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Abstract: Previous studies which have shown the existence of gender disparities in hypertension
risks often failed to take into account the participants’ spatial and temporal information. In this
study, we explored the spatio-temporal variation for gender-specific hypertension risks in not only
single-disease settings but also multiple-disease settings. From the longitudinal data of the China
Health and Nutrition Survey (CHNS), 70,374 records of 21,006 individuals aged 12 years and over
were selected for this study. Bayesian B-spline techniques along with the Besag, York, and Mollie
(BYM) model and the Shared Component Model (SCM) model were then used to construct the
spatio-temporal models. Our study found that the prevalence of hypertension in China increased
from 11.7% to 34.5% during 1991 and 2015, with a higher rate in males than that in females. Moreover,
hypertension was found mainly clustered in spatially adjacent regions, with a significant high-risk
pattern in Eastern and Central China while a low-risk pattern in Western China, especially for males.
The spatio-temporal variation of hypertension risks was associated with regional covariates, such
as age, overweight, alcohol consumption, and smoking, with similar effects of age shared by both
genders whereas gender-specific effects for other covariates. Thus, gender-specific hypertension
prevention and control should be emphasized in the future in China, especially for the elderly
population, overweight population, and females with a history of alcohol consumption and smoking
who live in Eastern China and Central China.

Keywords: China; hypertension; spatio-temporal variation; Shared Component Model (SCM); Besag,
York, and Mollie (BYM)

1. Introduction

Hypertension is the leading cause of cardiovascular diseases in China. According to the
China Guideline for the Prevention and Treatment of Hypertension, there are at least 1.5 million
hypertension-associated deaths each year, accounting for more than half of the cardiovascular-associated
deaths [1]. The October 2012 to December 2015 national survey reported that inhabitants in China aged
18 or older had a hypertension prevalence of 23.2% with a rate in males higher than that in females
(24.5% vs. 21.9%), and large disparities between regions (ranging from 15.6% in Hunan to 35.9% in
Beijing) were also observed [2]. This high prevalence of hypertension in China has placed a heavy
burden of medical and social resource utilization on families and the whole society.

So far, research has identified risk factors for hypertension at the individual level [2–7]. However,
less attention has been paid to gender-specific hypertension risk [8–11]. Moreover, traditional statistical
methods used in hypertension research, such as logistic regression, Poisson regression, the Chi-Square
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test often failed to utilize the participants’ spatial or temporal information [2–11]. The spatial or
spatio-temporal variation of hypertension, however, may provide valuable clues for identifying
and quantifying risk factors for hypertension at regional levels, thus better informing guidelines for
hypertension prevention and control at regional levels.

Among various epidemiological methods for investigating spatial or spatio-temporal variations for
disease risks, disease mapping models have received increasing attention. By borrowing information
across different geographical regions (or time windows), the pooled sample size in disease mapping
studies will be large enough to obtain more reliable estimators of disease risks. Besides, with the
advances of Markov Chain Monte Carlo (MCMC) approaches, disease mapping studies have become
particularly popular due to its efficiency and flexibility. In addition, many outputs derived from the
disease mapping models could be easily presented in the form of maps. These maps could provide
a rapid summary of complicated geographic information visually, which may offer insight into the
subtle patterns that are missed in tabular presentations [12].

This study was motivated by the fact that most disease mapping studies focused on rare diseases
in spatial dimensions [13–18] although utilizing both spatial and temporal information can provide
more insight into disease pathogenesis. What is more, previous hypertension studies were conducted
at the individual level, which may have neglected the potential correlation between individuals in
spatial or temporal dimensions. Therefore, in this study, we attempt to incorporate both spatial
and temporal information into the spatial Besag, York, and Mollie (BYM) model and the Shared
Component Model (SCM) to explore the variation and evolution of gender-specific hypertension risks
in both single-disease and multiple-disease settings. By conducting the spatio-temporal analysis, the
spatio-temporal variation of gender-specific hypertension risks can be better depicted, thus providing us
important clues to investigate the potential gender-specific hypertension risk factors at regional levels.

This paper is organized as follows: Section 2 describes data, methods, and implementation issues.
Section 3 presents the spatio-temporal modeling framework, and then specifies the formulas of the
BYM and SCM models. The methodology is further illustrated in Section 3 with an empirical study for
exploring the gender-specific hypertension risk in seven major provinces of China from 1991 to 2015.
Discussions are in Section 4, and the conclusions are presented in Section 5.

2. Materials and Methods

2.1. Materials

2.1.1. Data Source

Data were extracted from the China Health and Nutrition Survey (CHNS) by registering an
account on the official website. CHNS is an ongoing large-scale and household-based survey in
China, started in 1989 and the participants were followed up every 2–4 years. So far, there are a
total of ten waves for this survey: 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011, and 2015.
A stratified multistage sampling design was employed. All participants were provided with written
informed consent, and the study was reviewed and approved by the University of North Carolina
and the National Institute for Nutrition and Health (NINH) at the Chinese Center for Disease
Control and Prevention (CCDC). Details of data collection method are available at official website:
https://www.cpc.unc.edu/projects/china/about/design/datacoll. This study of CHNS was approved by
the institutional review boards of the University of North Carolina at Chapel Hill and the National
Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention. Written
Informed Consent was provided by each participant (07-1963).

