dependent part is written as

(6)�(x, y, t) = eikyye−iEF t/�f (t)

(

ψ1(x)
ψ2(x)

)

,

(7)
(

V(x, t) − i∂x − i[ky + A(x)]
−i∂x + i[ky + A(x)] V(x, t)

)

�(x, y, t) = i
∂�(x, t)

∂t
.

(8a)− i

[

d

dx
+ (ky + A(x))

]

ψ2(x) =
[

EF − V0(x)− V1 cos(ωt)+
i

f (t)

df (t)

dt

]

ψ1(x),

(8b)− i

[

d

dx
− (ky + A(x))

]

ψ1(x) =
[

EF − V0(x)− V1 cos(ωt)+
i

f (t)

df (t)

dt

]

ψ2(x),

(9)Em = EF − V1 cosωt +
i

f (t)

df (t)

dt
,

(10)f (t) = f0

∞
∑

l,m=−∞
Jl−m(V1/ω)e

−ilωt ,

A(x)

V(x,t)

x

x

x0 x1 xN

V1Cos( t)ω
V0

(b)

(d)

x2

B(x)

dB d-B

(a)

x

B

-B

B
x

V0

V(x,t)

(c)

Figure 1.   (a) The magnetic field profile consist of N magnetic barriers of width dB and height B separated by 
magnetic wells of width d−B and depth B. (b) The vector potential profile A(x) corresponding to N magnetic 
blocks of (a). (c) The uniform static scalar potential barrier profile of the first configuration with width xN and 
height V0 that is oscillating sinusoidally with amplitude V1 and frequency ω . (d) The alternative static scalar 
potential barriers and wells, both oscillating sinusoidally with amplitude V1 and frequency ω , corresponding to 
the second profile.
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and the wave function in the magnetic region is

The coupled Eqs. (8) can be rewritten, using Eq. (9), to get the following uncoupled differential equation

for the spinor ψm
1 (x) . Replacing the variable x with q = √

2/B[ky + A(x)] , Eq. (12) takes the form

which has two independent solutions D−am−1/2(q) and D−am−1/2(−q) , known as the Parabolic Cylinder 
functions41. Here am = −(Em − V0(x))

2/(2B)± 1/2 , where the upper (lower) sign corresponds to the mag-
netic barrier (well) region. So, the spinors ψm

1 (x) and ψm
2 (x) takes the forms 

 in the barriers, while for the wells they are 

 where bm1  , bm2  , bm3  and bm4  are constant coefficients.
In the non-magnetic region, solution of the matrix Eq. (7), for x < 0 , is

and

for x > xN , where al1 , a
l
2 , c

l
1 and cl2 are constants and kl = sgn(El)

√

E2l − [ky + A(x)]2 . The energy consists of l 
modes as El = E0 + lω , where E0 is the lowest Floquet energy. For convenience we set EF = E0.

Now we apply the boundary conditions at the boundaries x = 0, dB, dB + d−B · · · , xN , as

In the numerical calculation of the infinite summations in Eqs. (11), (16) and (17) the terms are terminated by 
running l and m from −n to n where n is called the number of Floquet levels. In order to avoid the problem of 
divergency and get the accurate result, due to the oscillatory nature of the Bessel functions, it is necessary that the 
argument of the Bessel functions to be small, i.e. n > V1/ω . It means that the central time dependent potential 
region is weakly coupled to the other parts of the system. Using the orthogonality of the set of the oscillating 
functions exp (ilωt) , dropping the t and y parts, the wave functions can be written as 

(11)�±B(x, y, t) = eikyy
∞
∑

l,m=−∞
Jl−m

(

V1

ω

)

e−i(EF+lω)t

(

ψm
1 (x)

ψm
2 (x)

)

.

(12)
d2ψm

1 (x)

dx2
−

[

(ky + A(x))2 − (Em − V0(x))
2 + ∂A(x)

∂x

]

ψm
1 (x) = 0.

(13)
d2ψm

1 (q)

dq2
−

(

q2

4
+ am

)

ψm
1 (q) = 0,

(14a)ψm
1 (x) = bm1 D−am−1/2(q)+ bm2 D−am−1/2(−q),

(14b)ψm
2 (x) = i

√
2B

Em − V0
[bm1 D−am+1/2(q)− bm2 D−am+1/2(−q)],

(15a)ψm
1 (x) = bm3 D−am+1/2(−q)+ bm4 D−am+1/2(q),

(15b)ψm
2 (x) = −i

√
2B

Em − V0(x)
(−am + 1/2)× [bm3 D−am−1/2(−q)− bm4 D−am−1/2(q)],

(16)�0(x, y, t) = eikyy
∞
∑

l,m=−∞
δm,le

−iEl t

[

al1e
iklx

(

1
kl+iky
El

)

+ al2e
−iklx

(

1
−kl+iky

El

)]

,

(17)�N (x, y, t) = eikyy
∞
∑

l,m=−∞
δm,le

−iEl t

[

cl1e
iklx

(

1
kl+i[ky+A(x)]

El

)

+ cl2e
−iklx

(

1
−kl+i[ky+A(x)]

El

)]

,

(18)�0(0, y, t) = �+B(0, y, t), �+B(dB, y, t) = �−B(dB, y, t) · · · ,�−B(xN , y, t) = �N (xN , y, t).

