
Neuro-Oncology Advances
1(1), 1–9, 2019 | doi:10.1093/noajnl/vdz019 | Advance Access date 1 September 2019

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author(s) 2019. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Alexandre Bani-Sadr , Omer Faruk Eker, Lise-Prune Berner, Roxana Ameli, Marc Hermier, 
Marc Barritault, David Meyronet, Jacques Guyotat, Emmanuel Jouanneau, Jerome Honnorat, 
François Ducray, and Yves Berthezene

Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bvd Pinel, 69634, Lyon Cedex, 
France (A.B-.S., O.F.E., L-.P.B., R.A., M.H., Y.B.); Department of Molecular Biology, East Group Hospital, Hospices 
Civils de Lyon, 59 Bvd Pinel, 69634, Lyon Cedex, France (M.B.); Department of Neuropathology, East Group Hospital, 
Hospices Civils de Lyon, 59 Bvd Pinel, 69634, Lyon Cedex, France (D.M.); Department of Neurosurgery, East Group 
Hospital, Hospices Civils de Lyon, 59 Bvd Pinel, 69634, Lyon Cedex, France (J.G., E.J.); Université Claude Bernard 
Lyon 1, 43 Bvd du 11 Novembre 1918, 69100, Villeurbanne, France (J.G., E.J., J.H., F.D., Y.B.); Department of Neuro-
Oncology, East Group Hospital, Hospices Civils de Lyon, 59 Bvd Pinel, 69634, Lyon Cedex, France (J.H., F.D.)

Corresponding Author: Alexandre Bani-Sadr, Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bvd 
Pinel, 69634, Lyon Cedex, France (apbanisadr@gmail.com)

Abstract
Background. After radiochemotherapy, 30% of patients with early worsening MRI experience pseudoprogression 
(Psp) which is not distinguishable from early progression (EP). We aimed to assess the diagnostic value of radiomics 
in patients with suspected EP or Psp.
Methods. Radiomics features (RF) of 76 patients (53 EP and 23 Psp) retrospectively identified were extracted from 
conventional MRI based on four volumes-of-interest. Subjects were randomly assigned into training and valida-
tion groups. Classification model (EP versus Psp) consisted of a random forest algorithm after univariate filtering. 
Overall (OS) and progression-free survivals (PFS) were predicted using a semi-supervised principal component 
analysis, and forecasts were evaluated using C-index and integrated Brier scores (IBS).
Results. Using 11 RFs, radiomics classified patients with 75.0% and 76.0% accuracy, 81.6% and 94.1% sensitivity, 
50.0% and 37.5% specificity, respectively, in training and validation phases. Addition of MGMT promoter status im-
proved accuracy to 83% and 79.2%, and specificity to 63.6% and 75%. OS model included 14 RFs and stratified low- 
and high-risk patients both in the training (hazard ratio [HR], 3.63; P = .002) and the validation (HR, 3.76; P = .001) 
phases. Similarly, PFS model stratified patients during training (HR, 2.58; P = .005) and validation (HR, 3.58; P = .004) 
phases using 5 RF. OS and PFS forecasts had C-index of 0.65 and 0.69, and IBS of 0.122 and 0.147, respectively.
Conclusions. Conventional MRI radiomics has promising diagnostic value, especially when combined with MGMT 
promoter status, but with moderate specificity. In addition, our results suggest a potential for predicting OS and PFS.

Key Points

Conventional MRI radiomics has interesting diagnostic value in the diagnosis of 
pseudoprogression but its specificity remains moderate. It may have a substantial 
interest in forecasting overall and progression-free-survivals.

Glioblastomas (GBM) account for the majority of malignant 
brain tumors in adults. Standard first-line treatment usually 
consists of concurrent radiochemotherapy (RCT) and adjuvant 

temozolomide (TMZ) therapy.1 During the first 6 months of fol-
low-up, nearly 20% to 30% of patients experience treatment-
related subacute reactions, resulting in increased or new 