As the first waves of survey, the sample of 1989 is small, and the surveyed regions were a little
different. In order to obtain reliable results, the sample of 1989 were excluded in the spatio-temporal
modeling. Therefore, the 1991 to 2015 CHNS survey data were utilized for analysis in this study.
What is more, some records in the dataset were excluded according to our eligibility criteria: missing
data of age, sex, systolic blood pressure (SBP) or diastolic blood pressure (DBP) (n = 9062); and age
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below 12 years (n = 16,194). Additionally, records of regions that were included only in one or two
waves were excluded as well (n = 23,859) in order to capture the temporal pattern of hypertension risk.
In the end, 70,374 records of 21,006 individuals aged 12 years and over were retained. Comparison
was then made between the selected sample and the whole survey data (Table 1). It is clear that the
selected sample is reasonably representative of the larger group.

Table 1. Sample distribution of participants.

Variable Value Unit Full Survey Selected Sample

Gender Male
Female

% 49.0 47.5
% 51.0 52.5

Urban Rural
Urban

% 66.4 67.5
% 33.6 32.5

2.1.2. Study Areas

According to the selection criteria mentioned above, seven major provinces that were included
in every survey were chosen in our study: Jiangsu, Shandong, Henan, Hubei, Hunan, Guangxi,
and Guizhou. Furthermore, according to the geographical location, the surveyed provinces were
categorized as Eastern China (Shandong, Jiangsu), Central China (Henan, Hubei, Hunan), and Western
China (Guizhou, Guangxi) (Figure 1).
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2.1.3. Measurements and Definitions

Anthropometric data, including body weight, waist circumstances, and height were measured by
standard protocols so that body mass index (BMI) could be calculated consistently. The overweight
participants were people whose BMI was 24.0 kg/m2 or more [19].

Blood pressure was measured on the right arm by a physician, nurse, health worker, or other
health professional using a standard mercury sphygmomanometer. In order to improve accuracy, it
was taken three times, and their mean was then used in our analyses. Hypertension was defined as
SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or currently taking an antihypertensive drug based on the World
Health Organization (WHO) criteria and defined.
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2.2. Methods

In order to implement BYM and SCM modeling, Moran’s I, a correlation coefficient that measures
the overall spatial autocorrelation was first calculated for the whole study period. The Bayesian
B-Spline technique was then incorporated into the spatial BYM model to construct a spatio-temporal
BYM model for a separate analysis. The Bayesian B-Spline technique was also incorporated into the
spatial SCM model to construct a spatio-temporal SCM model for a joint analysis, and the results were
then compared with those of the spatio-temporal BYM model. Finally, regional covariates, such as
proportion of the elderly population (≥60), proportion of overweight population (BMI ≥ 24), proportion
of ever smokers, and proportion of alcohol consumption were incorporated into the models to reveal
the potential source of spatio-temporal variation.

Data extraction, data management, and basic statistical analyses were performed in STATA version
13.1 (StataCorp LLC, College Station, TX, USA). Maps of study areas were first produced in ArcMap
version 10.3.1 (ESRI, Redlands, CA, USA), and then imported into GeoBUGS. All spatial adjacent
weight matrices were created using GeoBUGS. B-Spline basis were computed with R version 3.5.0, and
then employed during the spatio-temporal modeling. The spatio-temporal BYM and SCM models
were implemented in OpenBUGS version 3.2.3.

2.2.1. Rationale and Motivation of Spatio-Temporal Models

The BYM model, introduced by Besag, York, and Mollie [20], is widely used for single disease
mapping [21–28], whereas the SCM, introduced by Knorr and Best and extended by Held et al. [13,29],
is usually applied in a multiple disease settings [14–18,30–32]. Most previous studies of BYM model and
SCM model focused on rare diseases in spatial dimension. With the availability of spatio-temporal data
in recent decades, the spatio-temporal models have attracted more and more attention. There are two
major concerns for spatio-temporal modeling. The first is whether the interaction effect is significant,
and the second is how to fit temporal effects.

For the first major concern, there were mainly three opinions. Some researchers claimed that the
inclusion of the interaction effect would make a much more complex model and induce identifiability
problems [21]. Others argued that the heterogeneity and interaction terms are competing to explain
the space-time structure not captured by the main effects [15,16]. Some then suggested considering
interaction effects for a chronic disease in a long period, usually over 15 years [15,33].

For the second major concern, solutions depend on whether the temporal effects are fitted
globally or locally. For global model fitting, a linearity and an auto-regression were a most popular
assumption [15,34–36]. For local model fitting, splines were found appealing in spatio-temporal
modeling in disease mapping studies owing to its flexibility, especially when data are available for
several time periods (e.g., nine or more) [27,37,38].

Though spatio-temporal Bayesian disease mapping models may be a good way to capture the
spatio-temporal effect [15,16,33–44], the use of the spatio-temporal BYM model or the SCM models
is not so common in the literature [15,16,36,42,43]. Additionally, previous studies mainly focused on
rare diseases in a short time period (e.g., five time periods with the same interval) [14,16]. Besides, in
some studies, data were aggregated over several years due to the observation sparsity [13,15]. It is
obvious that hypertension is not a rare disease. Therefore, some modifications are needed with regard
to the model formulation. In this study, the data feature was different from most previous studies
in that it covered a long period with unequal intervals between surveys. Under such circumstances,
we incorporated Bayesian B-spline into the spatial BYM model and the SCM model; and constructed
spatio-temporal Bayesian disease mapping models to accommodate the spatio-temporal variation of
gender-specific hypertension risk in single disease and multiple disease settings, respectively.
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2.2.2. Spatio-Temporal BYM Model

The spatio-temporal BYM model was constructed as follows:

Oit ∼ bin(nit, pit), (1)

logit(pit) = α0 + S0(t) + bi0 + RSi(t), (2)

bi0 = ui0 + si0, (3)

where Oit and nit represent the observed and the total number of cases of hypertension for region i (i =

1, . . . , N) and time period t(t = 1, . . . , T), respectively, and pit denotes the prevalence of hypertension
for region i and period t. ui0 and si0 represent the unstructured and spatially structured random-effect,
respectively, and α0 represents the fixed-effect. Separate models were constructed for males and
females. In order to accommodate different time intervals between consecutive surveys, the year t was
centered at the year 2004 [39,42]. Both S0(t) and RSi(t) are smooth functions of spline, representing
the smoothed global and local time trends, respectively. α0 + S0(t) and bi0 + RSi(t) represent the time
trends of global and local disease risk, respectively.