(19a)�0(0) = W0(0)

(

al1
al2

)

,

(19b)�B(x) = WB(x)

(

bm1
bm2

)

,

(19c)�−B(x) = W−B(x)

(

bm3
bm4

)

,
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 where 

 with the corresponding matrix elements 

 and

Then the transfer matrix defined by

can be written as

where

The notations I and O in Eqs. (20a) and (20b) indicate the unit and null matrices, respectively. The coefficients 
in Eqs. (16) and (17) are considered as al1 = δl0 (because a single electron income from left side), al2 = rl (reflec-
tion amplitude), cl1 = tl (transmission amplitude) and cl2 = 0.

The transfer matrix is written, in the matrix form, as

where Tij are square matrices of order 2n+ 1 . Then

(19d)�N (xN ) = W0(xN )WN (xN )

(

cl1
cl2

)

,

(20a)W0(x) =
(

I I

A
+
1 (x) A

−
1 (x)

)

,

(20b)WN (x) =
(

A
+
2 (x) O

O A
−
2 (x)

)

,

(20c)WB(x) =
(

B
+
1 B

−
1

B
+
2 B

−
2

)

,

(20d)W−B(x) =
(

C
+
1 C

−
1

C
+
2 C

−
2

)

,

(21a)
(A±

1 (x))lm = β±
l (x)δlm,

(A±
2 (x))lm = e±iklxδlm,

(21b)
(B±

1 )lm = D−am−1/2(±q)Jl−m(V1/ω)

(B±
2 )lm = ± i

√
2B

Em − V0
D−am+1/2(±q)Jl−m(V1/ω),

(21c)
(C±

1 )lm = D−am−1/2(∓q)Jl−m(V1/ω)

(C±
2 )lm = ∓ i

√
2B

Em − V0(x)
(−am − 1/2)D−am−3/2(∓q)Jl−m(V1/ω),

(22)β±
l (x) =

±kl + i[ky + A(x)]
El

.

(23)
(

al1
al2

)

= T

(

cl1
cl2

)

,

(24)T = W−1
0 (0)W−B(0) T0 T1 · · ·TN−1 W

−1
−B(xN )W0(xN )WN (xN ),

(25)Tn = W−1
−B(xn)WB(xn)W

−1
B (xn + dB)W−B(xn + dB).

(26)T =
(

T11 T12

T21 T22

)

,
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The transmission probability is obtained as

where ϕ is the incident angle measured with respect to the x-direction, θl = tan−1[(ky + A(xN ))/kl(xN )] and tl is 
defined through the Eq. (27). The factor cos θl/ cosϕ guaranties the flux conservation. Then, the total transmis-
sion probability from the set of barriers and wells is

Now, knowing the transmission, the zero-temperature conductance can be calculated through the Landauer-
Buttiker formalism42

with G0 = 2e2ELy/(πh) as the conductance unit where Ly is the length of the graphene sample along the y-direc-
tion. Finally, we summarize the main parameters used in this section in Table 1.

Results and discussion
In this section, the physical results of our numerical analysis on the transmission and conductance, given by 
Eqs. (29) and (30) are presented. The main interest is to analyse the effects of the incident angle, strength of the 
magnetic field, widths of the magnetic barriers and wells, energy, static and oscillating scalar potentials on the 
behavior of the transmission and conductance through the system shown in Fig. 1. The numerical results are 
generalized to the former and latter profiles in “Uniform static scalar potential” section and “Alternative static 
scalar potential”  section, respectively. The resonance and Klein tunneling effects are studied in “Resonance and 
Klein” tunneling section and the conductance is investigated in “Conductance” section, for both configurations. 
The terms of the series in Eq. (29) are kept up to n = 5 . It has been considered B0 = 0.1 T for the scaling value of 
the magnetic field. In this case, the length, angular frequency and energy scales are obtained to be l0 = 81.13 nm, 
vF/l0 = 12.325× 1012 rad/s and �vF/l0 = 8.113 meV, respectively. All of the coming figures are color online.

