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Abstract

Background: A fundamental aspect of epidemiological studies concerns the estimation of factor-outcome associations to
identify risk factors, prognostic factors and potential causal factors. Because reliable estimates for these associations are
important, there is a growing interest in methods for combining the results from multiple studies in individual participant
data meta-analyses (IPD-MA). When there is substantial heterogeneity across studies, various random-effects meta-analysis
models are possible that employ a one-stage or two-stage method. These are generally thought to produce similar results,
but empirical comparisons are few.

Objective: We describe and compare several one- and two-stage random-effects IPD-MA methods for estimating factor-
outcome associations from multiple risk-factor or predictor finding studies with a binary outcome. One-stage methods use
the IPD of each study and meta-analyse using the exact binomial distribution, whereas two-stage methods reduce evidence
to the aggregated level (e.g. odds ratios) and then meta-analyse assuming approximate normality. We compare the
methods in an empirical dataset for unadjusted and adjusted risk-factor estimates.

Results: Though often similar, on occasion the one-stage and two-stage methods provide different parameter estimates
and different conclusions. For example, the effect of erythema and its statistical significance was different for a one-stage
(OR = 1.35, p~0:03) and univariate two-stage (OR = 1.55, p~0:12). Estimation issues can also arise: two-stage models suffer
unstable estimates when zero cell counts occur and one-stage models do not always converge.

Conclusion: When planning an IPD-MA, the choice and implementation (e.g. univariate or multivariate) of a one-stage or
two-stage method should be prespecified in the protocol as occasionally they lead to different conclusions about which
factors are associated with outcome. Though both approaches can suffer from estimation challenges, we recommend
employing the one-stage method, as it uses a more exact statistical approach and accounts for parameter correlation.
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Introduction

A fundamental aspect of epidemiological studies concerns the

estimation of associations between independent variables (factors)

and dependent variables (outcomes). Outcomes may include such

as disease onset, disease presence (diagnosis), disease progression

(prognosis), and death. Independent variables may include

potential causal factors to unravel the pathophysiology or causal

pathway of the outcome under study, but also non-causal

predictors or risk-indicators of the outcome to enhance timely

detection or prediction of the outcome, perhaps as part of a risk

prediction model [1–3]. Studies that aim to explore which causal

factors or predictors – often out of a number of candidate factors –

are independently associated with a particular outcome have been

referred to as risk factor or predictor finding studies [3–8]. Reliable

estimates of such factor-outcome associations are essential,

certainly when they are meant to be causal, to properly guide

public health initiatives and clinical practice for informing

diagnosis and prognosis. As such, primary studies to identify

causal factors or predictors are abundant in the medical literature.

For example, in patients with neuroblastoma, a review identified

260 primary studies evaluating one or more novel tumour markers

for their association with outcome [8–10]. When reviewing such

evidence across multiple studies, the estimated factor-outcome

associations across studies may be inconsistent and even contra-

dictory [11–13]. This emphasizes the need for appropriate
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methods for meta-analysis and evidence synthesis in this area, in

order to summarise the factor-outcome associations in the current

evidence-base [2,14–20], as commonly applied in intervention

research [21–25]. However, due to numerous problems of

published primary studies investigating factor-outcome associa-

tions, especially publication bias and selective reporting, meta-

analyses based on published results are notoriously prone to bias

[8,10]. Problems with such aggregate data also arise in clinical

research when differential treatment effects by patient character-

istics are of concern [26]. Problems with such aggregate data also

arise in clinical research when differential treatment effects by

patient characteristics are of concern [26].Problems with such

aggregate data also arise in clinical research when differential

treatment effects by patient characteristics are of concern [26].

Thus there is increasing interest in obtaining individual participant

data (IPD) from these studies to facilitate a more reliable meta-

analysis.

When IPD are available, meta-analysis is usually performed

using a two-stage approach [24]. Each study is summarized by its

factor-outcome association estimate and variance in the first stage,

and these aggregate data (AD) are then appropriately combined

across studies in the second stage. In this manner, a summary

effect size, such as the odds or hazard ratio, is produced for each

factor-outcome association of interest [27] whilst potentially

accounting for between-study heterogeneity (e.g. due to different

participant characteristics, methods of measurements, and under-

gone treatments) [12,19,28–35]. An alternative method for IPD

meta-analysis (IPD-MA) is a one-stage approach which synthesises

the IPD from all studies in a single step, whilst accounting for

clustering of patients within studies [36–38]. Assuming the

sufficient AD are obtained from each study for the two-stage

method, it is widely believed that one-stage and two-stage methods

lead to similar conclusions [39–41]; however, empirical compar-

isons are relatively few. Indeed, because the design and

implementation of one-stage and two-stage random-effects models

may substantially differ, it is important to ascertain whether the

choice of method can influence the final conclusions about

whether a factor has a (statistically) significant association with the

outcome.