So far, previous disease mapping models mainly focused on rare diseases; thus, Poisson distribution
was assumed with the log link function. However, hypertension is not a rare disease and the binomial
distribution assumption is more appropriate, so the logit link function is employed in our study [30].

Moreover, even though both smoothing splines and P-splines are commonly used methods,
they only allow for limited smoothing prior options. Additionally, due to the large number of
unknown parameters, models with smoothing splines and P-splines may not work well when data
are limited, which is typically the case in disease mapping studies. Therefore, these methods may
suffer from considerable uncertainty if the sample size is not sufficiently large [40]. In contrast, the
regression B-spline allows for more smoothing prior options and has its analytic and computational
advantages [41]. Thus, regression B-spline is employed in our study to fit the temporal trend.

For the cubic B-spline basis function with L knots, S0(t) and RSi(t) can be rewritten as follows:

S0(t) =
K∑

k=1

akBk(t), (4)

RSi(t) =
K∑

k=1

bikBk(t), (5)

where Bk (k = 1, . . . K) is a set of B-spline basis functions, Bk(t) denotes the k-th B-spline basis function
evaluated at time t (K = L + 3), ak(k = 1, . . . , K) are the fixed-effect spline coefficients, and bk(b1k, . . . ,
bnk)T are the random-effect spline coefficients. However, to ensure the identifiability of the model, the
intercept term is not included in this study.

At the same time, the number of knots is crucial: a small number of knots may not be sufficient to
capture the variability of the data, yet a large number of knots may lead to overfitting [44]. The position
of the knots is also important, especially when there are not enough knots [44,45]. As suggested by
Macnab and Gustafson (2007), the ‘forward selection’ approach should be applied for selection of
knots [40]. We then adopted this approach with some modifications due to the unequally spaced time
intervals of our data. Specifically, one knot was initially set at the year of 2004 (the center) rather than
the mean t. The other knots were set according to the results of the descriptive analysis. Overall the
number of knots increased gradually, and they were evaluated based on the deviance information
criterion (DIC).
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Prior Distributions

It is well known that in Bayesian inferences, all unknown parameters, including random spline
coefficients, are random variables which require assignment of prior distributions. Thus, in this
study, all prior distributions for parameters and hyper parameters were assigned based on previous
studies [16,18] and the structure of our dataset.

Similar to the spatial BYM model, a convolutional prior is adopted for bi0, and ui0 and si0 were
assumed to follow a Conditional Autoregressive Regression (CAR) prior and a Gaussian prior (with
precision parameters τu and τs), respectively. Fixed-effect parameters (α0 and αk) were then assumed
to have a non-informative prior. The random spline coefficients bkss were assigned to the Multivariate
Conditional Autoregressive Regression (MCAR) with condition mean and precision matrix as follows:

π(b) ∼MVN
(
0, Ω−1

)
,

Ω = (L−W) ⊗ Γ,

where W = (wi j) is a spatial adjacent matrix, and L is a K by K identity matrix, Γ and Ω are a K by K
and a NK by NK precision matrix, respectively, with Γ being symmetric positive definite.

All priors for fixed-effect parameters were assumed to follow the N (0, 10,000) distribution.
The priors for precision parameters τu and τs were then assumed to follow a gamma (5, 0.0005)
distribution. The precision matrix Ω was assumed to follow the Wishart (R−1, p) distribution, and the
hyper parameters R and p (p = K) were set as identity matrix and K, respectively. Additionally, p was
set equal to K to represent a non-informative prior.

2.2.3. Spatio-Temporal SCM Model

The spatio-temporal SCM model was constructed as follows:

O jit ∼ bin
(
n jit, p jit

)
, (6)

logit
(
p jit

)
= α j + eta jit, (7)

eta1it = (b0i + RS0i(t)) ∗ δt + S1(t) + b1i + RS1i(t) + βit, (8)

eta2it = (b0i + RS0i(t))/δt + S2(t) + b2i + RS2i(t) + βit, (9)

η1(t) = var((b0i + RS0i(t)) ∗ δt)/var(eta1it), (10)

η2(t) = var((b0i + RS0i(t))/δt)/var(eta2it), (11)

where αj is the gender-specific intercept (j = 1 for males and j = 2 for females), representing the
gender-specific baseline hypertension risk. b0i and RS0i(t) denote the shared spatial and spatio-temporal
variations for both genders, respectively; therefore, (b0i +RS0i(t)) is the overall shared variation for males
and females. Sj(t) and bji represent the gender-specific temporal and spatial variations, respectively,
and RSji(t) represents the gender-specific spatio-temporal variation. βit is the spatio-temporal variation.
ηj(t) represents the proportion of variance explained by the shared components. δt and 1/δt are
weights of the shared components (b0i + RS0i(t)) for males and females, respectively. The weighting
method mentioned above (δt and 1/δt) set the sum of the logarithm weight equal to 0 in order to
ensure identifiability of the model. The meanings of Ojit, njit, and pjit are similar to those of the
spatio-temporal BYM model in Section 2.2.2 except that the parameters are three dimensional rather
than two dimensional.