Conventional MRI radiomics in patients with suspected 
early- or pseudo-progression
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lesions.2,3 Since these reactions mimic an early progres-
sion (EP), they have been called pseudo-progression (Psp). 
Although some signs may suggest EP rather than Psp, there 
are no criteria for a diagnosis of certainty using conventional 
MRI.4,5 To date, only a new histological examination can char-
acterize a worsening of the MRI within 6 months following 
radiochemotherapy.6 In clinical practice, a second surgery is 
difficult to accept and histological characterization can also 
be complicated.6 Therefore, the current recommendation in 
cases of suspected Psp is to continue TMZ and to conclude 
after a follow-up MRI.6 In case of regression or stabilization 
of enhancing lesions, the diagnosis of Psp is retained while 
an increase establishes EP.6,7 Thus, the final diagnosis in 
these patients can only be made retrospectively. This has im-
portant implication for individual care and for clinical trials 
since it is recommended to exclude these patients from 
trials.7 Although advanced MRI techniques such as diffusion-
weighted-imaging, dynamic-susceptibility-contrast imaging, 
and spectroscopy have shown promising diagnostic per-
formances, acquisition protocol for evaluating glioblast-
omas is variable among imaging centers and mainly relies 
on conventional MRI.8 In addition, only two-dimensional 
measurements based on conventional MRI sequences are 
currently validated for GBM follow-up.9,10

Recent advances in high-resolution image acquisition, 
computational hardware, and high-dimensional data 
processing allowed quantifying innumerable texture and 
shape characteristics of medical images.11 This broad set 
of methods have been called radiomics.12 It presupposes 
that the quantification of certain image properties, such as 
variations in gray levels, allows a better characterization 
of the tumor phenotype and its microenvironment.11 In 
neuro-oncology, this method has demonstrated its ability 
in predicting survival of newly diagnosed GBM patients 
and to determine the status of the MGMT promoter meth-
ylation and Isocitrates Dehydrogenases mutation.13–16

This study aimed to assess the diagnostic value of con-
ventional MRI radiomics in the management of patients 
with suspected EP or Psp. Our primary objective was to 
evaluate the diagnostic performance of radiomics alone 
or in combination with MGMT promoter status. Our sec-
ondary objective was to study the ability to predict overall 
survival (OS) and progression-free survival (PFS).

Materials and Methods

Patient Selection, Collection of Survival Data and 
of the MGMT Promoter Status

Institutional Review Board approved this retrospective 
study, and the requirement for written consent was waived.

Patients were identified in our institution’s radiological da-
tabase. As previously proposed,4 they were included if they 
had received a histological diagnosis of GBM according to 
WHO 2016, if they were over 18 years of age, if they had re-
ceived TMZ radiochemotherapy as initial treatment, if they 
had radiological and clinical surveillance data available, 
if they had experienced a radiological progression within 
6 months of their concomitant TMZ RCT, and there were no 
significant MRI artifacts. In line with RANO criteria, radiolog-
ical progression was defined as a significant increase of at 
least 25% in enhancing lesions or any new lesion.10

The final diagnosis was established by consensus by a 
neuro-oncologist and a radiologist. EP and Psp were diag-
nosed on the basis of histological analysis or, in the absence 
of histological proof, by radioclinical follow-up. EP was re-
tained if follow-up MRI demonstrated a radiological progres-
sion defined according to RANO criteria. Psp was established 
based on follow-up MRI if there was a stabilization or a de-
crease in enhancing lesions without a change in treatment.

OS and PFS data were extracted from medical files. OS 
was determined based on the date of death or last visit, 
and PFS was established based on the date of the first MRI 
that objectified a radiological progression followed by fur-
ther therapeutic adjustment.

The determination of MGMT promoter methylation 
status was obtained with the methylation specific poly-
merase reaction using the surgical piece from the first sur-
gery, with methods described previously.17

MRI Characteristics and Radiomics Features 
Extraction

Images were acquired using either 1.5 Tesla (Siemens, 
Avento) or 3 Tesla (Philips Achieva, Philips Healthcare). 
All studies included axial pre-contrast fluid attenuation 

Importance of the Study

Within 6 months after the end of concomitant 
radiochemotherapy, up to 30% of glioblastoma 
patients have an increase or new enhancing le-
sions on MRI, not resulting from early progres-
sion (EP) but from radiation-induced changes 
which are called pseudo-progression (Psp). This 
phenomenon remains a daily problem because 
no diagnostic method has yet been validated. 
Radiomics is an emerging technique presup-
poses that the quantification of certain image 
properties allows a better characterization of the 
tumor phenotype and its microenvironment. 

