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ABSTRACT

Each day, about 1012 erythrocytes and platelets are released into the bloodstream. This substantial output from hemato-
poietic stem cells is tightly regulated by transcriptional and epigenetic factors. Whether and how circular RNAs (circRNAs)
contribute to the differentiation and/or identity of hematopoietic cells is to date not known. We recently reported that
erythrocytes and platelets contain the highest levels and numbers of circRNAs among hematopoietic cells. Here, we pro-
vide the first detailed analysis of circRNA expression during erythroid and megakaryoid differentiation. CircRNA expres-
sion not only significantly increased upon enucleation, but also had limited overlap between progenitor cells and mature
cells, suggesting that circRNA expression stems from regulated processes rather than resulting from mere accumulation.
To study circRNA function in hematopoiesis, we first compared the expression levels of circRNAs with the translation
efficiency of their mRNA counterpart. We found that only one out of 2531 (0.04%) circRNAs associated with mRNA-
translation regulation. Furthermore, irrespective of thousands of identified putative open reading frames, deep ribo-
some-footprinting sequencing, and mass spectrometry analysis provided little evidence for translation of endogenously
expressed circRNAs. In conclusion, circRNAs alter their expression profile during terminal hematopoietic differentiation,
yet their contribution to regulate cellular processes remains enigmatic.
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INTRODUCTION

Each hour, millions of red blood cells (RBC) and platelets
are produced in the bone marrow and released into the
bloodstream. Their production is mediated from erythroid
and megakaryoid progenitors. The generation of these
progenitors from hematopoietic stem cells is a highly or-
chestrated process. Tight regulation is obtained by the co-
ordinated expression of transcription factors, long
noncoding RNAs, and micro-RNAs (Petriv et al. 2010;
Luo et al. 2015; Goode et al. 2016). Recently, we showed
that also circular RNAs (circRNAs) are abundantly ex-
pressed in hematopoietic cells, and that their expression
alters during differentiation (Nicolet et al. 2018).

CircRNAs are single stranded, circular RNA molecules
that are generated from pre-mRNA transcripts through
back-splicing (Hansen et al. 2013; Memczak et al. 2013;
Chen 2016). Back-splicing is driven by the classical spliceo-
somemachinery at canonical splice sites (Ashwal-Fluss et al.
2014), and circularization is mediated by pairing of comple-
mentary sequences, typically Alu elements, which are found
in flanking introns. The pairing of Alu elements is regulated
by RNA-binding proteins such as ADAR, DHX9, and NF90
(Rybak-Wolf et al. 2015; Aktas ̧ et al. 2017; Li et al. 2017).
CircRNA can contain both intron and exon segments.
While intronic circRNA are mostly retained in the nucleus
(Li et al. 2015), exonic circRNA undergo nuclear transloca-
tion in a size-dependent manner (Jeck et al. 2013; Huang
et al. 2018). In the cytoplasm, circRNAs are found to be exo-
nuclease-resistant (Suzuki et al. 2006). In addition, circRNA
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lack the 3′ polyadenylation tail, which renders them more
stable than linear RNA (Enuka et al. 2016).
Many functions have been attributed to circRNAs.

CircRNAs were suggested to act as transcriptional activa-
tors (Li et al. 2015; Zhang et al. 2016), or to serve as
RNA-binding protein cargo (Hentze and Preiss 2013).
CircRNAs can also act as an miRNA “sponge,” a feature
that is to date limited to about 10 circRNAs genome-
wide in humans (Guo et al. 2014; Piwecka et al. 2017;
Stagsted et al. 2019). In addition, circRNA-mediated regu-
lation of mRNA translation has been proposed in cell lines
(Sun et al. 2019; Wu et al. 2019; Li et al. 2020). Lastly, it was
shown with over-expression constructs in cell lines (Legnini
et al. 2017; Yang et al. 2017), and from exemplary
circRNAs in Drosophila and human cell lines that circRNA
can be translated into protein (Pamudurti et al. 2017;
Liang et al. 2019). How these findings translate to endog-
enous circRNA expression during human hematopoietic
differentiation is not known.
We and others have observed that RBCs and platelets

had the highest numbers and highest circRNA content of
all analyzed mature cell types in humans (Alhasan et al.
2016; Maass et al. 2017; Nicolet et al. 2018). However,
the origin of these high circRNA levels is not known and
has thus far been attributed to transcriptome degradation
(Alhasan et al. 2016). In addition, the function of these
circRNA in blood cell development remains unknown.
In the study presented here, we provide a detailed and

comprehensive analysis of circRNA expression in erythroid
and megakaryoid development. We identified >20,000
circRNAs in erythroid differentiation and >12,000 in mega-
karyoid differentiation. The expression of circRNAs alters
dramatically upon enucleation and platelet formation,
and only partially (∼40%) follows mRNA expression in dif-
ferentiating blood cells. Integration of RNA-seq and
Ribo-seq data revealed that circRNA-mediated regulation
of mRNA translation is not the main mode of action during
megakaryocytic maturation. Furthermore, ribosome-foot-
printing analysis and mass spectrometry analysis demon-
strated that translation of endogenous circRNAs may
occur in reticulocytes, megakaryocytes, and/or platelets;
however, this is not a frequent event. In conclusion, even
though circRNAs are highly prevalent in erythroid and
megakaryoid development, their mode of action and ac-
tivity in hematopoietic cells does not follow the proposed
models and thus remains to be defined.

RESULTS

CircRNA are abundant during erythropoiesis

We first investigated if and how circRNA expression alters
during terminal erythropoiesis. To this end, we examined
paired-end RNA sequencing data of erythroblasts isolated
from four donors that were cultured for 12 d under differen-

tiating conditions, and that were harvested on each day be-
tween days 0 and 7, in addition to days 9 and 12 (Fig. 1A;
Heshusius et al. 2019). This in vitro differentiation model re-
sulted in overall gene expression patterns that closely re-
sembled that of ex vivo isolated cells (Supplemental Fig.
S1A; Supplemental Table S1; Heshusius et al. 2019). Also,
physical properties such as hemoglobin content, oxygen as-
sociation, and dissociation capacity and deformability
matched those of ex vivo red blood cells (Heshusius et al.
2019).
The average sequencing depth of 30 million reads iden-

tified on average 27.3 million mapped reads. To detect,
quantify, and annotate circRNAs from chimeric reads, we
used our established pipeline (Nicolet et al. 2018) that is
based on the two algorithms DCC (Cheng et al. 2015)
and CircExplorer2 CE2 (Zhang et al. 2014; see Materials
and Methods section). With a “low-confidence” cutoff of
at least two reads in at least one sample at any time of har-
vest, 20,931 circRNAs were co-detected by DCC and CE2
(Fig. 1B; Supplemental Table S2). Based onmRNA splicing
annotations and circRNA junction reads, the estimated
number of exons/circRNAwas 5.58 in differentiating eryth-
roblasts (median=4 exons/circRNA; Fig. 1C). The putative
length of circRNAs was 846.14 nt (median=619 nt; Fig.
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FIGURE 1. CircRNAs are abundant during in vitro erythroid differen-
tiation. (A) Erythroblast progenitors were cultured for 12 d under dif-
ferentiation conditions, as in Heshusius et al. (2019). Samples were
taken at indicated days of differentiation, and RNA-seq was per-
formed (n=4 donors). (B) CircRNA detection using DCC and
CircExplorer2 (see Materials and Methods) to identify “low-confi-
dence” (circRNA with at least two reads in at least one sample) in all
compiled samples from A. The intersection of the circles represents
the co-detected circRNAs with both tools. (C,D) Characterization of
low-confidence circRNA. (C ) Putative exon usage and (D) putative
spliced length, using splicing annotations from linear isoforms. (E,F )
Characterization of (E) start and (F ) end exon usage by “low-confi-
dence” circRNAs, based on the circRNA junction positions and canon-
ical mRNA splicing annotation.
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1D). In line with our previous work (Nicolet et al. 2018),
circRNAspreferentially use the secondexonof a linear tran-
script as the first circular exon (Fig. 1E), a bias that is not as
pronounced for the last circularized exon (Fig. 1F). Thus,
circRNAs are abundantly expressed during erythropoiesis.