Uniform static scalar potential.  In this subsection, we concentrate on the graphene-based system with 
the magnetic profile given by Eq. (1) and the scalar potential profile described by Eqs. (2) and (3), shown in 
Fig. 1a–c. In Fig. 2, the incident angle dependence of the transmission probability is depicted for different values 
of dB , non-zero magnetic flux ( dB  = d−B ) and V1 = 0, 1.98 . The used parameters are B = 1 , E = 1 , d−B = 2 and 
V0 = 12 in the case of one magnetic block, i.e. N = 1 . There is an angular confinement for the quasiparticles 
in absence of the oscillating scalar potential, i.e. V1 = 0 . In the case of dB < d−B , it is specified by the critical 
value ϕc = − sin−1(1+ (ND/E)) for the incident angle3,37. The confinement is removed for non-zero values of 

(27)

























0
0
·
·
1
·
·
0
0

























= T11

























t−n

t−n+1

·
·
t0
·
·

tn−1

tn

























.

(28)τl(E,ϕ) =
cos θl

cosϕ
|tl|2,

(29)τ(E,ϕ) =
n

∑

l=−n

τl(E,ϕ).

(30)G(E) = G0

∫ π/2

−π/2
τ(E,ϕ) cosϕdϕ,

Table 1.   The main parameters used in “Model and theoretical method” section.

The parameter Description The parameter Description

B Magnetic field ky y-component of the wave vector

A Vector potential kl Wave vector for l-th mode

N Number of magnetic blocks ψ(x, y, t) Full wave function

dB Width of the barrier EF Floquet energy

d−B Depth of the well E0 Lowest Floquet energy

ϕ Incident angle Em Floquet sideband energy

V(x, t) Scalar potential m Floquet sideband index

V0 Static scalar potential n Number of Floquet levels

V1 Oscillating scalar potential τ(E,ϕ) Total transmission probability

ω Angular frequency G(E) Conductance
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V1 . This limitation can also be viewed for the energy of the quasiparticles as E >| NBD/2 | . So, removing the 
oscillating scalar potential, turns off the transmission for ϕ < ϕc or E ≤| NBD/2 | . Then, it is possible to confine 
the DW quasiparticles by turning off V1 in the described magnetic structure. A perfect transmission is observed 
in θ = 30◦ , for dB = 1 , however the second lobe is very small. For the rest of this section, we concentrate on the 
case dB = d−B.

Figure 3a shows the angular dependence of transmission in the, so called, equal-barrier case, i.e. E = V0 , 
for one magnetic block with B = 1 and dB = d−B = 1 . The curves are deflected towards negative angles. The 
transmission lobes become sharper by increasing the energy E. In Fig. 3b, it has been zoomed on the angular 
dependence of the transmission in the case of E = V0 = 12 and V1 = 0 for N = 1, 6 . The increment of the 
number of magnetic blocks makes the beams shorter and thinner. This induces a strong wave vector filtering 
and suppression in the transmission for the structure.

Figure 4a depicts that for E = 1 and in the absence of the oscillating scalar potential, V1 = 0 , by applying 
the static potential V0 the transmission increases and the Klein tunneling effect turns on. For the special value 
of V0 = 12 , a perfect transmission is observed in a wide range of the incident angle. In the absence of V0 , turn-
ing on V1 , the transmission increases. On the contrary, the transmission decreases when V1 is turned on, in the 
presence of V0 . The Klein tunneling is observed for V0  = 0 . For E = 5 , some changes appear in the mentioned 
behaviors (see Fig. 4b). In the absence of the scalar potential ( V0 = V1 = 0 ) there is a wide angular range with 
the perfect transmission. Applying V0 , V1 or both of them, the transmission decreases over some parts of this 
range. The Klein tunneling is observed here, moreover, there are some angles indicating the resonance effects6.

The width of the magnetic blocks is one of the important factors in the system which can affect the transmis-
sion and the Klein tunneling effects. Figure 5 shows the angular dependence of the transmission for N = 1 , E = 5 , 

Figure 2.   Angular dependence of the total sideband transmission for one magnetic block ( N = 1 ), ω = 2 , 
B = 1 , E = 1 , d−B = 2 and V0 = 12 for different values of dB and V1.

Figure 3.   Angular dependence of the total sideband transmission for ω = 2 , B = 1 , dB = d−B = 1 , (a) N = 1 
and different values of V0 = E and V1 and (b) E = V0 = 12 and V1 = 0 for N = 1, 6.

Figure 4.   Angular dependence of the total sideband transmission for N = 1 and (a) E = 1 (b) E = 5 varying V0 
and V1 . Other parameters are the same as in Fig. 3.
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V0 = 12 , V1 = 0 and different values of dB . Increasing dB , the transmission pattern becomes narrower and shorter 
in the negative angle side. The beam disappears around a critical value given by dB = V0/(evFB) which, in the 
dimensionless notation, reads to dB = V0/B . For V0 = 0 , this critical width is given by dB = 2E/(evFB) which 
is the diameter of the cyclotron orbit or dB = 2E/B in the dimensionless form. The critical value of dB decreases 
by turning V1 on. In order to observe the response of the system to the Klein tunneling, we concentrate on the 
normal transmission. In Fig. 6 the normal transmission is plotted versus dB for E = 5 , V0 = 12 , V1 = 1.98 and 
different values of N. For small values of dB the Klein tunneling is governed in the system, whereas for dB greater 
than a critical value the normal transmission falls to zero. This critical value of dB decreases by increasing the 
number of blocks.