Studies have reported its ability to predict 
overall survival (OS) in treatment-naive pa-
tients, and OS and progression-free survival 
(PFS) in second-line treatment patients. Our 
study aimed to assess the value of conven-
tional MRI radiomics in patients with suspected 
EP and Psp. Our results show that radiomics 
has promising diagnostic value, especially 
when combined with MGMT promoter status, 
but its specificity is moderate. In addition, our 
study suggests that this method may forecast 
OS and PFS in these patients.
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inversion recovery (FLAIR) images and 3D post-contrast 
T1-weighted images (T1CE) using a 0.1 mmol/kg dose of 
gadoterate meglumine (DOTAREM, Guerbet) for both mag-
nets. For 3 Tesla MRI scan, axial FLAIR images were ac-
quired with TI = 2,400 milliseconds, TE = 85 milliseconds, TR 
=8,500 milliseconds, section thickness = 5 mm, an interslice 
gap of 5%, and 3D T1-weighted images were acquired with 
TI  =  1,100 milliseconds, TE  =  4 milliseconds, TR  =  1,710 
milliseconds, FA = 15°, and section thickness of 1 mm. For 
1.5 Tesla MRI scan, axial FLAIR images were acquired with 
TI = 2,500 milliseconds, TE = 120 milliseconds, TR = 10,000 
milliseconds, section thickness = 5 mm, an interslice gap 
of 5%, and 3D T1-weighted images were acquired with 
TI = 1,100 milliseconds, TE = 4 milliseconds, TR = 8.6 milli-
seconds, FA = 8°, andsection thickness of 1.2 mm.

Radiomics features were obtained using a dedicated soft-
ware, LifeX (Commissariat de l’Energie Atomique, Saclay, 
France).18 Each slice of MRI was manually delimited by an 
expert reader, without coregistration, to provide four vol-
umes: (i) a volume including only the contrast-enhanced 
tumoral portion but avoiding large cysts obtained using 
T1CE images (volume T1CE); (ii) a volume contrast-enhanced 
tumoral portion using FLAIR images (volume FT); (iii) a 
volume including only peritumoral parenchymal area using 
FLAIR images (volume FO); and (iv) a volume including the 
contrast-enhanced tumoral portion and peritumoral paren-
chymal area using FLAIR images (volume FOT). An example 
of the segmentation performed is shown in Figure 1.

Thirty-nine radiomics features were extracted by 
volume, namely, 156 per patient. Subsequently, they were 
normalized to provide z-scores.

Statistical Analyses and Construction of 
Diagnostic and Prognostic Models

Statistical computing and models’ construction were made 
using R version 3.2.3 (R Core TeamVienna, Austria).

Classification Model (EP Versus Psp)

A binary classification model (EP versus Psp) was con-
structed using a statistical method previously described 
as the most robust and efficient for this type of model.19 
Patients were randomly assigned to a training and vali-
dation group in a 2:1 ratio while maintaining EP/Psp ratio 
comparable to that of the overall population. First, the 
radiomics features were selected according to their im-
portance according to a Wilcoxon-test–based method and 
were further integrated into a random forest classifier. This 
model, which only had radiomics features, was compared 
with a model with only the status of the MGMT promoter 
and to a model combining both.

This step required the “caret” and “randomForest” pack-
ages implemented in the R software using the default set-
tings as suggested by the authors.20,21

Survival Models (OS and PFS Forecasts)

Patients were divided into training and validation groups in 
a 2:1 ratio, with balanced survival between the two groups. 

Subsequently, a supervised principal component analysis 
(SPCA) was conducted on the training group data to identify 
the most predictive radiomics features. This analysis was 
then applied to the data of the validation group. The SCPA 
selects the parameters most associated with the outcome. 
Articles have reported the robustness and performance of 
this method for quantitative outcomes, particularly in sur-
vival models.22–25 In addition, this method has already been 
used in previous articles which aimed to determine the 
prognostic value of radiomics analyses in newly diagnosed 
and recurrent GBM.13,26 Cox regression coefficients were 
computed for each radiomics feature from the training 
data. Principal components were then calculated on char-
acteristics whose Cox scores exceeded a threshold value, 
estimated by 10-fold cross-validation. Importance scores 
for the selected radiomics parameters were determined 
based on their correlation with the first SPCA. For each pa-
tient, a continuous and discrete risk score (high or low) was 
calculated based on this analysis. SCPA’s performance in 
stratifying survival (low or risk) was evaluated by Cox re-
gression analyses. This method was used to establish two 
survival models: one for OS and the other for PFS.