Here it is also worthwhile noting that b0i and RS0i(t) represent the shared spatial main
effect and the shared spatio-temporal main effect, respectively; Sj(t), RSji(t), and βit represent the
gender-temporal interaction effect, gender-spatio-temporal interaction effect and spatio-temporal
interaction effect, respectively.
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Similar to Equations (4) and (5), the smooth function RS0i(t), Sj(t) and RSji(t) can be decomposed
as follows:

RS0i(t) =
K∑

k=1

bikBk(t), (12)

S j(t) =
K∑

k=1

a jkBk(t), (13)

RS ji(t) =
K∑

k=1

β jikBk(t), (14)

where ajk is the coefficient of the k-th fixed spline for gender j (j = 1, 2; k = 1, . . . K), and βjks is the
coefficient vectors of the kth random spline for gender j. Definitions of bik and Bk are similar to those of
the spatio-temporal BYM model in Section 2.2.2. Additionally, the method of knots selection is similar
to that of the spatio-temporal BYM model.

Prior Distributions

In order to incorporate the spatial structure, both βit and βjk were assumed to have a CAR prior
with the corresponding precision hyper parameters τβ and τb being assigned to have the gamma (5,
0.0005) prior. The logarithmic of weight δt was assumed to have the N (0.0, 0.169) distribution to ensure
that δ2 falls between 1/5 and 5 with a 95% probability [18]. Similar to the spatio-temporal BYM model
in Section 2.2.2, the prior for the random-effects spline coefficients bk is MCAR, with the precision
matrix Γb assigned from Wishart (R−1, p), and the fixed-effects spline coefficients ajk should follow the
distribution N (0, 10,000). Additionally, in order to improve the identifiability and reduce the model
complexity, both bji and b0i were also assumed to follow the distribution N (0, 10,000).

3. Results

3.1. Statistical Descriptions

In total, 70,374 records of 21,006 individuals aged 12 years and over were included in our study, of
which 47.5% were males. From 1991 to 2015, the prevalence of hypertension in China increased from
11.7% to 34.5%, with a higher rate in males than that in females (increased from 12.8% to 38.1% vs.
10.8% to 31.5%, respectively).

Figure 2 shows the trend of overall and gender-specific hypertension prevalence. An upward
trend was observed for both genders, especially after 2006. Additionally, gender variation of
hypertension existed with males experiencing a higher rate than that in females, showing the necessity
of gender-specific modeling.

Figures 3 and 4 show the area-specific hypertension prevalence for males and females, respectively.
Hypertension prevalence increased for almost all regions for both males and females, and the highest
value was found in Shandong province before 2004 whereas it was replaced by Jiangsu province after
that. However, geographic disparities existed for both genders. In particular, hypertension prevalence
for Henan province increased rapidly after 2006 and it was ranked No.2 for males and No.1 for females
in 2015. In contrast, hypertension prevalence in males and females in Guizhou province was increasing
steadily before 2009 with a decline after that.

Furthermore, the global Moran’s I and corresponding p-value were calculated for all study periods
in order to assess the spatial correlation of hypertension prevalence (Table 2). It showed that though
fluctuated during the study periods, Moran’s I was significantly positive, with an exception for males
in 1991. This indicated that the hypertension risk was significantly spatially clustered, thus, it is
reasonable to construct a spatio-temporal model.
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Table 2. Global cluster for hypertension prevalence by gender.

Year Moran’s I (Male) p-Value (Male) Moran’s I (Female) p-Value (Female)

1991 −0.159 0.466 0.166 0.161
1993 0.074 0.204 0.273 * 0.091
1997 0.763 *** 0.003 0.508 ** 0.022
2000 0.258 0.143 0.072 0.242
2004 0.775 *** 0.002 0.526 ** 0.011
2006 0.500 ** 0.041 0.604 ** 0.039
2009 0.442 * 0.053 0.427 ** 0.015
2011 0.508 *** 0.010 0.562 ** 0.029
2015 0.658 ** 0.032 0.530 ** 0.029

Note: *, **, and *** correspond to the statistical significance at 10%, 5%, and 1% level, respectively.
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3.2. Model Selection

The Bayesian Spatio-Temporal BYM and SCM models were fitted using Markov Chain Monte
Carlo (MCMC) techniques. To ensure reliability, two independent parallel MCMC chains were run for
each model with a total of 100,000 iterations, keeping every 10th, after a 50,000 iteration burn-in period
for each chain. The results were based on thinned sample sizes of 50,000. Brooks–Gelman–Rubin
diagnostics [46], as well as graphical checks of chains and their autocorrelations were performed to
assess convergence. The model selection was guided by the commonly used deviance information
criterion (DIC) [47] after convergence. In other words, Dbar (model fitting) and pD (model complexity)
were key considerations during model selection. For brevity, the detailed information about model
selection is provided in Appendix A.