Alternative static scalar potential.  In this subsection, we consider the graphene-based system with 
the magnetic profile given by Eq. (1), similar to the case considered in “Results and discussion” section, while 
the scalar potential profile is described by Eqs. (2) and (4) which is shown in Fig. 1a, b and d. In Fig. 7, the 
effect of non-zero magnetic flux is shown on the incident angle dependence of the transmission probability 
for V1 = 0, 1.98 . The whole parameters are the same as in Fig. 2 in the previous configuration. The transmis-
sion is decreased in comparison to the uniform static scalar potential case. There is the same limitation for the 
incident angle as in the first profile, i.e. ϕ > − sin−1(1+ (NBD/E)) for dB < d−B , ϕ < sin−1(1− (NBD/E)) for 
dB > d−B and E >| NBD/2 | for the energy in absence of V1 , due to the conservation of ky . Again, turning V1 on, 
this confinement is removed. In contrary with the first configuration, the transmission increases by turning V1 
on. From now on, we consider dB = d−B.

Corresponding to Fig. 3 in the previous configuration, Fig. 8 is obtained for the angular dependence of trans-
mission at E = V0 , in this profile. Here, also, increment of the energy makes the lobes sharper in negative angles 
and applying V1 makes the lobes wider, which is apparent in Fig. 8a. The lobes become sharper for N > 1 , as it 
is seen in Fig. 8b. So, a strong wave vector filtering can be achieved by choosing the large values for the energy 
in the case of multiblock magnetic system.

Now we analyze the angular dependence of the transmission with respect to the variation of V0 and V1 . The 
same results shown before in Fig. 4 is, exactly, obtained for V0 = 0 . Again, there is a small range of the incident 
angles with low transmission for E = 1 and a wide perfect transmission range for E = 5 and V1 = 0 . In Fig. 9, the 
angular dependence of the transmission is depicted varying V0 (non-zero) and V1 for E = 5 . The Klein tunneling 
is observed for all values of V0 and V1 . There is a wide angular range with perfect transmission for V1 = 0 . Turning 

Figure 5.   Angular dependence of the total sideband transmission for N = 1 , E = 5 , V0 = 12 and V1 = 0 
varying dB = d−B . Other parameters are the same as in Fig. 3.
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Figure 6.   The total normal sideband transmission versus width of the magnetic barriers for E = 5 , V0 = 12 and 
V1 = 1.98 varying the number of the magnetic blocks. Other parameters are the same as in Fig. 3.
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V1 on, the angular range of the transmission is not changed but some resonance effects are created in the edges of 
this range and the transmission is decreased. The same angular profile of the transmission is obtained for V0 = 0 
and V0 = 10 in the absence of V1 , which can be justified by invariance of the cyclotron radius rc = |E − V0|/evFB . 
Figure 10 shows the angular dependence of the transmission for different values of dB = d−B . Again, the trans-
mission lobes are deflected towards negative angles. The transmission of the magnetic system decreases by 
increasing the thickness of the single magnetic block system in the absence of the oscillating scalar potential, V1 . 
The transmission lobes disappear at a critical value given by the cyclotron orbit diameter, dB = 2E/B.

Resonance and Klein tunneling.  In this subsection, we study the dependence of the total sideband trans-
mission probability on the parameters of the system as the energy, the scalar potential and strength of the mag-
netic field. Our aim is investigation of resonances and Klein tunneling effect in the normal incidence for two 
profiles investigated in “Results and discussion” section and “Conclusion” section. In Fig. 11, the normal trans-
mission is plotted versus the energy for the former (Fig. 11a and c) and latter (Fig. 11b and d) configurations, 
respectively. In both profiles, in the absence of V1 , there is a transmission drop region in the energy interval, 
given by |E − V0(x)| < |ky + B| , inside which the transmission experiences some resonance peaks34. This limi-
tation can be expressed in terms of the energy, magnetic field or incident angle by sharing between this condition 
for different values of vector potential. This is due to the fact that the vector potential, A, takes values between 
zero and BdB , for dB = d−B . The eigenstates in the barriers are evanescent and they propagate in the well to 
form quasibound states, for N ≥ 2 . If the incident energy coincide with this bound state energies in the well, the 
transmission resonances occurs43. So, in this region, the transmission reduces except in resonance peaks. The 

Figure 7.   Angular dependence of the total sideband transmission for one magnetic block ( N = 1 ), E = 1 , 
d−B = 2 and V0 = 12 for different values of dB and V1 . Other parameters are the same as in Fig. 3.