Accuracies of these models were assessed by cal-
culating the integrated Brier Score (IBS) which reflects 
prediction errors over time and the concordance index 
(C-index). IBS ranges from 0 for a perfect model to 0.25 
for a noninformative model with 50% incidence of the out-
come. The “superpc” package was used to build survival 
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Figure 1. Example of MRI segmentation. Segmentation of the 
contrast-enhanced tumoral portion using T1-weighted contrast-
enhanced images (A–blue color) and fluid-attenuated-inversion-
recovery (FLAIR) images (B–red color); of the peri-tumoral 
parenchymal area using FLAIR (C–red color); and of a volume 
including the contrast-enhanced tumoral portion and the peri-
tumoral parenchymal area (D–yellow color).
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models whilst IBS was computed with “pec” package 
using the default settings.23,27

Results

Demographics of Included Patient

From January 2005 to July 2016, we retrospectively iden-
tified 168 GBM patients who had been treated with TMZ 
radiochemotherapy and for whom radiological follow-up 
was available. Of these patients, 105 showed radiolog-
ical progression within 6  months after completing TMZ 
radiochemotherapy. Twenty-nine patients were excluded 
from the radiomics analysis due to MRI artifacts (n = 7) and 
uncertain diagnosis (n  =  22). Fifty-three patients (59.3%) 

were diagnosed with EP, 49 by follow-up and 4 by a new 
histological examination. Twenty-three (30.7%) patients 
were diagnosed with Psp, all based on follow-up. The dem-
ographic and clinical characteristics of the 76 patients in-
cluded are presented in Table 1.

The status of the MGMT promoter was available in 71/76 
patients, including 49 EP (14 patients with a methylated 
MGMT promoter) and 22 Psp (18 patients with a methyl-
ated MGMT promoter).

The median OS was significantly longer in the Psp 
group with an OS of 39.3  months (95% CI [35.4-NA]) 
versus 16.2 months (95% CI [14.7–17.4]) in the EP group. 
The median PFS was not calculable in the Psp group (95% 
CI [29.0-NA]) and was 3.8 months (95% CI [2.8–4.8]) in the 
EP group. The Kaplan–Meier plots of OS and PFS are pre-
sented in Figure 2.

  
Table 1. Patient demographics

Pseudo-progression Early Progression P

Age (year) 54.9 ± 1S2.7 59.2 ± 9.5 0.11*

Sex   0.453** 

 Female 11 (47.8%) 20 (37.7%)  

 Male 12 (52.2%) 33 (62.3%)  

Extent of surgery

 Biopsy 9 (39.2%) 25 (47.2%) 0.618*

 Subtotal resection 7 (30.4%) 10 (18.9%) 0.368*

 Gross total resection 7 (30.4%) 18 (33.9%) >0.99*

*Calculated using two-tailed Fischer’s exact test.
**Calculated using two-tailed Student test.
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Figure 2. Kaplan–Meier plots of overall- and progression-free-survival of included population. Kaplan–Meier plots show overall survival (A) and 
progression-free-survival (B) according to the pseudo- or early-progression diagnosis.
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Classification Model (EP Versus Psp)

Using the 52 subjects of the training group, 11 radiomics 
features were selected based on Wilcoxon-test–based 
method and integrated into a random forest classifier. 
These parameters, their scores, and mean values in Psp 
and EP subjects are presented in Supplementary Table 2.

For the model including only radiomics features, accu-
racy, sensitivity, and specificity were 75.0% (95% CI [60.4–
86.4]), 81.6%; 95% CI [65.7–92.3], 50.0%, 95% CI [18.7–81.3], 
respectively, in the training set, and 76.0% (95% CI [54.9–
90.6]), 94.1% (95% CI [71.3–99.8]), 37.5% (95% CI [8.5–
75.5%]) in the validation set.

The combination of radiomics and MGMT promoter 
methylation status improved diagnostic performance with 
an accuracy of 83.0% (95% CI [69.2–92.4]), a sensitivity of 
88.9% (95% CI [73.9–96.9]), and a specificity of 63.6% (95% 
CI [29.9–80.3]) in the training set. During the validation 
phase, accuracy, sensitivity, and specificity were 79.2% 
(95% CI [59.9–92.9]), 80.0% (95% CI [56.3–94.3]), and 75.0% 
(95% CI [19.4–99.3]), respectively. The receiver operating 
characteristic curves of both models are found in Figure 3.