3.3. Results of the Selected Models

Based on the comparisons shown in Table A3 in Appendix A, D2 and D1F were the best model
for males and females, respectively for the spatio-temporal BYM model; while E2S was preferred for
the spatio-temporal SCM model. Overall, both the spatio-temporal BYM model and the SCM model
were able to identify the spatio-temporal pattern of hypertension risks. In terms of model fitting
and model complexity, the spatio-temporal BYM model was favored with a clearer spatial pattern.
However, due to the necessity of modeling males and females separately, it takes twice as much as time
to run the spatio-temporal BYM model (Table A3 in Appendix A), and the spatio-temporal SCM model
could produce more outputs, such as the gender-specific and shared spatial variations, gender-specific
temporal effects, and the weight of shared component for both genders.

Next, the major results derived from the spatio-temporal BYM model and the spatio-temporal
SCM model are presented respectively, as follows:

3.3.1. Spatio-Temporal Pattern of Hypertension Risk

Results derived from the spatio-temporal BYM model show that the overall hypertension risk
increased over time for both males and females (Figure 5). However, gender variation existed in terms
of the spatial pattern of hypertension risks: for males, geographical disparities emerged in 1997, with a
relatively higher hypertension risk first found in Shandong province, then the hypertension risks started
to cluster in Eastern China (Jiangsu and Shandong) and Central China (Henan, Hubei and Hunan)
over time; for females, geographical disparities had been found since 2000 with a smaller magnitude
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of hypertension risk and a slower change of its spatial pattern. What is more, for males, it is worth
mentioning that the hypertension risk was still at a medium size (0.5 < Posterior mean < 0.8) for most
regions before 2011 even though the hypertension risk in Jiangsu province increased dramatically from
0.64 in 2011 to 1.06 in 2015. Thus, in the future, special attention regarding hypertension prevention
and control should be given to Eastern China, especially to males in Jiangsu province.
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For the overall spatio-temporal pattern of the hypertension risks derived from the spatio-temporal
SCM model, it was similar to that derived from the BYM model for both males and females (Figure 6).
However, a less clear spatial pattern was observed due to the smoothing effect between males and
females. Besides, there has been a smaller magnitude of hypertension risk for males in Eastern China
(Shandong and Jiangsu) and in most parts of Central China (Henan and Hubei) since 2009.Int. J. Environ. Res. Public Health 2019, 16, x 13 of 26 
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3.3.2. Shared Spatial Effects, Gender-Specific Spatial Effects, and Gender-Specific Temporal Effects

In terms of the spatial effects derived from the spatio-temporal SCM, it suggested that the
gender-specific variation played a major part in the overall spatial variation of the hypertension
risk with a clear spatial pattern. In particular, a higher hypertension risk was observed in Jiangsu,
Shandong, and Henan for males and Jiangsu for females (Figure 7a,b). In contrast, the overall shared
spatial variation (Figure 7c) was at a medium size (Posterior mean < 0.8) with no significant spatial
pattern. However, an upward trend was observed for the weight (δ) of the overall shared spatial
variation over time, which indicated that the common hypertension risk factors played a more and
more important part for males and females, even though the contribution of the shared hypertension
risk factors was no more than 30% before 2009 (Figure 8).
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In terms of the temporal effects derived from the spatio-temporal SCM, there existed a declining
trend of the hypertension risk between 1991 and 1993 because there was negative gender-specific
temporal effect during this period for both males and females. However, after 1993, an upward trend
was observed for males with an abrupt increase in 1997, yet the increase became steady after 2000, and



Int. J. Environ. Res. Public Health 2019, 16, 4545 17 of 26

no significant effects was observed for females after 1993 (Figure 9). Thus, gender-specific hypertension
prevention and control should be considered in the future, and special attention should be paid to
males if no effects of regional covariates are taken into account.Int. J. Environ. Res. Public Health 2019, 16, x 17 of 26 
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3.3.3. Spatio-Temporal Interaction Effects

The spatio-temporal interaction effects derived from the spatio-temporal BYM model and the
spatio-temporal SCM model are displayed in Figure S1A1–A9 and Figure S1B1–B9, respectively. It was
further demonstrated that there were significant spatio-temporal interaction effects. However, different
spatial patterns were captured in these two models: for the spatio-temporal BYM model, a clearer
pattern of Eastern China, Central China, and Western China was identified, and the pattern changed
frequently; whereas the spatial-temporal interaction effects derived from the spatio-temporal SCM
model were found mainly clustered in Western China and Central China, and then gradually moved
toward Eastern China with a larger value than that derived from the spatio-temporal BYM model.
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3.3.4. Effects of the Regional Covariates

Moreover, the effects of all the covariates including age, overweight, alcohol consumption,
and smoking increased over time, especially for females having a history of drinking and smoking
(Table S1–S4). Specifically, the regional hypertension risk in 2015 increased about 4% for participants
aged 60 and over, overweight population, and males having a history of smoking (Tables S1, S2,
and S4). What is more, though no significant risk was found for males having a history of alcohol
consumption, the regional hypertension risk of alcohol consumption for females in 2015 increased
6.5%. Furthermore, the regional hypertension risk in 2015 increased 44% for females having a history
of smoking (Tables S3 and S4). Overall, similar effects of age on regional hypertension risks were
found between males and females. Nevertheless, the effects of overweight, alcohol consumption,
and smoking were gender-specific: there was a slightly larger impact on males than on females
for overweight, yet there was much more significant impact on females than on males regarding
alcohol consumption and smoking (Tables S2–S4). However, the different impact of overweight on
hypertension risks between males and females became smaller over time. These suggest that special
attention might paid to the elderly population, overweight population, and females with a history of
alcohol consumption and smoking.