CircRNA levels increase at enucleation

To define how circRNA expression related to the expres-
sion of other transcripts during erythroid differentiation,
we quantified the overall expression of protein-coding
transcripts (mRNA; transcripts per kilobase per million
[TPM] >0.1), noncoding transcripts (ncRNA; TPM>0.1),
and circRNA transcripts (low-confidence circRNA; RPM).
We detected 19,449 mRNA-, 10,753 ncRNA-, and 4526
circRNA-producing genes (Fig. 2A). We also quantified
the diversity of transcripts expressed during erythrocyte
differentiation. At the early time points (i.e., up to day 5),
erythroblasts mainly expressed mRNA and ncRNA tran-
scripts (Fig. 2B). These numbers steadily decreased over
time andwere reducedby 82.96%and 76.45%, respective-

ly, at day 12 compared to day 0 (Fig. 2B). In contrast, the
number of circRNA transcripts substantially increased by
a ∼3.8-fold from day 6 onward compared to day 0, and
circRNA transcripts even surpassed the number of ncRNA
transcripts at day 8 (Fig. 2B). This steep increase of
circRNAs coincided with the enucleation rate (Fig. 2C).

To measure the differential expression of circRNAs during
erythropoiesis, we focused on “high-confidence” circRNAs,
that is, a given circRNA is detected at least twice in all four
donors at an individual time-point. This filter identified 950
circRNAs that were co-detected by DCC (n=1163) and
CE2 (n=958; Fig. 2D; Supplemental Table S2). Pearson’s
correlation coefficient of all measured time points during
erythropoiesis revealed two main clusters of circRNAs that
wereprimarily expressed early (day 0–5), or lateduringdiffer-
entiation (day 6–12; Fig. 2E). In fact, a heatmap representa-
tion of high-confidence circRNA expression showed a
massive increase in circRNA expression from day 6 onward
(Supplemental Fig. S1B). When we compared all days to
day 0 (Fig. 2F), 708 circRNAs (74.5%) were differentially ex-
pressed (P-adjusted <0.05; Supplemental Table S2). Of

these, all but one circRNA, circ-FIRRE
(Supplemental Fig. S1C), significantly
increased their expression levels from
day 6 onward (Fig. 2F; Supplemental
Table S2). Of note, the expression of
the proliferation marker MKI67 (KI-67)
in nucleated blood cells did not
correlate with the circRNA expression
(R2=0.134; P=0.113; Supplemental
Fig. S1D).
We next investigated how circRNA

expression related to the expression
of their mRNA counterparts in ery-
throid differentiation. To this end, we
used the build-in linear detection of
DCC, as described previously (Nicolet
et al. 2018). Briefly, as a circRNA can
only be detected and quantified by
their junction read, linear detection
was performed at the same positions
(start and end position of circRNA).
The circular-over-linear expression ra-
tio (CLR) was calculated for each
“high-confidence” circRNA, averaged
across the four biological replicates for
each time-point (Supplemental Fig.
S1E; Supplemental Table S2). Of
note, as circRNA expression varies
per culture day, we only consider the
CLR of circRNA that are expressed at
a given timepoint (CLR>0). This filter-
ing stepmay thus introduce a slight in-
flation of the averageCLR at early time
points (i.e., day 0–5). Between day 0
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FIGURE 2. CircRNA expression increases at enucleation of erythroid cells. (A) Number of
genes encoding mRNA, noncoding RNA (ncRNA), and circRNA, and (B) the number of tran-
scripts detected during erythroid differentiation (cutoff: >0.1 TPM for mRNA and ncRNA;
low-confidence circRNA). (C ) Percentage of enucleated cells at indicated time point (n=4 do-
nors; data from Heshusius et al. 2019). (D) CircRNA detection using DCC and CircExplorer2
(see Materials and Methods) from RNA-seq data generated from Figure 1. The intersection
of the circle represents the co-detected circRNA referred to as “high confidence” (circRNA
with at least two reads in all four biological replicates of one time-point). (E) Pearson’s sam-
ple-correlation coefficient map of “high-confidence” circRNA expression. (F ) Heatmap of
the differentially expressed “high-confidence” circRNA (n=708; P-adjusted <0.05) corrected
for sequencing depth (RPM). (RPM) Reads per million mapped (linear) reads. (G) Circular-over-
linear ratio (CLR) was calculated for “high-confidence” circRNAs during erythropoiesis, median
is indicated in red. Differences were assessed by two-sided t-test with Benjamini–Hochberg
P-value adjustment, all compared to day 0. (∗∗∗) Padj < 0.001, (∗∗∗∗) Padj < 0.0001.
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andday5of erythropoiesis, themRNA
expression was higher compared to
circRNA, as no circRNAs showed a
CLR above one. Only from day 6 on-
ward, 25 circRNAs showed a CLR>1,
that is, circRNA expression is higher
than that of their linear counterpart.
Also, the overall CLR increased from
day 6 onward and peaked at day 9
with a 7.3-fold increase compared to
day 0 (Fig. 2G). In conclusion, circRNA
expression substantially alters at enu-
cleation and can reach levels that are
higher than those of their mRNA
counterpart.

CircRNA expression alters from
megakaryocytes to platelets

We next investigated how circRNAs
areexpressedduringmegakaryopoie-
sis and in platelets, which are formed
and released into the bloodstream
by mature megakaryocytes. We per-
formed RNA-seq analysis of three
donors on purified immature CD41a+

CD42b− (CD42−) and mature
CD41a+ CD42b+ (CD42+) megakar-
yocytes that were cultured from cord
bloodCD34+ progenitors (seeMateri-
als and Methods; Fig. 3A). Again, also
the gene expression of cultured MKs
closely resembled that of previous
studies (Supplemental Fig. S1A; Sup-
plemental Table S1). The average se-
quencing depth of 84.4 million reads
per sample resulted in on average
74.6 million mapped reads to the ge-
nome. CircRNA detection with DCC and CE2 co-detected
12,809 circRNAs with low-confidence filtering (Fig. 3B; Sup-
plemental Table S3). To define the relation of mRNA,
ncRNA, and circRNA expression during MK differentiation,
we quantified the number of genes expressing these tran-
scripts. We also included our previous analysis of circRNA
expression in platelets to this analysis pipeline (Nicolet
et al. 2018). Similar to erythropoiesis, the number of ex-
pressed mRNA and ncRNA genes decreased in particular
in anucleate platelets, where the number of circRNA ex-
pressing genes increased by a 2.1-fold compared to MKs
(Supplemental Fig. S2A). Furthermore,with 47,654 low-con-
fidence circRNAs detected, platelets had the highest diver-
sity of circRNA transcripts (average sequencing depth in
million mapped reads: platelet= 40.6; MK=74.6; Fig. 3C).
In megakaryocytes, the estimated exon usage with a mean
of 4.57 exon/circRNA (median=4) and the putative spliced

length with a mean of 663.9 nt/circRNA (median thinsp;=
483 nt), was slightly lower than that of circRNAs in erythro-
poiesis (Fig. 1C,D; Supplemental Fig. S2B,C). Yet, a prefer-
ence for the second exon usage for circularization was
apparent (29.2% of circRNA), with no overt preference of
the last exon (14.2% of circRNA; Supplemental Fig. S2D,E).
To determine the differential circRNA expression in