Figure 8.   Angular dependence of the total sideband transmission for (a) N = 1 and different values of E = V0 
and V1 , (b) V1 = 0 and different values of E = V0 and N. Other parameters are the same as in Fig. 3.

Figure 9.   Angular dependence of the transmission for N = 1 , E = 5 and different values of V0 and V1 . Other 
parameters are the same as in Fig. 3.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13293  | https://doi.org/10.1038/s41598-021-92614-0

www.nature.com/scientificreports/

degenerate eigenlevels in the wells split because of the coupling between the wells via tunneling in the barriers 
and it leads to the ( N − 1)-fold resonance splittings for N magnetic blocks (see Fig. 11a and b). Far from this 
region, the eigenstates are propagating states and the DW quasiparticles can transmit perfectly, so the transmis-
sion approaches to unity and the Klein tunneling is governed in the magnetic system. There are, also, (N − 1) 
distinct peaks, associated to the Fabry-Pérot interference, because of interaction between the static and magnetic 
barriers and wells. The resonance splitting effect exists in the magnetic superlattice (the magnetic system with 
N ≥ 2 ) versus energy, through an electrostatic barrier with the suppression of Klein tunneling. Applying V1 

Figure 10.   Angular dependence of the transmission for N = 1 , E = 5 , V0 = 12 and V1 = 0 varying dB = d−B . 
Other parameters are the same as in Fig. 3.
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Figure 11.   (a) The total normal sideband transmission as a function of the energy for the first configuration 
with B = 1 , V0 = 10 and V1 = 0 for different values of N. The inset is for N = 2 and B = 1, 2 . (b) The normal 
transmission versus energy for the second profile with B = 1 , V0 = 10 and V1 = 0 for different values of N. (c) 
The normal transmission versus energy for the first configuration with B = 1 , V0 = 12 , N = 3 and different 
values of V1 . The inset is for V1 = 1.98 and B = 1, 2 . (d) The normal transmission versus energy for the second 
profile with B = 1 , N = 3 and different values of V0 and V1 . The inset is for V0 = 12 , V1 = 0 and B = 1, 2 . Other 
parameters are the same as in Fig. 3.
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reduces height of the resonance peaks from unity and by increasing V1 other sets of (N − 1)-fold resonances are 
appeared in the vicinity of E = V0 . The ( N − 1)-fold resonance peaks, also, are observed for ky  = 0.

In the first configuration (uniform static scalar potential) the curve of transmission versus energy exhibits a 
cusp at E = V0 for B = 1 and non-zero V1 . The cusp is removed for V1 = 0 where the transmission is suppressed 
(see Fig. 11c). The cusps, induced by the oscillating potential, for more than one magnetic block grow up by the 
amplitude of the oscillating potential and the number of blocks. They are attributed to the Fabry-Pérot fringes. 
The transmission around E = V0 can be turned on (off), for multiple magnetic blocks with N ≥ 4 , just by turn-
ing on (off) V1 . The transmission in E = V0 decreases by decreasing V1 and it approaches zero for V1 = 1.98 and 
large number of blocks, i.e. N > 40 . By increasing the difference between V0 and E, the Klein tunneling appears 
and this occurs in higher differences by increasing V1 . Increasing B can also turn off the normal transmission 
(see the inset of Fig. 11a in the absence and the inset of Fig. 11c in the presence of V1 ). Figure 11b and d show 
similar effects for the second profile (alternative static scalar potential). Here, unlike the first configuration, the 
energy E and the static scalar potential V0 have not the same roles and the transmission shows completely non-
symmetric behavior in two sides of E = V0 . In the absence of V1 , the transmission around E = V0 reduces to 
zero by increasing the number of blocks ( N ≥ 6 ) or B. There are not any resonance peak for E < V0 . For V0 ≥ 5 , 
a Klein tunneling region is appeared, centered around E = V0/2 , which its width increases by increasing V0 . 
Here, the barrier and well modes are similar to each other due to the fact |E − V0| = E which was, also, seen in 
the first configuration. The transmission decreases from unity in two areas in both sides of this region, given by 
|E − V0(x)| < |ky + A| . Out of this range, for E > V0 , the Klein tunneling appears again and also alternative sets 
of (N − 1)-fold resonances are observed. Turning V1 on, the transmission around E = V0 increases and the reso-
nance peaks are changed to the usual peaks. The considerations studied here, can be used in designing switching 
on or off instruments for the transmission of the charge carriers in the graphene based systems.