To conclude, both the spatio-temporal BYM and SCM models are able to identify the spatial pattern
and the evolution of the hypertension risk over time, with the former producing clearer spatial patterns.
However, being able to model males and females simultaneously, the spatio-temporal SCM model
is more efficient, and it is capable of revealing the gender-specific and shared spatial variations and
gender-specific temporal effects. Thus, the spatio-temporal SCM model is more favorable when there
are significant shared spatial effects. However, be aware that there may be a risk of over smoothing
for the spatio-temporal SCM when no significant shared effects are found. Therefore, in terms of
hypertension prevention and control, special attention should be given to the people living in Eastern
China and Central China, especially for the elderly population, overweight population, and females
with a history of alcohol consumption and smoking.

3.4. Convergence of Key Model Parameters and Sensitivity of Selected Models

To ensure the reliability of the estimation, convergence of model parameters was diagnosed, and
the sensitivity of the selected model to the choice of priors for the precision parameters were also
assessed. Overall, there was no obvious autocorrelations and convergence of key parameters were
achieved (Figures 10 and 11). The sensitivity analysis confirmed that the posterior estimates and the
resulting DIC scores were both robust in regard to the moderate changes in the prior distributions,
thus their appropriateness in the proposed models (Table 3).

Table 3. Sensitivity analysis with respect to precision parameter τ.

Parameter
Priors 1 Priors 2 Priors 3

Mean (95%CI) Mean (95%CI) Mean (95%CI)

Exp(b)
b1(Males) 0.706 (0.645–0.772) 0.706 (0.645–0.773) 0.704 (0.641–0.770)

b2(Females) 0.986 (0.927–1.048) 0.990 (0.930–1.051) 0.990 (0.930–1.051)
Exp(β) 1.161 (0.978–1.386) 1.201 (0.948–1.519) 1.206 (0.953–1.530)
Exp(Sj)
Males 0.917 (0.855–0.983) 0.916 (0.855–0.982) 0.917 (0.853–0.982)

Females 0.999 (0.966–1.034) 0.999 (0.966–1.033) 0.999 (0.966–1.034)

DIC (pD) DIC = 1369 (pD = 33.12) DIC = 1477 (pD = 25.97) DIC = 1343 (pD = 19.13)

Deviance information criterion (DIC), priors 1: τβ~gamma (5.0,5.0 × 10−4); priors 2: σβ~unif(0,1); priors 3:
σ2

β~norm(0.0,100)I(0,). For brevity, this table mainly presents the results of sensitivity for RR.b, RR.β, and RR.Sj
when t = 1 and region i = 2, other results can be obtained upon request.
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For brevity, Figure 11 only presents the convergence results for b1, b2, S, and β when i = 2, the
results of other parameters can be obtained upon request. Note that S1 [2] means the gender-specific
temporal effects in 1993 (Year No.2) and beta1 [2] means spatio-temporal interaction effects for area
No.2 in year No.1 (that means Hunan province in 1991).

4. Discussion

High prevalence of hypertension in China has placed a heavy burden on families and the whole
society. Though a lot of research has been done to identify risk factors for hypertension, less attention
was paid to the gender-specific hypertension risk. In addition, traditional methods were often
employed, and the data were usually analyzed at the individual level, which may have neglected the
potential correlation between individuals in spatial or temporal dimension. In this paper, to address
this issue, new spatial-temporal BYM and SCM models were constructed with the Bayesian B-spline
technique. The methodology was further illustrated by exploring spatial distribution and the evolution
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of gender-specific hypertension risks in seven major provinces of China. In terms of model fitting,
the spatio-temporal BYM model was more favorable. However, the spatio-temporal SCM model took
much less time to run, and it was able to produce richer output for gender-specific hypertension
prevention and control, such as the gender-specific and shared spatial variation, the weights of shared
component for both genders, and gender-specific temporal effects.

Similar spatio-temporal patterns of hypertension risks were identified from the spatio-temporal
BYM model and the spatio-temporal SCM model, with a clearer spatial pattern and larger magnitude
derived from the former. Results showed that the hypertension risks were increasing over time for
both males and females, with a higher rate in males than that in females. What is more, hypertension
was mainly clustered in spatially adjacent regions, with a significant high-risk pattern in Eastern and
Central China whereas a low-risk pattern in Western China. In particular, the hypertension risk for
males in Jiangsu province has started to become salient since 2009. Thus, special attention should be
paid to these areas for hypertension prevention and control, especially for males in Jiangsu province.

Although the effects of age, overweight, alcohol consumption, and tobacco use on hypertension
are well documented at the individual level [2–11,48], their effects on hypertension has not been
investigated yet at regional levels. Our study found that the spatio-temporal variation of hypertension
risk was also associated with age, overweight, alcohol consumption, and tobacco use at regional levels.
Similar effect of age between males and females was identified, and the effect of tobacco use on females
was more significant than that on males while the effect of overweight on males was more significant,
which was consistent with the findings of previous studies [3,8]. Besides, our study also identified a
more significant impact of tobacco use on females, consistent with the findings of previous studies in
China [10]. Though consistent with the finding of Hui et al. (2018) [10] that there was more impact of
alcohol consumption on females, other researchers identified a more significant association between
alcohol intake and hypertension risk for males [9,11,49]. This inconsistency may be due to the fact that
only the status of ever drinking was considered in our study. However, the type-of alcohol, frequency,
and the amount of alcohol intake may also matter [9,49].