MKs, we focused on the 2531 high-confidence circRNAs
(Supplemental Fig. S2F). Pearson’s sample-correlation co-
efficient revealed a strong kinship between CD42− and
CD42+ MK (Fig. 3D). Yet, differential expression analysis
of circRNA, identified 287 out of 2531 (11.34%)
circRNAs, including the key transcription factor for MK dif-
ferentiation FLI1 (P-adjusted <0.05 and log2 fold change
>0.5; Fig. 3E; Supplemental Table S3). All differentially
expressed circRNA were found in CD42+ MK. Platelets,
however, showed an overall distinct expression pattern of
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FIGURE 3. CircRNA expression during megakaryocyte differentiation. (A) Diagram represent-
ing in vitro differentiation from CD42− and CD42+ megakaryocytes (n=3 per population) to
platelets (Nicolet et al. 2018). (B) CircRNA detection in CD42− and CD42+ megakaryocytes
from RNA-seq data, using DCC and CircExplorer2. The intersection of the circle represents
the co-detected “low-confidence” circRNAs. Of note, platelet data were not included for
circRNA detection in megakaryocytes. (C ) Number of mRNA, noncoding RNA (ncRNA), and
circRNA transcripts detected during megakaryoid differentiation (>0.1 TPM for mRNA and
ncRNA; low-confidence circRNA). (D) Pearson’s sample-correlation coefficient map between
CD42− and CD42+ megakaryocytes, and platelets (high-confidence circRNA expression).
(E) Volcano plot showing the differential expression of high-confidence circRNA between
CD42− (left) and CD42+ megakaryocytes (right; n=287; P-adjusted <0.05 and LFC>0.5, Z-
score of reads per million mapped reads). (F ) Heatmap of high-confidence circRNAs detected
in megakaryocytes and platelets. (G,H) Circular-over-linear ratio (CLR) was calculated for
CD42− and CD42+ megakaryocytes and plotted against circRNA expression (G) or (H) com-
pared between populations. Differences were assessed inH by two-sided t-test P-value adjust-
ment using the Benjamini–Hochberg procedure; (∗∗∗∗) Padj < 0.0001.
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circRNAs compared to the two megakaryocytic populations
(Fig. 3D,F; Supplemental Table S3). Interestingly, not only
the overall expression of circRNAs increased as CD42− MK
matured toward platelets, but the overall CLR increased by
∼2.1-fold during MK differentiation and by 3.11 between
CD42+ MK and platelets (Fig. 3G,H; Supplemental Table
S3; Nicolet et al. 2018). Thus, circRNA are expressed and in-
crease as megakaryocytes mature, yet substantially differ
from circRNA expression in platelets.

CircRNA expression can be independent of mRNA
expression

We next studied how changes in circRNA expression relat-
ed to changes in expression of the linear mRNA counter-
part. To this end, we calculated the log2 fold change
(LFC) in circRNA and mRNA expression in erythroid cells.
We isolated five groups based on circRNA and mRNA ex-
pression changes (LFC>0.5): group 1: decreased in
circRNA levels and decreased in mRNA levels; group 2: in-
creased circRNA levels and decreasedmRNA levels;group
3: increased circRNA levels and unchanged mRNA levels;
group 4: increased circRNA levels and increased mRNA
levels; group 5: unchanged circRNA levels; group 6: de-
creased circRNA and increased mRNA levels. When we
compared the circRNA expression with the mRNA expres-
sion before enucleation, that is, day 0 with day 5, we found
that of 37.6% circRNAs, the changes (up or down) coincid-
ed with that of the mRNA counterpart (Fig. 4A; group 1
[down] and 4 [up]). Of the 35.4% circRNAs that increased
their expression (groups 2 and 3), 18.3% of the mRNA
counterpart decreased its expression (Fig. 4A; group 2),
and 17.1% remainedunchanged (group3).Wealso detect-
ed circRNAswhose expression levels remainedunchanged
throughout the first 5 d of differentiation (group 5; 24.6%).

We then asked how the circRNA and mRNA expression
relates upon enucleation. We compared the LFC of
circRNA and mRNA expression of day 0 with that of day
9 of erythrocyte differentiation (Fig. 4B). The overall
high-confidence circRNA expression increased at day 9
compared to day 0 by ∼20 times from 32 to 651 identified
circRNAs (Fig. 4B). Owing to this increase, only 1.3% of
circRNA did not alter, and 1.6% decreased their expres-
sion levels (Fig. 4B; groups 5 and 1, respectively). 48.6%
of circRNAs showed an increase or decrease of expression
in line with their mRNA counterpart (Fig. 4B; groups 1 and
4). Close to half (50.1%) of the circRNAs increased their ex-
pression levels, whereas themRNA expression of the linear
counterpart decreased or remained unchanged (Fig. 4B;
group 2; 31.5%, and group 3; 18.5%, respectively).
When comparing day 5 or day 9 to day 0 of differentiation,
we detected only 13 and 0 circRNAs, respectively, with de-
creased circRNAexpression levels for which themRNA lev-
els increased (Fig. 4A,B; group 6). We next questioned
how the changes in circRNA expression related to mRNA

changes measured at the circRNA positions throughout
the entire erythroid differentiation process. We used the
mRNA expression to define clusters and matched these
to the circRNA expression (Fig. 4C). Whereas mRNA ex-
pression is more heterogeneously expressed, circRNA ex-
pression primarily increased around enucleation around
day 6 (Fig. 4C). Thus, the majority of circRNA do not follow
the expression pattern of their linear counterpart in differ-
entiating RBCs prior and after enucleation, indicating that
circRNA expression in differentiating erythroid cells can be
independent of mRNA expression.

We also compared the changes in circRNA and mRNA
expression between CD42− and CD42+ megakaryocytes.
The magnitude of the overall expression changes in MK
was lower compared to erythroblasts (∼7.6 LFC mRNA
and ∼7.7 LFC circRNA in MK, compared to ∼16.7 LFC
mRNA and ∼13.9 LFC circRNA in erythroblasts from day
0 to 9; Fig. 4A–D). A total of 17.3% of circRNA did not alter
in expression between CD42− and CD42+ MK (Fig. 4D,
group 5), and 17.7% of circRNA followed mRNA expres-
sion changes (groups 1 and 4). Conversely, in more than
half of the circRNAs (65.1%), circRNA levels increased
but the mRNA decreased (Fig. 4D; group 2; 14.5%) or re-
mained unchanged (Fig. 4D; group 3; 50.5%). We found
no circRNA with decreased expression levels and in-
creased mRNA levels (Fig. 4D, group 6). In conclusion,
the expression pattern of circRNA expression only partially
follows the mRNA expression, and more than half of the
circRNAs change their expression pattern independently
of mRNA expression during erythroid and megakaryoid
differentiation.

The majority of circRNAs expressed in differentiated
cells correlates with that of mRNA expression
in progenitors

Previous studies reported that circRNAs accumulate in neu-
ronal andmuscle cells upondifferentiation (Westholmet al.
2014; Legnini et al. 2017; Kristensen et al. 2018). To test
whether this accumulation is also seen during blood cell
differentiation, we first compared the number of circRNAs
identified in in vitro differentiated erythroblasts (Fig. 2D)
with that of our previously published data on mature
blood-derived RBC (Nicolet et al. 2018). The overlap of
circRNA expression of in vitro differentiated RBC with ma-
ture RBCs was only 11.5% (676 out of 5878 high-confi-
dence circRNAs; Fig. 4E, left panel). The overlap
between circRNA expression in platelets (Nicolet et al.
2018) and MK (Supplemental Fig. S2F) was higher with
17.8% (1907 out of 10,729 high-confidence circRNA; Fig.
4E, right panel). This limited overlap could stem from the
described uptake of transcripts by platelets from exoge-
nous sources (Best et al. 2015) and could possibly include
circRNAs. Alternatively, the differential circRNAexpression
could derive from transcription detected in progenitor
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cells. To address the latter possibility, we compared the
mRNAs expressed (full mRNA reads) by differentiating
erythrocytes andmegakaryocytes with that of circRNAs ex-
pressed RBCs and platelets, respectively. To our surprise,
the mRNA-expressing genes of in vitro differentiating cells
and circRNA-expressing genes of mature cells almost
completely overlapped (95.82% and 96.45% for RBC and
platelets, respectively, Fig. 4F). Thus, the circRNAs detect-
ed in enucleated platelets or RBCs correlate better with the
mRNA expression than with that of circRNA expression in
their respective progenitors. Thus, the discrepancy of

circRNA expression between progenitors and mature cells
reveals that the diversity of circRNA found in mature cells is
not yet present in progenitor cells.