The counter plots for the normal transmission for the first configuration are sketched in Fig. 12 versus the 
energy and the static scalar potential for N = 1, 4 in both cases of absence and presence of the oscillating scalar 
potential. The energy E and the static scalar potential V0 have similar roles in this configuration, which is not the 
case in second profile. In the single block case (Fig. 12a and b), there are ribbon bands in the main diameters, i.e. 
E = V0 , which indicates the non-zero minimum for the transmission which its width increases by increasing V1 . 
Moving away from the main diameter, the difference between E and V0 increases and the normal transmission 
grows towards the unity which leads to the Klein tunneling effect. From the semiclassical point of view44, the 
Dirac fermions subjected to a perpendicular magnetic field are rotating around a circular orbit with the radius 
of cyclotron radius. Increasing the difference between energy and static scalar potential increases the cyclotron 

Figure 12.   The total normal sideband transmission versus E and V0 for the former profile, (a) N = 1 and 
V1 = 0 , (b) N = 1 and V1 = 1.98 , (c) N = 4 and V1 = 0 and (d) N = 4 and V1 = 1.98 . Other parameters are 
the same as in Fig. 3.
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radius and the Dirac fermions can easily complete their cyclotron orbits, so the transmission and conductance 
are increased. In the case of four magnetic blocks (Fig. 12c and d) the 3-fold resonance lines are appeared close 
the main diameters. Here, the minimum transmission is zero for multiblock magnetic system, in the absence of 
V1 (see Fig. 12c). So, the possibility for switching the total normal transmission to zero is provided by choosing V0 
and E close to each other for N > 3 in the absence of V1 . The number of Fabry-Pérot fringe patterns (resonances 
and peaks) increases in the presence of V1 for the multiple magnetic blocks, symmetrically on both sides of the 
ribbon band. The line in the center of the main diameter in Fig. 12d corresponds to a cusp for E = V0 in Fig. 11 
which is created and grows by increasing N for B = 1 . The appearance of the second (N − 1)-fold resonance lines 
are, also, observed in both sides of the main diameter, in Fig. 12d, by applying V1 = 1.98.

In Fig. 13a dependence of the normal transmission to V0 is investigated in the alternative static scalar potential 
case. The transmission drop region for V0 is E − |ky + B| < V0 < E + |ky + B| which consists of the fluctuations 
as (N − 1)-fold resonances centered at V0 = E . In the presence of V1 the resonance, asymmetrically, alters to the 
peaks and the fluctuations outside this region are exacerbated. For even number of blocks, the central peak does 
not include perfect transmission like the others. Increasing N, increases the amplitude of the transmission drop. 
These behaviors for the transmission are strongly affected by the energy. Depending on the value of the energy, it 
shows two types of behaviors. In Fig. 13a the energy was E = 5 and, in its inset, the behavior of the transmission 
is shown for the energies E = 4, 7 with N = 3 and V1 = 0 . For these energies, two (N − 1)-fold resonances are 
observed in both sides of V0 = E and the transmission drops in V0 = E . In Fig. 13b the behavior of the trans-
mission is studied versus V0 = E . The transmission, for one magnetic block, increases up to the energies around 
V0 = E = 3 and, then, is going to be satisfied in τ = 0.8 . For multiple blocks, the transmission takes oscillatory 
behavior due to the multireflections in the walls of the magnetic barriers. The period of this oscillations depends 
on dB = d−B . The (N − 1)-fold resonances are, also, observed as before. So, unlike the first configuration, the 
transmission is not decreased for V0 = E but the perfect transmissions are, also, observed in the resonance peaks.

Figure 14 shows the total normal transmission of the Dirac fermions versus the magnetic field strength for 
different values of energy, oscillating scalar potential and number of magnetic blocks in the former and latter 
profiles. In the former configuration, as is shown in Fig. 14a, the Klein tunneling is observed for weak magnetic 
fields and it is suppressed in the first critical magnetic field with the magnitude Bc1 . The transmission decreases 
and vanishes around a second critical field Bc2 . The radius of the cyclotron orbit decreases with the increment of 
B and the transmission vanishes16. The critical fields Bc1 and Bc2 depend on E, V0 , V1 and N. They both decrease 
with the increment of the energy, for E < V0 , due to the spreading of the scalar potential barrier in the whole 
magnetic region. Applying V1 , the first (second) critical field decreases (increases) and the difference Bc2 − Bc1 
increases. Bc2 decreases by increasing N, as is shown in Fig. 14c. The same analysis is performed for the latter 
configuration in Fig. 14b and d with the same parameters of the first profile. The first critical magnetic field 
is almost zero but the second is decreased, in comparison with the former configuration. Bc2 increases by the 
increment of the energy and is independent of V1 . In both profiles, by adding number of the magnetic blocks, 
two sets of (N − 1)-fold resonances are appeared; the first between Bc1 and Bc2 and the second after Bc2 . It has 
been observed that they are transformed, in the presence of V1 , to the fluctuations with non-perfect transmis-
sion. The perfect and zero transmission regions are separated from each other by a drop region which its width 
decreases by increment of N. For large number of magnetic blocks this region becomes narrower and the zero 
transmission region is obtained by the condition |E − V(x)| < |ky + B| which yields B > 7 and B > 5 in the first 
(Fig. 14c) and second (Fig. 14d) configurations, respectively.