Furthermore, the relatively higher hypertension risk for people living in spatially adjacent
provinces (e.g., Jiangsu, Shandong, and Henan) may also be associated with the similar flavor
preference in these areas, e.g., their higher salt diet [50–52]. Therefore, comprehensive strategies
are urgently needed to focus on reducing salt intake, in addition to maintaining optimal body
weight, abstaining from smoking and alcohol consumption in females, with special attention on the
elderly population.

It is also worthwhile mentioning that the effects of all the covariates analyzed in our study
increased over time, especially for females with a history of alcohol consumption and tobacco use. A
significant increase of regional hypertension risks for females was not observed until 2009 for females
with a history of alcohol consumption and tobacco use. Considering the significant accumulation effects
of risk factors for females, emphasis should be put on females with a history of alcohol consumption
and tobacco use regarding hypertension prevention and control.

The spatio-temporal SCM model further quantified the weight of shared hypertension risk factors
between males and females at regional levels. We found that though it increased steadily, the effect of
shared hypertension risk factors for males and females accounted for no more than 30% before 2009.
This indicated that the common factors only contributed a small proportion, and it further verified
the existence of gender-specific hypertension risks [8,10]. However, the weight increased significantly
after 2009. This significant increase was associated with the decreasing difference between the effect of
overweight for males and females. Thus, we may conclude that the effect of age was mainly shared
before 2009 whereas both the effects of age and overweight were shared after 2009 for males and
females. This also suggests that attention should be given to the time varying effect of hypertension
risk factors in order to better guide the gender-specific hypertension prevention and control.

Our study also shows that there was a significant spatio-temporal interaction effect for hypertension.
This supports previous results that an examination of spatio-temporal interaction effect is necessary for
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chronic diseases spanning over a long time period (e.g., 20 years) [15,33]. Besides, the spatio-temporal
SCM model identified the gender-specific temporal trend of hypertension risks, in which males
experienced a significant upward trend after 1993. This result further verified the existence of gender
variation of hypertension risks and the necessity of gender-specific spatio-temporal modeling.

In short, by incorporating the Bayesian B-spline into the previous BYM and SCM models, the newly
constructed models were able to explore and highlight the spatial pattern of hypertension risks over
time, thus providing information for disease etiology study. The spatio-temporal framework illustrated
in our study is also applicable for rare diseases if modifications are made to model formulation.

Of course, this study had some limitations. First, due to the availability of our data source, only
seven major provinces of China were selected for the spatio-temporal modeling, so our study may
not capture the spatio-temporal variation of gender-specific hypertension risks in other provinces in
China. Second, our data were only analyzed at the province level, which may have led to considerable
uncertainty for statistical inference. However, data at a finer scale (e.g., city or county) were not
available due to the confidential policy related to the survey data. Third, no clear relationship between
alcohol consumption and hypertension risk for males was identified in our study. This may be due
to the fact that only the status of current alcohol use was taken into account. Fourth, the association
between the excessive sodium intake and the higher hypertension risk in Jiangsu, Shandong, and
Henan was not further analyzed due to time constraint. Therefore, future research should take into
account more detailed information about alcohol consumption and sodium intake and further identify
the potential gender-specific risk factors at regional levels.

5. Conclusions

The extended spatio-temporal models showed that the hypertension risk was increasing over time
in China, and it is often clustered in spatially adjacent regions for both males and females. However,
a clearer spatial pattern was observed for males, and there was a larger magnitude of hypertension
risk for males than females. The similar pattern of hypertension risks between males and females was
mainly associated with age before 2009 whereas both the effects of age and overweight were shared
after 2009. Furthermore, the gender-specific pattern was mainly associated with overweight, alcohol
consumption, and smoking. Thus, gender-specific hypertension prevention and control should be
emphasized in the future in China, especially for the elderly population, overweight population, and
females with a history of alcohol consumption and smoking living in Eastern China and Central China.
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Appendix A

Model Selection for the Spatio-Temporal BYM Model
We initially set a knot at the year of 1997 and 2004 based on the descriptive analysis (Figures 2–4),

and then incorporated more knots into the model. Additionally, spatio-temporal interaction terms
were considered in each setting and compared to models with no interaction effects. Altogether, 10
models were considered for both males and females. Dbar, pD, DIC, and time consumption for these
models are listed in Table A1.

Table A1. Spatio-temporal BYM model selection.

Model Model Features Dbar pD DIC Time (s)

A1 Knot at 1997, with spatio-temporal
interaction terms 802.5 −31.5 739.5 270

A2 Knot at 1997, without spatio-temporal
interaction terms 866.6 4.87 871.5 175

B1 Knot at 2004, with spatio-temporal
interaction terms 725.6 24.0 749.6 195

B2 Knot at 2004, without spatio-temporal
interaction terms 821.2 14.8 836.0 164

C1 Knots at 1997 and 2004, with
spatio-temporal interaction terms 512.5 −33.52 479.0 261

C2 Knots at 1997 and 2004, without
spatio-temporal interaction terms 542.6 5.62 548.3 218

C3 Knots at 2004 and 2011, with
spatio-temporal interaction terms 653.3 17.5 670.7 256

C4 Knots at 2004 and 2011, without
spatio-temporal interaction terms 721.0 −7.7 713.3 215

D1 Knots at 1997, 2004, and 2011, with
spatio-temporal interaction terms 475.0 7.8 482.8 298

D2 Knots at 1997, 2004, and 2011, without
spatio-temporal interaction terms 476.1 3.1 479.2 261