CircRNA expression does not correlate with changes
in translation efficiency of the mRNA counterpart

A recent study showed that the YAP circRNA prevents the
translation of its mRNA counterpart in a sequence-specific
manner (Wu et al. 2019). Specifically, over-expression of
YAP circRNA prevented the translation initiation complex
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FIGURE 4. CircRNA expression can be independent of mRNA expression. (A,B) Log2 fold change (LFC) for circRNA and corresponding mRNA
was calculated for (A) day 0 to 5 and (B) day 0 to 9 of erythroid differentiation. CircRNA–mRNA pairs are represented in: decreased circRNA/de-
creased mRNA (group 1, pink), increased circRNA/decreased mRNA (group 2, red), increased circRNA/equal mRNA (group 3, purple), increased
circRNA/increasedmRNA (group 4, orange), equal circRNA (group 5, gray), decreased circRNA/increased mRNA (group 6, gray). (C ) Heatmap of
mRNA expression and matched circRNA expression for all high-confidence circRNA (n=950, Z-score of reads per million mapped reads). Note
that mRNA expression was detected using DCC at the circRNA position (see Materials and Methods). (D) LFC in circRNA and corresponding
mRNA expression was calculated CD42− to CD42+ megakaryocytes differentiation. (E) Overlap in circRNA expression between in vitro RBC
and ex vivo RBC (data from Doss et al. 2015; Nicolet et al. 2018; Heshusius et al. 2019; left panel; Fig. 1), and in vitro megakaryocytes and ex
vivo platelets (Kissopoulou et al. 2013; Nicolet et al. 2018; right panel). Average sequencing depth is indicated under each population. (F )
Overlap between circRNA in differentiated cells and mRNA in progenitor cells, for erythroid (left panel), and megakaryoid cells (right panel).
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from engaging with the YAP mRNA (Wu et al. 2019). This
finding prompted us to determine the transcriptome-wide
correlation of endogenous circRNA expression with the
translation efficiency of their mRNA counterpart. We used
normalized expression data from the matched RNA-seq
and Ribo-seq analysis of CD42− and CD42+ MKs
(Supplemental Table S4). The ribosome footprint (RFP)
reads fulfilled all quality controls upon mapping the reads
onto the genome, that is, the read size distribution, period-
icity, and reads distribution after P-site correction
(Supplemental Fig. S3). We determined whether mRNA ex-
pression related to changes in RFP abundance by comput-
ing the LFC in mRNA abundance and the LFC in RFP
abundance for each gene, between CD42− and CD42+
MK (Fig. 5A; Supplemental Table S4). Most changes in
mRNA expression correlated well with changes in RFP
counts (Pearson’s correlation coefficient: 0.854). In addition,
genes that expressed circRNAs (red dot) or not (gray dots)
showed very similar patterns (Pearson’s correlation co-
efficient: 0.768). This finding suggests that the ribosomal
occupancy of mRNAs was not influenced by the coexpres-
sion of circRNA variants. Similarly, when we calculated
the translation efficiency per gene (normalized RFP
counts [TPM]/normalizedmRNA-seq [TPM]) (Fig. 5B), no dif-
ferences in mRNA translation were observed between
genes that do (red dots) or do not (gray dots) express

circRNAs. Notably, 1942 mRNA-expressing genes (5.49%)
altered their translation efficiency with LFC>2 between
CD42−andCD42+MKs,whileonly 4outof1544mRNA-ex-
pressing genes that also expressed circRNA (0.25%) dis-
played the samebehavior (Fig. 5B; Supplemental Table S4).

We next determined whether changes in translation effi-
ciencyofmRNAs uponMKmaturation related to the expres-
sion of circRNA from the same gene. Overall, we observed
lower changes in translation efficiency in circRNA-express-
ing genes than circRNA-less mRNA-genes (span of LFC in
translation efficiency=5.42 and 29.55, respectively; Fig.
5B). This indicates that circRNA expression is associated
with smaller changes in translation efficiency, suggesting a
lack of effect on their mRNA counterpart. Indeed, only one
circRNA (2.67%), circ-UBAP2L, altered its expression (LFC
>2) in CD42+ compared to CD42−MKs and showed an al-
teration in translation efficiency (LFC>2) of themRNAcoun-
terpart (Fig. 5C; blue dot). Closer examination of themRNA,
RFP, and circRNA levels of UBAP2L gene indeed suggested
a correlation of changes in translation efficiency with
circRNA expression (Fig. 5D).

To further examinewhether the lack of abundant circRNA
association with mRNA translation efficiency was specific to
MKs or more broadly applicable, we examined the correla-
tion of translation efficiency with circRNA expression
throughout platelet maturation (Fig. 5E). We found that
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FIGURE 5. CircRNA-mediated regulation of mRNA translation is limited in megakaryocytes. (A) Log2 fold change (LFC) in ribosomal occupancy
(Ribo-seq) and mRNA expression between CD42− and CD42+ megakaryocytes. CircRNA-expressing genes are plotted in red. (B) LFC in trans-
lation efficiency (TE; see Materials and Methods) and mRNA expression between CD42− and CD42+ megakaryocytes. (C ) LFC of translation ef-
ficiency and circRNA expression between CD42− and CD42+ megakaryocytes. Genes are plotted in blue in B and C when LFC in translation
efficiency wasmore than fourfold (LFC>2). (D) CircRNA, mRNA, and Ribo-seq expression ofUBAP2L. (E,F ) Relation between circRNA expression
and translation efficiency (E) and translation efficiency for circRNA- and mRNA-only expressing genes (F ) in CD42−, CD42+, and platelets. (A–C )
The linear regression of all genes is represented in black, and this of circRNA expressing gene in dark-red. (RPM) reads per millionmapped (linear)
reads, (TPM) transcripts per kilobase per million.
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the translation efficiency in CD42−,
CD42+, and platelets remained uncor-
related to circRNA expression. Further-
more, the overall mRNA translation
efficiency remained unchanged,
whether thegenesexpressedcircRNAs
or not (Fig. 5F). Notably, this lack of as-
sociation between circRNAand chang-
es in translation efficiency of themRNA
counterpart was also observed in K562
and HeLa-S3 human cell lines (Supple-
mental Fig. S4). Combined, these find-
ings indicate very limited effects of
circRNAs on the translation efficiency
of their mRNA counterpart.

CircRNAs contain putative open
reading frames

Most circRNAs (∼80%) are reported to
fall in the coding region and/or contain
the canonical translation start site
(Memczak et al. 2013; Stagsted et al.
2019). We therefore sought to define
the coding potential of megakaryocyt-
ic circRNAs. We used open reading
frame (ORF)-finder (NCBI) to predict
ORFs in high-confidence circRNAs.
BecausealgorithmssuchasORF-finder
cannot mimic back-splicing in silico,
we juxtaposed the circRNA sequence
three times (termed 3xCircRNA; Sup-
plemental Fig. S5A). This 3xCircRNA
sequence allows the investigation of
ORFs spanning over the back-splicing
junction that could gain a stop codon
as a result of frameshifts at the circRNA
back-splicing junction. To identify
ORFs that are common tobothmRNAs
and circRNAs, we also used the high-
confidence circRNA sequence opened-up at the back-
spliced junction (1xLinRNA; Supplemental Fig. S5A). Open
reading frames with a minimal length of 25 aa and a canon-
ical AUG start codon in the 1xLinRNA and the 3xCircRNA
sequences were included in the analysis.
The majority of 1xLinRNA sequences (2371 out of

the 2531) in MKs contained putative ORFs (n=8519
unique ORFs; mean ORF length: 77.3 aa; median: 46 aa).
Similarly, 2488 out of 2531 3xCircRNA contained at least
one predicted ORF (n=12,567 unique ORFs; mean ORF
length: 115.9 aa; median: 55 aa; Fig. 6A). To isolate
circRNA-specific ORFs, we subtracted the ORFs found in
1xLinRNA from those found in 3xCircRNA sequences.
Whereas 7559 uniqueORFs were shared by both sequenc-
es (mean ORF length: 66.99 aa; median: 42 aa), 5008

unique ORFs were specific for 2428 circRNAs (mean ORF
length: 189.6 aa; median: 109 aa; Fig. 6B). Thus, 95.93%
of circRNAs in MKs have specific putative open reading
frames. CircRNA-specific putative ORFs were also detect-
ed in platelets, with 19,995 ORFs (6904 out of 10,729
circRNAs, 64.3% of circRNA), and in differentiating eryth-
roblasts, with 1864 ORFs (639 out of 950 circRNAs,
67.3% of circRNA; Supplemental Fig. S5B,C).