The resonance splitting angle spaces are shown in Fig.  15 for different values of energy and num-
ber of the magnetic blocks with V0 = 10 in the former and latter profiles. In the angular interval given by 
| sin ϕ + A/E| < |1− V0(x)/E| , for both configurations, the perfect transmission is observed due to the propa-
gating states inside the blocks. It experiences some fluctuations because of the Fabry-Pérot resonances and the 
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Figure 13.   The total normal sideband transmission as a function of the static scalar potential for the latter 
configuration, (a) E = 5 varying N , V1 . The inset is sketched for N = 3 , V1 = 0 varying E, (b) the static scalar 
potential equals to the energy and V1 = 0 varying N. Other parameters are the same as in Fig. 3.
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Klein scattering induced by the electrostatic barrier. It yields −90◦ < ϕ < 53.1◦ for E = 5 and −41.8◦ < ϕ < 30◦ 
for E = 6 . For the special value of E = V0/2 for the energy, the angular profiles of the former and latter profiles 
coincide (see Fig. 15a), while they are separated for other values of the energy, as shown in Fig. 15b. The (N − 1)
-fold resonances are observed out of the angular interval of the propagating state’s lobe. It has been observed that, 
by applying V1 , some fluctuation peaks are created with non-perfect transmission. The presence and absence of 
the oscillating scalar potential can be used as a characteristic of the transport properties of the studied magnetic 
systems. In the whole figures, up to now, the frequency has been set on ω = 2 . Changing ω does not affect the 
whole discussed physical results. In Fig. 16, the normal transmission has been plotted for ω = 2, 10 in both 
configurations. The (N − 1)-fold peaks are observed for both frequencies. To avoid the divergency due to the 
oscillatory nature of the Bessel functions discussed before, it should be noted that ω > V1/n.
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Figure 14.   The total normal sideband transmission as a function of the strength of the magnetic field for (a) the 
former and (b) the latter profiles with N = 1 and V0 = 12 for different values of E and V1 and (c) the former and 
(d) the latter configurations with E = 5 , V0 = 12 and V1 = 0 for different values of N. The insets zoom out the 
resonances. Other parameters are the same as in Fig. 3.

Figure 15.   Angular profile of the total sideband transmission with V0 = 10 and V1 = 0 for (a) both 
configurations with E = 5 and N = 3, 4 with the zoomed resonances and (b) N = 3 and E = 6 for the latter and 
former profiles. Other parameters are the same as in Fig. 3.
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Conductance.  The effects discussed up to now related to the transmission is, also, reflected in the total 
sideband conductance of the studied magnetic system. In Fig. 17 the total sideband conductance of the system is 
plotted versus the energy for N = 2 , V0 = 10 , V1 = 0 and different value of B for the former (Fig. 17a) and latter 
(Fig. 17b) configurations, respectively. In the first profile, the conductance experiences a non-zero minimum in 
E = V0 like the normal transmission. This minimum conductance approaches to zero by increasing the number 
of blocks up to N ∼ 6 in the absence of V1 while this happens, in the presence of V1 , for N ∼ 40 . In the second 
configuration, as is shown in Fig. 17b, the conductance has two minimums around E = 0 and E = V0 which 
are attributed to the well and barrier modes and the second one has the same behaviors mentioned for the first 
configuration. The conductance experiences a resonance peak after E = V0 . The conductance reaches to a maxi-
mum around E = V0/2 which decreases in the presence of V1 and by increasing B. The conductance decreases 
by increasing B but there is a region around E = V0 and after E = V0 in the former and latter configurations, 
respectively, where the conductance is almost insensitive to the increment of the magnetic field. Applying V1 , 
removes the insensitivity of the conductance, as is shown in the insets in Fig. 17. The oscillations of the conduct-
ance, particularly shown in Fig. 17a, have already been observed in a similar experimental work45.