A1F Knot at 1997, with spatio-temporal
interaction terms 693.8 −4.4 × 1013

−4.4 × 1013 193

A2F Knot at 1997, without spatio-temporal
interaction terms 800.2 21.8 821.9 179

B1F Knot at 2004, with spatio-temporal
interaction terms 658.0 23.0 681.0 229

B2F Knot at 2004, without spatio-temporal
interaction terms 756.4 0.7 757.0 153

C1F Knots at 1997 and 2004, with
spatio-temporal interaction terms 477.9 −17.6 460.3 250

C2F Knots at 1997 and 2004, without
spatio-temporal interaction terms 559.0 20.5 579.4 211

C3F Knots at 2004 and 2011, with
spatio-temporal interaction terms 600.9 −7.4 593.5 385

C4F Knots at 2004 and 2011, without
spatio-temporal interaction terms 685.9 −5.9 680.0 257

D1F Knots at 1997, 2004, and 2011, with
spatio-temporal interaction terms 500.3 7.7 508.0 288

D2F Knots at 1997, 2004, and 2011, without
spatio-temporal interaction terms 504.4 −0.2 504.3 338

Note: Model A~D for male; Model AF~DF for female. Negative value implies improper model.
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For males, the model with spatio-temporal interaction terms has a favorable model fitting in
one-knot settings with the knot setting at the year of 2004; whereas the model without an interaction
term is better for both two-knot settings and three-knot settings, with the knot setting at the years of
1997, 2004 and 1997, 2004 and 20011, respectively. The model formulation for females was the same as
that for males in one-knot settings and two-knot settings even though the spatial-temporal interaction
terms were only included in one-knot settings and excluded in two-knot settings. In addition, the
model formulation was different in three-knot settings and the spatio-temporal interaction terms were
only included in the female model. According to the DIC criterion, models D2 and D1F were chosen as
the final models for males and females, respectively.

Model Selection for Spatio-Temporal SCM Model
The spatio-temporal BYM model (Table A1) indicated that there were both shared

and gender-specific features for hypertension risk, implying the necessity of constructing a
shared-component model in this paper.

To ensure model identifiability, model construction was adaptive and adjusted according to the
model fitting results. First, the full model was fitted in one-knot settings (knot at the year of 1997), and
the gender-spatio-temporal interaction term RSji(t) was deleted according to the fitting results; Second,
the reduced model was fitted in one-knot settings (knot at the year of 1997 and 2004), and the shared
spatio-temporal main effect term RS0i(t) was further deleted according to the fitting results; then the
reduced model was fitted with common or gender-specific spatio-temporal interaction terms. Results
showed that models with shared spatio-temporal interaction terms were favorable in most cases.
However, models with the gender-specific interaction terms were preferred in three-knot settings.
According to the DIC criterion, model E1S was chosen as the final model for the spatio-temporal SCM
model (Table A2).

Table A2. Spatio-temporal SCM model selection.

Model Model Features Dbar pD DIC Time (s)

A1S Knot at 1997, with RS0i(t), common interaction terms 1364.0 −582.7 781.8 490

A2S Knot at 1997, with RS0i(t), gender specific interaction
terms 1629.0 14.3 1644.0 356

A3S Knot at 1997, without RS0i(t), common interaction
terms 1398.0 −45.4 1353.0 311

A4S Knot at 1997, without RS0i(t), gender specific
interaction terms 1604.0 16.4 1620.0 176

B1S Knot at 2004, with RS0i(t), common interaction terms 1351.0 −548.0 803.2 471

B2S Knot at 2004, with RS0i(t), gender specific interaction
terms 1612.0 −11.0 1601.0 332

B3S Knot at 2004, without RS0i(t), common interaction
terms 1384.0 5.3 1389.0 289

B4S Knot at 2004, without RS0i(t), gender specific
interaction terms 1589.0 −36.1 1553.0 179

C1S Knot at 1997 and 2004, gender specific interaction
terms 1361.0 6.8 1368.0 186

C2S Knot at 1997 and 2004, common interaction terms 1155 32.7 1188 274

D1S Knot at 1997 and 2004, gender specific interaction
terms 1529.0 −3.5 1526.0 185

D2S Knot at 1997 and 2004, common interaction terms 1321 27.9 1349 285

E1S Knot at 1997, 2004, and 2011, gender specific
interaction terms 1336.0 33.1 1369.0 306

E2S Knot at 1997, 2004, and 2011, common interaction
terms 1131.0 −8.7 1122.0 355
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Comparison of Spatio-Temporal BYM and SCM Models

Table A3. Comparison of spatio-temporal BYM and SCM models.

Model setting Model Dbar pD DIC Time (s)

One knot BYM: B1 for male, B1F for female 1383.6 47.0 1430.6 424
One knot SCM: B3S 1384.0 5.3 1389.0 289
Two knots BYM: C2 for male, C2F for female 1101.6 26.1 1127.7 429
Two knots SCM: C2S 1155.0 32.7 1188.0 274

Three knots BYM: D2 for male, D1F for female 976.4 10.8 987.2 549
Three knots SCM: E1S 1336.0 33.1 1369.0 306

Note: All models correspond to that of Supplementary Tables S1 and S2.

Table A3 shows that the spatio-temporal SCM model was a better choice for both one-knot
settings and two-knot settings, whereas the spatio-temporal BYM model was more favorable for
three-knot settings in terms of model fitting and model complexity. However, when modeling males
and females jointly, it took 50%~70% less time to run the spatio-temporal SCM model compared to that
of spatio-temporal BYM model. According to the DIC criterion, spatio-temporal models with three
knots were selected as the most appropriate for both BYM and SCM models.
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