A subset of circRNAs displays a high ribosome
density

To determine whether the circRNA-containing putative
ORFs showany evidence of translation into proteins, we re-
analyzed previously published RFP sequencing data from
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FIGURE 6. PutativeORF detection in circRNAs, with limited evidence for translation. (A) Open
reading frames (ORFs) were computed (see Materials and Methods) for linearized high-confi-
dence circRNA sequences (1xLinRNA), and for tripled juxtaposed linearized sequence of high-
confidence circRNA in megakaryocytes to include circularized junction areas (3xCircRNA, see
Supplemental Fig. S4A). Bar graph depicts the length and frequency of all identified ORFs
found in 1xLinRNA (pink) or 3xCircRNA (blue). (B) Bar graph depicting the length and frequen-
cy of the ORFs found in both 1xLinRNA and 3xCircRNA sequences (purple) or specifically in
circRNA (green). (C,D) Ribosome-footprinting sequencing (Ribo-seq) data were used to
determine the ribosome density per kilobase on mRNA sequence and circRNA sequence.
The circular-over-linear ribosome density ratio (RiboCLR) was calculated. (C ) Schematic repre-
sentation of circRNA (back-spliced junction in blue) and mRNA sequence, and Ribo-seq den-
sity resulting in high or low Ribo-CLR. (D) Calculated Ribo-CLR for erythroblasts (left panel),
megakaryocytes (middle panel), and platelets (right panel) and plotted against themRNA ribo-
some footprint (RFP) density (RFP per kilobase). (E) Ribo-seq data of erythroblasts (left panel;
data from Mills et al. 2016), CD42− or CD42+ megakaryocytes (middle panel), and platelets
(middle panel; data fromMills et al. 2016) were screened for RFP reads on the circRNA junction
(circ-RFP) using CE2. The minimum chimeric alignment anchor size for alignment (8–16 nt) is
indicated. Circ-RFP that were not found expressed in low-confidence circRNA (based on
RNA-seq detection) were excluded.
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erythroblasts (Mills et al. 2016). We determined the ribo-
some density on the coding region of mRNA sequence,
and on the circRNA sequence (Fig. 6C). We mapped the
RFP read on the whole mRNA coding sequence and on
the “high-confidence” circRNA sequence that was
opened-up at the back-spliced junction. We then calculat-
ed the RFP density per kilobase on the mRNA and the
circRNA sequences. To measure differences in RPF reads
between circRNA and mRNA, we calculated the ratio of
circRNA-over-mRNA RFP reads density (Ribo-CLR). Of
note, a Ribo-CLR>1 would be indicative of a higher RFP
density over the circRNA sequence than on the mRNA se-
quence. Erythroblasts contained only 57 circRNA–mRNA
Ribo-seq pairs that had reliable expression levels (>50
RFP per kilobase; Fig. 6D, left panel; Supplemental
Table S4). Of these 57 circRNAs, 32 (56% of pairs) had a
Ribo-CLR>2. It is thus conceivable that these 32
circRNAs are translated in erythroblasts.

In MK Ribo-seq data, the vast majority (96.84%) of the
circRNA-expressing genes had a Ribo-CLR below two,
which indicates similar mRNA and circRNA RFP read den-
sities (Fig. 6D, middle panel; Supplemental Table S4).
Indeed, of the 2531 circRNAs, only 80 (3.16%) showed a
higher RFP density than their corresponding mRNA
(Supplemental Table S4). Lastly, we reanalyzed published
Ribo-seq data of platelets (Mills et al. 2016). Four hundred
and sixty-five circRNAs showed a Ribo-CLR>2 (Fig. 6D,
right panel; Supplemental Table S4). Nevertheless, with
4.34% of all 10,729 circRNAs, the overall percentage of
circRNAs that could potentially contribute to the platelet
proteome resembled that of MK. Of note, due to the nat-
ural 5′ bias of Ribo-seq data (Supplemental Fig. S3B) we
observed that circRNAs starting at exons closer to the 5′

of the CDS tended to have Ribo-CLR>2 (Wilcoxon signed
rank test; P=9.098×10−05; Supplemental Fig. S5D). Thus,
a small proportion of circRNAs in erythrocytes, megakaryo-
cytes, and platelets showed a higher ribosome density
than their mRNA counterpart.

CircRNAs in platelets show hundreds of ribosome
footprints on the back-spliced junction

Ribosome occupancy should also be found at the back-
spliced junction of the circRNA, if this region contributes
to the putative circRNA-specific coding region. We there-
fore re-screened all RFP reads from erythrocytes, megakar-
yocytes, and platelets and with an adaptation of the Ribo-
seq reads alignment to allow for chimeric reads detection
and subsequent back-spliced junction detection. Overlap
of the chimeric reads to the genome was set with a mini-
mum anchor point of 8 to 16 nt on either side of the
read. We also allowed one mismatch. Of the 114 million
reads in erythroblasts, we found only two RFP reads for an-
chors of 8, 9, or 10 nt (Fig. 6E, left panel; Supplemental
Table S4). The two RFPs corresponded to two circRNAs

circ-ARHGEF12 and circ-SPECC1. As the median Ribo-
seq read density in erythroblasts reached 1.984×10−3

reads per nt, one would already expect by chance about
53 reads on the 950 “high-confidence” circRNA (0.055
read/circRNA junction).

We also screened the 757 million Ribo-seq reads in
megakaryocytes for ribosome footprints at the back-
spliced junction. As the median Ribo-seq read density
for all translated genes in megakaryocytes was 0.105 reads
per nt, one would expect by chance about 7428 reads
on the 2531 “high-confidence” circRNA if they were
translated (2.93 reads/circRNA junction). However, only
three RFPs reads matching circRNAs in megakaryocytes
were detected (Fig. 6E, middle panel; Supplemental
Table S4). These three RFPs reads corresponded to two
circRNAs; that is, circ-PRDM2 and circ-YEATS2.

Of the ∼178 million RFP reads in platelets, one would ex-
pect by chance about 3378 RFPs on the 10,729 “high-confi-
dence” circRNA of platelets (median RFP density on mRNA
0.011 read/nucleotide, 0.314 read/circRNA junction). Yet,
we only detected 180 RFPs, 168 RFPs, and 182 RFPs over
the circRNAback-spliced junction in platelets with an anchor
size of 8, 9, and 10 nt, respectively (Fig. 6E, right panel; Sup-
plemental Table S4). The circRNA-RFPs corresponded to 56
different circRNAs. Of note, 13 of these 56 circRNAs (HIPK3,
TMEM135, CORO1C, DNAJC6, GSAP, ASH2L, FAM120A,
MCU, FARSA, WDR78, ZC3H6, NCOA2, APOOL) also dis-
played a Ribo-CLR>2 (Supplemental Fig. S5E), indicating ri-
bosome reads on both the back-spliced junction and the full
circRNA sequence. Overall, the RFP analysis showed some
but limited evidence of translation, in particular in MK, and
erythroblasts. Of note, the low numbers of RFP on the
circRNA junction did not allow us to perform a reliable peri-
odicity analysis. Together, platelets provide the best indica-
tion of putative circRNA translation, with—based on the
sequencingdepthof theRibo-seqdata sets—approximately
58 timesmore circRNA-specific Ribo-seq reads than erythro-
blast and approximately 258 times more than
megakaryocytes.

Mass spectrometry fails to identify circRNA-specific
peptides in platelets

Because the RFP analysis in platelets showed the highest
probability of translation, we further searched for evidence
of translation in this cell type. We generated a reference
peptide library from the three translation frames over the
508 circRNA back-spliced junction of the high-confidence
circRNAs with Ribo-CLR above two or detected circ-RFP.
Translation frame(s) that contained a STOP codon before
the back-spliced junction were excluded from this refer-
ence peptide library. This left 1566 unique putative
circRNA peptides spanning the back-spliced junction
with a minimum of five amino acids overhang. Of these
1566putative circRNApeptides, 12 (0.77%)did not contain

Nicolet et al.