Survival Models (OS and PFS Forecasts)

Using the 52 subjects in the training group, SCPA identi-
fied 14 radiomics features that were the most important 
predictors of OS using a 10-fold cross-validated threshold. 
These radiomics features, their importance scores, 
and their normalized values (z-scores) are presented in 
Supplementary Table 3. Subsequently, they were inte-
grated to generate continuous and dichotomous SCPA risk 
scores to identify patients with low or high risk of mor-
tality. The median OS was 15.6 months (95% CI [13.8–17]) 
for the high-risk group versus 35.4 months (95% CI [31.1-
NA]) for the low-risk group (P < .001). In the training set, 
this score stratified patients into low- and high-risk groups 
with a risk ratio (HR) of 3.63 (95% CI [1.62–8.2], P = .002), a 
C-index of 0.63, and an IBS of 0.092. Forecast accuracy was 
comparable in the validation set, with a HR of 3.76 (95% CI 
[1.37–10.2], P = .001), a C-index of 0.65, and an IBS of 0.122. 
The OS of low-risk patients were significantly longer in the 
training and in the validation groups (Log-rank: P < .001 
and P = .006). The Kaplan–Meier plots and prediction error 
curves of both groups are found in Figure 4.
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Similarly, five major radiomics predictive features 
PFS were selected by SCPA model using a 10-fold cross-
validation threshold. These radiomics features, their im-
portance scores, and their standardized values (z-scores) 
are presented in Supplementary Table 4. As above, contin-
uous and dichotomous SCPA progression risk scores were 
generated. The median PFS was 2.8 months (95%CI [1.8–
3.8]) for the high-risk group versus 29.0 months (95% CI 
[13.1-NA]) for the low-risk group (P < .001). In the training 
set, this score dichotomized patients into low- and high-
risk groups with a HR of 2.58 (95% CI [1.34–4.99], P = .005), 
a C-index of 0.63, and an IBS of 0.147. During the valida-
tion phase, this score separated high- and low-risk patients 
with a HR of 3.58 (95% CI [1.61–11.9], P = .004), a C-index of 
0.69, and an IBS of 0.157. The Kaplan–Meier plots and pre-
diction error curves of both groups are found in Figure 5.

Discussion

This study aimed to evaluate the diagnostic performances 
of conventional MRI radiomics in patients with suspected 
EP or Psp. Our results suggest that this method has in-
teresting diagnostic performances, especially when com-
bined with the analysis of MGMT promoter status but its 
specificity is moderate.

In agreement with previous reports, the AUCs for 
radiomics analysis alone were 0.75 in the training phase 
and 0.77 in the validation phase compared with the reported 
AUC ranging from 0.74 to 0.86.28–30 However, the speci-
ficity of the radiomics model was low, ranging from 50.0% 
in the training set to 37.5% in the validation set, whereas 
X. Chen et al. reported a specificity of 100% with contrast 
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and correlation derived from gray-level co-occurrence ma-
trix on T2 weighted-images,28 and J.Y. Kim et al. a specificity 
of 78.1%.31 The reasons for this difference are unclear and 
might be related to different recruitment and classification 
of patients. For example, X. Chen et al. included 12 patients 
classified as Psp, all of whom had histological evidence 
of radiation necrosis, and J.Y. Kim et al. defined Psp both 
using histological evidences (n = 4) and clinical follow-up 
(n = 42). This demonstrates a confusion between Psp and 
radiation necrosis in the literature.30 Narrowly, Psp is a clin-
ical diagnosis defined by favorable evolution of enhancing 
lesions at follow-up while radiation necrosis is a histo-
logical diagnosis.30 Although some have postulated that 
Psp and radiation necrosis exist at different time points,32 
this dichotomization is being questioned.30 Indeed, it has 
been reported that the occurrence of radiation necrosis 