Figure 18 shows the dependence of the conductance to the static scalar potential for the alternative static 
scalar potential profile. As it is clear in Fig. 18a, the conductance comes to a minimum in V0 = E except for 
some special values for the energy with a period depending on dB . For E = 2, 5, 8, 11, · · · , the conductance 
reaches to a maximum at V0 = E . Switching V1 on, the conductance increases around V0 = E and decreases out 
of this region. In Fig. 18b the behavior of the conductance is studied for the equal-barrier case, i. e. V0 = E . For 
a single block structure, the conductance reaches uniformly to a maximum in low energies and then reduces to 
zero. For multiple blocks, the conductance has an oscillatory behavior with damping amplitude and a period 
depending on dB . Increasing N, creates peaks in the maxima which was seen in Fig. 13 for normal transmission. 
The conductance increases by introducing V1 for all values of V0 = E . In the inset of Fig. 18b, the effect of B and 
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Figure 16.   The total normal sideband transmission as a function of the energy for (a) the former and (b) the 
latter profiles with N = 3 , V0 = 12 and V1 = 1.98 for ω = 2, 10 . Other parameters are the same as in Fig. 3.
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configurations with N = 2 , V0 = 10 , V1 = 0 and different values of the magnetic field strength. The insets are 
sketched for V1 = 1.98 . Other parameters are the same as in Fig. 3.
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dB is studied for equal-barrier case. Increasing B does not affect the position of the peaks unless the amplitude 
of the first maximum is reduced but increasing dB reduces the amplitude and period of the conductance oscilla-
tions. In spite of the damping behavior of the transmission and conductance in the equal-barrier case in the first 
configuration and other perviously studied researches16, they have oscillatory behaviors in the second profile of 
the present work. This increasing behavior can be helpful in controlling and interrupting the transport.

Figure 19 illustrates the conductance as a function of the strength of the magnetic field for the first (Fig. 19a) 
and second (Fig. 19b) configurations, respectively. In accordance with the behavior of normal transmission, 
studied through Fig. 14, the conductance is suppressed after the second critical magnetic field Bc2 for both 
profiles. Its magnitude is about 1.55 T and 0.69 T by consideration of B0 = 0.1 T for N = 1 , E = 1 and V1 = 0 
for the former and latter configurations, respectively. It decreases by increment of N, as is shown in the insets of 
Fig. 19. The critical field Bc2 for the latter profile is less than the case for the former configuration with the same 
parameters. In spite of the fact that the normal transmission is unity for weak magnetic fields ( B < Bc1 ) in the 
first configuration, the conductance decreases by applying V1 which can be useful in designing of graphene-based 
nanostructures. The oscillations in the insets are associated with the Fabry-Pérot fringes.

Conclusion
In summary, we have studied the transport properties of a graphene sheet subjected to the magnetic blocks (bar-
riers and wells) with the time-dependent scalar potential barriers. Two configurations of uniform and alternative 
static scalar potential have been investigated through the magnetic barriers and wells. It has been shown that the 
non-zero magnetic flux can confine DW quasiparticles in both configurations and the presence of the oscillat-
ing scalar potential,V1 , suppresses this confinement. We concentrated on the states with zero magnetic flux. The 
wave vector filtering effect has been observed for DW quasiparticles, in the absence of V1 for the equal-barrier 
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Figure 18.   The conductance for the alternative static scalar potential profile as a function of the static scalar 
potential for (a) N = 2 and different values of E and V1 and (b) equal-barrier case varying N and V1 . The inset is 
for N = 2 and different values of B and dB . Other parameters are the same as in Fig. 3.
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case (with the energy equal to the static scalar potential, i.e. E = V0 ) which is enhanced by increasing E and 
the number of magnetic blocks, N. The transmission is suppressed over increasing the width of the magnetic 
blocks, in both profiles, and the critical width is associated with the cyclotron orbit diameter for DW fermions 
in the presence of the magnetic field. The normal transmission and the conductance vanishes, drastically, for 
both configurations in equal-barrier case by increasing N, B and decreasing V1 . The resonance effects have been 
observed specially in the former configuration. The magnetic system in the first configuration becomes full 
transparent in a wide angular range with the suitable choice for the parameters. The (N − 1)-fold resonance 
splittings, also, have been shown for normal transmission around the equal barrier energy, which satisfies the 
non-degenerate eigenlevels and the region arising from the investigated model. So, the transport properties of 
the magnetic graphene system creates a reduction region by adjusting E and V0 . Out of this region in the first 
configuration, the Klein tunneling occurs but in the second one it is observed in a finite region around E = V0/2 . 
The (N − 1)-fold resonances have been observed in the transmission and correspondingly some peaks in the 
conductance, for special values of E = V0 , in the second configuration which their distances depends on the 
width of the magnetic blocks. These (N − 1)-fold resonances are, also, observed by variation of the strength of 
the magnetic field and the angle of incidence in both configurations. An estimation has been found for the place 
of this transmission reduction region. It has been shown that it is possible to switch the transport properties of 
the system by changing the system’s characteristic parameters as V1 , B and N. The phenomena studied here as 
realistic models are important from experimental point of view and we hope that our results can be useful in 
designment of graphene based electronic devices.
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