202 RNA (2022) Vol. 28, No. 2

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.078754.121/-/DC1


lysine nor arginine, 97 (6.2%) and123 (7.9%) containedonly
arginine, or lysine, respectively. Thereby the majority
(99.2%) of putative circRNApeptides are cleavable by tryp-
sin treatment and should be detectable bymass spectrom-
etry. To also identify circRNA-specific peptides outside the
circRNA-junction, we included the full-length circRNA-spe-
cific putative ORFs of platelets in the peptide library we
identified in Supplemental Figure S4B. Lastly, we also in-
cluded the reference proteome (UniProt) as decoy, to pre-
vent possible “background” hits tomatch known canonical
protein sequences. Published MS data of platelets (Van
Oorschot et al. 2019) were used to search for circRNA-spe-
cific peptides. Of the 192,743 identified peptides, not one
peptide matched a circRNA junction (Supplemental Fig.
S5E). Thus, even though Ribo-seq data suggest some pos-
sible translation fromcircRNAs in platelets, thedetection of
peptides from back-spliced circRNA junctions, or from
circRNA-specific ORFs fall—if present at all—below the
detection limit of data-dependent mass spectrometry
analysis.

DISCUSSION

In this study, we present a comprehensive analysis of circR-
NAs in terminal differentiation of erythroblasts and plate-
lets. CircRNA expression is in particular increased at
enucleation in erythroid differentiation. This could reflect
an accumulation of transcript degradation leftovers upon
enucleation, as previously suggested (Alhasan et al.
2016). While this is an attractive hypothesis, not all circRNA
follow this overall trend. In fact, more than 50%of circRNAs
were regulated independently from changes in linear
mRNA expression. This was truewhenwe compared differ-
ences in expression levels prior to and post-enucleation.
We also observed a clear increase in number and expres-
sion levels of specific circRNAs at enucleation, which
were not detected in progenitors. This increase of circRNA
number and amount is unlikely to stem from a technical
reason, as all samples had sufficient sequencing depth
(∼30 million reads) to allow for a reliable detection of lowly
expressed circRNA. Thus, the majority of measured
circRNAs in terminally differentiated erythrocytes cannot
be explained by mere accumulation from progenitors
alone. Thiswas also true for circRNAexpression inMKcom-
pared to platelets. Future studies could use metabolic la-
beling such as 4-thiouridine (4sU) to investigate the de
novo circRNA expression in relation to their mRNA
counterparts.
Another possible explanation for the increase in

circRNA during erythroid maturation could be the loss
of the circRNA degradation machinery. Even though it
is not fully understood how circRNAs are degraded, the
RNase-L, G3BP1, and G3BP2 have been implicated in
this process (Liu et al. 2019; Fischer et al. 2020).
Notably, G3BP1 and 2 are down regulated during ery-

throid maturation, and RNase-L is absent in mature eryth-
rocytes (Gautier et al. 2016). It is therefore tempting to
speculate that the loss of the circRNA degradation ma-
chinery in mature erythrocytes contributes to the in-
creased circRNA levels.
Intriguingly, the circRNAs in differentiated RBCs and

platelets strongly overlapped with the mRNAs that were
expressed in their progenitors. It has been proposed that
splicing occurs in the cytoplasm of platelets and MK
(Denis et al. 2005; Nassa et al. 2018). It is therefore tempt-
ing to speculate that back-splicing and formation of
circRNA could also occur in the cytoplasm. In line with
this, several splicing factors were detected in platelets by
MS analysis (Burkhart et al. 2012; Van Oorschot et al.
2019), including DHX9. Therefore, at the period of enucle-
ation of erythrocytes and during platelet formation, mRNA
could be circularized, and thus contribute to increased
numbers of circRNAs during enucleation and therefore ex-
plain the substantial overlap with the mRNAs in progeni-
tors. This hypothesis, however, requires experimental
confirmation. In addition, MK can sort specific mRNA
into platelets (Cecchetti et al. 2011). Whether circRNA
can also be sorted and whether this sorting could explain
some of the discrepancy between MK and platelets
circRNA content, is yet to be uncovered.
About 4% of circRNAs in platelets and erythrocytes did

not overlap with themRNA levels in MK and differentiating
erythroblasts. These circRNAs could be acquired from oth-
er cell types in the circulation, as observed for linear RNA in
the context of tumor “educated” platelets (Best et al.
2015), or endogenous vascular-derived RNA (Clancy
et al. 2017). A study in platelets from healthy and diseased
individuals could shed light on this. If true, circRNAs taken
up by platelets or erythrocytes could in fact serve as novel
biomarkers, which could be in particular valuable for diag-
nostics due to their high stability.
The function of circRNAs still remains elusive. CircRNA

could serve to reinforce transcription, and lead to differen-
tial exon usage as previously proposed (Kelly et al. 2015).
Differential exon usage was also recently reported to be
supported by pre-mRNA exonic sequences (Fiszbein
et al. 2019). Whether this is indeed occurring in primary
blood cells is yet to be determined.
CircRNAs are also reported to regulate mRNA transla-

tion in a sequence-specific manner (Sun et al. 2019; Wu
et al. 2019; Li et al. 2020). We investigated here the possi-
ble effect of circRNA on its mRNA counterpart. We only
identified one circRNA in MKs that show limited indica-
tions for translation regulation. In addition, we found no
correlation between translation efficiency of mRNA and
the expression level of their circular counterpart, whether
in MK, platelets, or human cell lines. Whether our findings
in MKs are also applicable to enucleated erythrocytes is
not known. CircRNA-mediated regulation of mRNA trans-
lation is an attractive hypothesis in erythrocytes, because
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the majority of translation is shut down in mature cells
(Mills et al. 2016), and circRNAs could support translation
shutdown. In addition, it is also conceivable that circRNA
affect translation of other mRNA (Sun et al. 2019; Li et al.
2020).

CircRNAswere also shown to be translated (Legnini et al.
2017; Pamudurti et al. 2017; Yang et al. 2017; Liang et al.
2019; Huang et al. 2021), in particular from exogenously
expressed circRNAs. This finding suggests that the highly
stable circRNA transcripts could help maintain the prote-
ome in long-lived red blood cells and platelets. However,
we found very limited indications that translation from en-
dogenous circRNAs occurs. Similar to a recent study
(Stagsted et al. 2019), we detected only a few circRNA-spe-
cific RFP. The low number of detected circRNA-specific
RFP reads could not be explained by low sequencing
depth, as the Ribo-seqdata sets entailed 114, 757, 178mil-
lion reads in erythroblasts,MKs, andplatelets, respectively.
Yet, only platelets had 180 RFP reads on the circRNA back-
spliced junction. Nevertheless, whether the increase of
circRNA-specific RFP stems from active translation or
from the loss of regulators of ribosome homeostasis such
as PELO by erythrocytes and platelets (Mills et al. 2016) is
yet to be determined.

Deep MS analysis on platelets did not identify peptides
from circRNA back-spliced junctions. Yet, circRNA-derived
proteinsmaybegeneratedon low levels and/or result inpro-
duction that isbelow thedetection limit ofMS.This finding is
corroborated by recent ribosome-footprint analysis that
found very limited translation of >300.000 circRNAs
(0.73% of circRNAs), and closely matches our findings
(0.52%; 56 out of 10,729 circRNAs in platelets [Huang et
al. 2021]). Indeed, as circRNApeptides are only found inmi-
nute abundance, their detection was shown to be indistin-
guishable from noise in MS data (Hansen 2021).
Nonetheless, immunoprecipitation enrichment of specific
targets could help to overcome this detection limit for spe-
cific circRNA (Pamudurti et al. 2017; Liang et al. 2019).

mRNA translation also maymask the circRNA translation
and its contribution to the proteome, when the circRNA-
derived peptides are identical to the mRNA-derived
peptides. Nevertheless, because only 117 out of the
465 circRNAs (25.16%) with high Ribo-CLR show protein
expression in MS, the relative contribution of circRNA-
derived translation is arguably limited in light of the
mRNA-derived translatome. Compiled, our study thus
only supports a limited possible contribution of circRNA-
translation to the proteome in platelets.

In conclusion, we provide here the landscape of circRNA
expression during erythroid differentiation and megakar-
yocyte maturation. This study can serve as a blueprint
for future studies in these cell types. Our results also chal-
lenge the current views on the ubiquitous functions pro-
posed for circRNAs in the biological context of terminal
hematopoiesis.