is not uncommon within 6  months after radiotherapy.33 
Consequently, the 6-month threshold separating Psp from 
radiation necrosis that we have used and as used in most 
of studies might be arbitrary, leading to the inclusion of 
heterogeneous population. Indeed, some authors con-
sider that these two entities lie along a spectrum of post-
treatment radiation effects and are not definable one from 
each other.30 Since post-treatment radiation effects include 
acute, subacute, and delayed reactions that depend on dif-
ferent pathogenic mechanisms,34 there is no evidence that 
these reactions share the same phenotype. Finally, there is 
nothing to formally exclude the possibility that patients ex-
perience imaging worsening related to both tumor recur-
rence and post-treatment radiation effects when the final 
diagnosis is established by the follow-up, especially since 
these patients are undergoing TMZ treatment.
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Figure 5. Performance of the progression-free-survival prediction model. Kaplan–Meier plots show progression-free-survival (PFS) for patients 
in the training group (A) and in the validation group (B), stratified to low- or high-risk group according to the semi-supervised principal compo-
nent analysis model. The prediction error curves show the forecasts of the PFS model (in red) compared with the observed data (in black) in the 
training group (C) and in the validation group (D).
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The recognition of Psp is important to provide optimal 
patient care, but the criteria for defining Psp vary in the lit-
erature. In this context, our secondary objective was to as-
sess the value of conventional MRI radiomics in predicting 
survivals. Our results are likely to suggest that this method 
is promising in the prediction of OS and PFS. Using a rel-
atively limited number of radiomics features, survival 
models stratified patients into high and low risk for recur-
rence and/or mortality. Consistent with previous studies, all 
of the selected radiomics features indicated greater image 
heterogeneity in patients with worse prognosis.28,29,31 
Eleven radiomics features out of 14 selected for the OS pre-
diction model and all those selected for the PFS prediction 
model were extracted from the FLAIR sequences. Most of 
them were derived from volumes including peritumoral 
parenchymal area, 8/14 in the OS model, and 4/5 in the PFS 
model. These results are in line with previous studies that 
reported that GBM heterogeneity involved peritumoral pa-
renchymal area35,36 and that nearly 90% of GBM recurrence 
occurred in this area.37 In a previous study, Kickingereder 
et  al. reported that the radiomics-based classification of 
recurrent glioblastomas predicted survival and stratified 
patients receiving second-line antiangiogenic therapy into 
high- or low-risk groups for recurrence. They concluded 
that this classification might help therapeutic decisions 
by selecting patients who may potentially gain benefit 
from antiangiogenic therapy. Likewise, our secondary re-
sults suggest that the radiomics-based stratification of pa-
tients with early imaging worsening into high- and low-risk 
groups for recurrence and/or mortality may be a valuable 
imaging biomarker in the monitoring of therapeutic re-
sponse in first-line treatment.

This study has certain limitations. Other than its retro-
spective and its mono-centric nature the main limitation of 
this study is the absence of an external validation cohort. 
As a consequence, our results present a risk of overfitting 
of the data and will need to be validated in an independent 
series. In addition, radiomics analysis was restricted to 
conventional MRI data and advanced MRI methods such 
as diffusion-weighted-imaging and dynamic-susceptibility-
contrast imaging have not been assessed. The tumor 
subregions were defined manually, which may be less 
reproducible than algorithmic methods, but appeared 
to us to be closer to clinical practice. Survival data were 
considered in the final diagnosis and radiomics features 
were only measured at the time of the MRI showing a 
worsening of enhancing lesions. It has been reported that 
the radiomics phenotype of naïve-treatment GBM was cor-
related with survival outcomes.13–15 As a consequence, we 
cannot exclude that our results are related to the original 
GBM phenotype and patients’ selection. In addition, the 
available sample size was small and markedly limited our 
radiomics-based survival analysis. Prospective and multi-
institutional studies evaluating the evolution of radiomics 
features under treatment are needed to establish the clin-
ical relevance of this method in the evaluation of treat-
ment response. These studies should analyze conventional 
and advanced MRI features together with GBM molecular 
characteristics that may affect treatment response (i.e., 
MGMT methylation, IDH mutation, and TERT promoter mu-
tation status) and include an external validation cohort. 
Regarding survival prediction based on post-treatment 

radiomics, it would be interesting to assess whether this 
approach can be successfully applied to the first MRI per-
formed after concomitant radiochemotherapy completion 
irrespective of the suspicion of Psp or EP.

In summary, our study shows that conventional MRI 
radiomics has promising diagnostic value, especially 
when combined with MGMT promoter status, but its spec-
ificity is moderate. In addition, our results suggest that 
this method may forecast OS and PFS in these patients. 
These results however will need to be validated in an inde-
pendent series.
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