MATERIALS AND METHODS

CircRNA identification and analysis

Data on erythroblast differentiation were retrieved from our previ-
ous study (Heshusius et al. 2019). circRNA identification was per-
formed with the previously established circRNA detection
pipeline (Nicolet et al. 2018). Briefly, the quality of RNA-seq reads
was assessed using FastQC version 0.11.8 (Simon Andrews,
Babraham Institute). Data were aligned to the human genome
(GRCh37/hg19-release75) using STAR version 2.5.2b (Dobin
and Gingeras 2015) allowing for chimeric detection, with an over-
hang “anchor” of 15 nt on either side of the read. The chimeric
output file of STAR was analyzed with DCC 0.4.6 (Cheng et al.
2015) and CircExplorer2 (CE2) 2.3.2 (Zhang et al. 2014) to detect,
filter, and annotate circRNA. DCCwas used for detection of linear
reads at the circRNA coordinates (using the option-G). CircRNA
expression was considered low confidence when at least two
junction reads were found in at least one sample by both DCC
and CE, and high confidence detection when at least two junction
reads were found in all biological replicates of one specific cell
type, by both tools. Supporting circRNA read counts were nor-
malized to reads per million mapped reads (RPM). The maximal
circRNA spliced length was calculated with the exon length infor-
mation provided by the CE2 annotations. These annotations were
then used to calculate the first and last circularized exon. For dif-
ferential expression analysis of high-confidence circRNA, we used
DESeq2 (Love et al. 2014) with P-adjusted <0.05. We used the to-
tal number of mapped reads per sample to calculate the scaling
factors, instead of the automatic scaling factors detection of
DESeq2. The LFC was calculated using the formula:

LFC(AB) = log2 (B)− log2 (A).

Data analysis was performed in R (3.5.1) and R-Studio (1.1.453).

RNA-seq analysis of mRNA and ncRNA

After quality control with FastQC, raw RNA-seq reads were
aligned with Salmon version 0.13.1 (Patro et al. 2017) on the cod-
ing and noncoding transcriptome (ENSEMBL, GRCh38 release
92) to obtain TPM normalized counts. To get mRNA and ncRNA
expression per gene, TPM counts were summed up per gene
name, according to ENSEMBL BioMart annotations (Kinsella
et al. 2011). Clustering of blood cells based on mRNA expression
was performed using hclust() and prcomp().

In vitro megakaryocyte differentiation

Megakaryocytes were cultured from human cord blood-derived
CD34+ cells. Cord blood cells were obtained after informed con-
sent and with the approval of the ethical committee of local hospi-
tals. Cord blood was diluted in PBS, loaded on ficoll-pague (GE
Healthcare), and centrifuged 15 min at 400g. The white blood cell
layer was collected from the ficoll gradient, washed twice in PBS+
1 mM EDTA+0.2% HSA. CD34+ cells were purified with anti-
CD34Microbeads (Miltenyi Biotec 130-046-702) andMACSLS col-
umn (Miltenyi, 130-042-401) according to manufacturer’s guide-
lines. Purity for CD34+ cells was >90%, as determined by flow-
cytometry with anti-CD34 antibody (#581-PE; Beckman Coulter,
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measured on Beckman Coulter FC500). CD34+ cells were seeded
at a density of 50.000 cells/well in a 12-well plate in CellgroSGM
(CellGenix) supplemented with 100 ng/mL human recombinant
TPO (CellGenix, Cat.1417) and 10 ng/mL IL1β (Miltenyi Biotec,
Cat.130-093-895). At day 3, 1:1 fresh media was added with an ad-
ditional 10 ng/mL TPO and 1 ng/mL IL1β. On day 5, cells were split
at a density of 100.000 cells in six-well plates, and fresh media with
10 ng/mL TPO and 1 ng/mL IL1βwas added. On day 10, cells were
harvested and supplemented with 100 µg/mL Cycloheximide
(Sigma, Cat. 1810-1G) in culture medium prior to cell sorting.

Megakaryocyte selection

Cultured cells were harvested when >85% of cells were CD41a+
(CD41a-APC; clone HIP8; BD Pharmingen; Cat. 559777), as deter-
mined by flow-cytometry. Cells were pelleted at 120g for 1 min at
4°C and washed once in ice cold buffer (PBS, 1 mM EDTA, 0.2%
HSA+100 µg/mL cycloheximide). Two-step selection was per-
formed on ice with the EasySep Human PE-Positive Selection Kit
(18551), using anti-human CD42b-PE (clone HIP1, BD
Pharmingen, 555473) according to manufacturer’s guidelines.
CD41a+ CD42b− and CD41a+ CD42b+ cell fractions were select-
ed, washed using PBS+100 µg/mL cycloheximide, and kept on ice
until further processing. Viability of the cells was >90% (7-AAD,
BioLegend), and purity for CD41a+ CD42b− was >85% and
CD41a+ CD42b+ was >95%, as determined by flow-cytometry.
Cells were immediately processed.

RNA sequencing

Cell lysis and RNA isolation for RNA sequencing and ribosomal
footprinting were performed according to Ingolia et al. (2009)
with someadaptations. Briefly, CD42− andCD42+ selectedmega-
karyocytes were pelleted. Cell pellets were dissolved in 150 µL ice
cold lysis buffer (20 mM Tris pH 7.4, 250 mMNaCl2, 5 mMMgCl2,
0.5% Triton X-100, 1 mM Dithiotreitol (DTT), 0.024 U/µL Turbo
DNase (Ambion), 0.01 U/µL RNaseOUT (Invitrogen), and 100 µg/
mLCycloheximide). The lysatewas immediately split in twoaliquots
of 50 and 100 µL, for total RNA sequencing and ribosomal footprint
analysis, respectively. An amount of 2.5 µL SUPERase In RNase
Inhibitor (Invitrogen) was immediately added to the total RNA sam-
ple, and total RNA was extracted using the miRNeasy Kit (Qiagen)
according to manufacturer’s protocol. RNA quality was assessed
on Agilent bioanalyzer RNA chip (all samples with RIN>9.0), and
quantified usingQubit 2.0 (Thermo Fisher). Ribosomal RNAwas re-
moved using Ribo Zero Gold (Epicentre/Illumina; 20020596) using
themanufacturer’s protocol, and the cDNA library was constructed
with the KAPA Stranded RNA-Seq Kit (KAPA Biosystems KK8400)
according to manufacturer’s protocol with Illumina TruSeq forked
adapters. Library quality was assessed on an Agilent Bioanalyzer
high sensitivity DNA chip and quantified using qPCR with the
KAPA Library Quantification Kit (KK4824). Libraries were pooled
to a 2 nM concentration and 125 bp paired-end reads were se-
quenced on HiSeq 2000 (Illumina).

Ribosomal footprinting

An amount of 100 µL of cell-lysates was used for ribosome foot-
printing preparation. Samples were kept on ice for 10 min and
regularly vortexed to fully lyse the outer membranes and release

the ribosomes. Lysates were spun at 20,000g for 10 min at 4°C
and supernatant was harvested to remove the remaining pelleted
cell debris and nuclei. Lysates were treated with 2 µL of RNase
1 (Ambion) and incubated at 37°C for 45 min. The reaction was
stopped by the addition of 5 µL SUPERase In RNase Inhibitor.
Lysates were loaded on a 1-M 0.150 mL Sucrose cushion in 8×
34 mm polycarbonate thick wall tubes and centrifuged at
120,000g for 30 min in a TLA-120.1 rotor in a precooled 4°C ta-
bletop ultracentrifuge. The pellet was resuspended using 100
µL resuspension buffer (10 mM Tris pH 7.0, 1% SDS and 0.01
U/µL proteinase K [NEB]) for 30 min at 37°C. Footprints were sub-
sequently extracted with the miRNeasy Kit according to manufac-
turer’s guidelines for small RNA. rRNA contamination was
removed using the Ribo-Zero Gold rRNA Removal Kit
(Epicentre/Illumina; 20020596). Footprint RNA quality was as-
sessed using the Agilent Bioanalyzer using the RNA chip.
Footprints were selected for 26–34 nt with custom markers (see
Ingolia et al. 2009) on the Elchrom Scientific ORIGINS system
and short fragment gels, using gel electro-elution into Spectra/
Por 3 3.5KD MWCO dialysis membranes. Libraries were pro-
duced using the Art-Seq Kit (Epicentre/Illumina) according to
the manufacturer’s protocol. The quality of libraries was assessed
on an Agilent Bioanalyzer with a high sensitivity DNA chip and
quantified using qPCR with the KAPA Library Quantification Kit
(KK4824). Libraries were pooled to a 2 nM concentration and se-
quenced on HiSeq 2000 (Illumina).

Ribo-seq analysis

The quality of raw Ribo-seq reads was assessed using FastQC.
Reads were trimmed for sequencing adapters using Trimmomatic
version 0.39 (Bolger et al. 2014) or cutadapt version 3.0 (Martin
2011), excluding reads<25and>35nt long.Additionalquality con-
trol was performed on the BAM files resulting from genome map-
ping with STAR in Ribo-seQC (Calviello et al. 2019).
Trimmed reads were mapped with Salmon on the human tran-

scriptome (GRCh38 release 92) to get TPM normalized counts.
Using a k-mer of 11 performed best for Ribo-seqmapping to build
the Salmon index. Translation efficiency was obtained by dividing
the normalized Ribo-seq counts in TPM by the normalized RNA-
seq counts in TPM. To estimate the ribosome footprint read den-
sity, we used the linearized sequence of high-confidence circRNA
and the coding transcriptome. After aligning the Ribo-seq reads
with Salmon, Ribo-seq reads density per kilobase were obtained
by dividing the estimated counts (not TPM) by circRNA length (for
circRNA) and CDS length (for mRNA). The circular-over-linear
Ribo-seq reads density per kilobase (Ribo-CLR) was obtained by
dividing the circRNA Ribo-seq density per kilobase, by the
Ribo-seq density per kilobase of mRNA. The ratio was calculated
separately for each sample and averaged per population. Ribo-
seq data for erythroblast and platelets were retrieved from a pre-
vious study (Mills et al. 2016).

CircRNA-specific detection from Ribo-seq reads

To identify circRNA-specific Ribo-seq reads, we used an approach
similar to the “classical” circRNA detection described above.
Genome alignment as described above with STAR was used for
chimeric reads detection with incremental anchors of 8–16 nt
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on either side of a chimeric read, allowing for one mismatch. CE2
was then used to detect, quantify, and annotate the circRNAs, and
data were further processed in R.

ORF prediction

The linearized, spliced “high-confidence” circRNA sequences
were obtained using BEDtools version 2.18 (Quinlan and Hall
2010). The sequence was juxtaposed three times to mimic a
circRNA sequence. Open reading frames (ORFs) were predicted
for both linearized circRNA sequence (1xLinRNA) and tripled
(3xCircRNA) sequences using ORF-finder (version 0.4.3; NCBI).
Resulting ORF sequences were analyzed and filtered in R.

Detection of circRNA peptides by mass
spectrometry

The high-confidence circRNA sequences including all exons be-
tween first and last exon were obtained using BEDtools. The
last 77 nt of the circRNA sequences were joined to the first 77
nt to generate a junction sequence library. This library was trans-
lated in three frames. Open reading frames (ORFs) that presented
a length <30 amino acids (i.e., not spanning the circRNA junction)
were removed. All ORFs were transformed into a fasta library. A
proteome reference library containing circRNA junction ORFs,
as well as circRNA-specific ORFs (from 3xCircRNA sequences of
platelets, filtered for unique circ-specific ORFs), and Uniprot
Human proteome reference (downloaded 13-02-2019), was con-
structed and used for peptide matching with Proteome
Discoverer (version 2.2; Thermo Fisher) of our previously pub-
lished mass spectrometry data set on platelets from healthy do-
nors (Van Oorschot et al. 2019). The precursor mass tolerance
was set to 10 ppm with a fragment mass tolerance of 0.6 KDa
and a target FDR of 0.01. Only peptides with high confidence
detection in MaxQuant were considered.

Plots and graphs

Heatmaps were generated in R using corrplot (Wei and Simko
2017) or pheatmap 1.0.8 (Kolde 2012). Plots and graphs were
generated with ggplot2 (Wickham 2016) in R, or Graphpad
PRISM version 7.0.

Data retrieval and deposition

For ex vivo RBC and platelet analysis, we used our previously
published data sets. Data were retrieved from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) and Sequence Repository Archive (SRA) acces-
sion numbers for platelets (project: PRJEB4522): ERR335311,
ERR335312, and ERR335313 (Kissopoulou et al. 2013); for RBCs:
(GEO: GSE63703) SRR2124299, SRR2124300, SRR2124301, and
(GEO: GSE69192) SRR2038798 (Doss et al. 2015; Alhasan et al.
2016); for erythroid differentiation: GEO: GSE124363 (Heshusius
et al. 2019); and for human cell lines GEO: GSE125218 (Martinez
et al. 2020).

Ribosome-footprinting data sets of platelets and erythroblasts
were retrieved from GEO with accession number: GSE85864

(Mills et al. 2016), and for those of human cell lines GEO:
GSE125218 (Martinez et al. 2020). For comparison to the previous
study of our transcriptome data, we retrieved additional data sets
from HSC and MEP (Notta et al. 2016); cultured megakaryocytes
(Bhatlekar et al. 2020); pro-, early/late basophilic, poly-, and or-
tho-chromatic erythroid cells (An et al. 2014).

Raw mass spectrometry data sets of platelets were obtained
from the PRoteomics IDEntifications Database (PRIDE) repository
under the accession number PXD009020 (Van Oorschot et al.
2019).

DATA DEPOSITION

Ribosome footprinting and an RNA-seq data set of megakaryo-
cytes were deposited on NCBI’s Gene Expression Omnibus
(GEO) with accession number GSE159579. Scripts used in this
study are accessible on GitHub (https://github.com/BenNicolet/
CircRNA_in_MK_and_Erys).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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Benoit P. Nicolet

Meet the First Author(s) is a neweditorial featurewithinRNA, in
which the first author(s) of research-based papers in each issue
have the opportunity to introduce themselves and their work
to readers of RNA and the RNA research community. Benoit
Nicolet is the first author of this paper, “Circular RNAs exhibit
limited evidence for translation, or translation regulation of
the mRNA counterpart in terminal hematopoiesis.” Benoit is a
postdoc in the laboratory of Monika Wolkers at Sanquin Blood
Foundation in Amsterdam, the Netherlands, who studies the
regulation of gene expression in blood cells, mostly T lymphoc-
ytes, with a focus on post-transcriptional events.

What are the major results described in your paper
and how do they impact this branch of the field?

CircRNAs are quite mysterious molecules that are amply ex-
pressed in cells. Yet their cellular role remains enigmatic. Here
we studied whether endogenously expressed circRNAs associate
with translation regulation, or if they can be translated. Despite
their very high expression levels in terminally differentiated human
blood cells, we found very little evidence that circRNAs regulate
translation of their mRNA counterparts, or that circRNAs are trans-
lated. This last finding contrasts with that of exogenous circRNAs

over-expression constructs in cells. I therefore would like to high-
light that endogenously expressed circRNAs appear to act differ-
ently and are in fact seldomly translated, if at all.

What led you to study RNA or this aspect of RNA science?

To be honest, serendipity and finding circRNA biology “cool”
got me into this topic. I was at a conference attending a talk on
circRNAs. Primed by this excellent talk, I searched for studies on
circRNAs in blood cells. At that time, I could not find one single re-
port. Yet, we had all the data sets compatible to address that very
lack of information. After a little bit of setup, I found the expression
of circRNAs in blood cells, and in particular in platelets and red
blood cells, is very high. Why was that? I was hooked.

During the course of these experiments, were there any
surprising results or particular difficulties that altered your
thinking and subsequent focus?

I started with the hypothesis that I would see thousands of
the circRNAs being translated in blood cells. Tome this was in par-
ticular an exciting thought for red blood cells and platelets, which
lack de novo RNA transcription. Thus, the intrinsic stability of
circRNAs could possibly provide the templates for translation.
This would have been further supported by the finding that
circRNA expression massively increases around enucleation.
However, as you can read in our paper, endogenous circRNAs
are not at all widely translated.

What are your subsequent near- or long-term career plans?

Haha, good one. I guess wherever my interests take me. I would
like to combine machine learning with biological measurements
(omics) to better understand gene expression in cells. I am also a
cofounder of Green Labs Netherlands (Green Labs NL) and the
Sustainable European Laboratories (SELs), two networks trying to
make science just as fun, but more sustainable. Let’s see how
things develop!
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