In a recent empirical evaluation using a meta-analysis of 24

randomised trials of antiplatelets to prevent preeclampsia, Stewart

et al. [37] conclude that ‘two-stage and one-stage approaches to

analysis produce similar results’ and ‘where an IPD review

evaluates effectiveness based on sufficient data from randomised

controlled trials, one-stage statistical analyses may not add much

value to simpler two-stage approaches’. It is important to consider

if this recommendation is valid in other empirical examples, and if

it translates to epidemiological studies. In particular, epidemio-

logical studies of factor-outcome associations may be affected by

several covariates, namely confounders (in causal factor studies) or

other predictors (in predictor finding studies) [33,42,43]. This

situation may also arise in clinical trials when interactions occur

between treatment effects and covariates, or when adjustment is

needed for prognostic factors that are unbalanced between groups.

Thus the random-effects framework needs to accommodate these

covariates during modeling in order to estimate factor-outcome

associations after adjusting for other factors. Factors that are

strongly associated with the outcome might retain their association

even when adjusting for other variables. However, there has again

been little comparison of one-stage and two-stage IPD-MA

methods when adjustment is required [44,45].

The aim of this article is to describe and empirically evaluate

possible one-stage and two-stage IPD-MA models for synthesizing

(causal or predictive) factor-outcome association estimates across

multiple studies where a continuous or binary factor is of interest

in relation to a binary outcome. It is therefore similar in spirit to a

recent description of methods for meta-analysis of time-to-event

outcomes [46]. The methods are compared using an empirical

example, to illustrate their advantages, differences and accessibil-

ity. Our methods all assume that between-study heterogeneity in

baseline risk and factor-outcome associations exists, as it likely in

practice, and so we only consider random-effects IPD-MA models.

We examine different assumptions concerning the random effects,

and consider how the models can be extended to adjust for other

factors. Hereto, we describe two two-stage and three one-stage

models for estimating unadjusted and adjusted factors. We finish

by depicting some estimation procedures and approximations, and

conclude with discussion and recommendations.

Motivating Example

Deep Vein Thrombosis (DVT) is a blood clot that forms in a

vein in the body (usually in the lower leg or thigh). A (part of such)

clot can break off and be carried through the bloodstream to the

lungs and there cause a blockage (pulmonary embolism),

preventing oxygenation of the blood and potentially causing

death. The diagnosis DVT presence or absence can (ultimately) be

made using repeated leg ultrasound, which requires patient

referral and is to some extent burdening and time and money

consuming. Hence, it is desirable to predict the presence or

absence of DVT without having to refer patients for more

cumbersome testing, by rather using easy to obtain predictors from

their patient history, physical examination and simple blood

assays. For this reason, in patients with a suspected DVT various

studies aimed at estimating which factors – out of a range of

candidate factors – are indeed associated with the presence or

absence of DVT; in other words, which factors are useful

diagnostic predictors of the probability that a patient truly has

DVT.

A previous systematic review collected the IPD of patients with

a suspected DVT from 13 studies (n~10002), and this IPD

contains information about the patients’ history, physical exam-

ination and results from a biomarker test (Table 1 and Table S1)

[47]. In this article, we use these data to illustrate the described

meta-analysis methods for identifying important risk factors. We

assume random effects for factor-outcome associations as the

presence of heterogeneity between studies is expected due to

differences in locale, setting and time. Detailed information about

the included studies and predictors is available in Table S1 and

Table S2.

Methods

This section describes the framework for random-effects IPD-

MA modeling of risk factor (predictor finding) studies with a binary

outcome. Hereto, it identifies two sources of data: IPD and AD.

IPD is represented by patient-level factor values (covariates) and

outcomes, whereas AD consists of study-level summaries such as

the estimated log odds ratios and corresponding standard errors

for the factor-outcome associations reported [48]. We describe

two-stage and then one-stage IPD-MA approaches [49] and

describe how to account for differences in baseline risk across

studies (clustering). Further, we show how to extend these methods

to adjust for known risk factors, and evaluate some important

estimation difficulties that arise when relatively few data are

available. The DVT data is used to illustrate the methods and to

identify some important differences.

IPD Meta-Analysis: One-Stage or Two-Stage?

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e60650



Two-stage IPD Methods
First stage. In a two-stage method, the IPD are first analyzed

separately in each study using an appropriate statistical method for

binary outcome data. For example, consider where a single risk

factor is of interest, then the logistic regression model is:

yi*Bernoulli (pi)

logit pið Þ~azbxi

ðModelÞ

with unknown parameters a (intercept) and b (slope representing

the association between factor x and binary outcome y). The logit

outcome probability for subject i, pi, is then a linear function of the

factor xi. The resulting estimates from study j are denoted as âaj

(intercept) and b̂bj (log odds ratio). Consequently, the first step

yields the intercept and the factor-outcome association estimates,

and their associated within-study covariance matrix (containing

the variance of the intercept var(âaj) and each association var(b̂bj),

as well as their respective covariances cov(âaj ,b̂bj)) for each

individual study. By utilising all the model parameter estimates,

their variances and their correlation (covariance), the original IPD

is reduced to AD for each study [50,51]. If IPD are not available,

such AD may alternatively be sought from study publications or

study authors.In the second stage, this AD from each study are

synthesized using a suitable model for meta-analysis of AD

[30,43,52], with potential options as follows.

Second Stage. Option 1. Full (bivariate) meta-analysis
AD model: The AD are combined by a bivariate random-effects

model that simultaneously synthesises the factor-outcome associ-

ation (beta) estimates and the baseline risk (intercept) estimates

whilst accounting for their correlation. The model assumes that

the true underlying effect of the jth study (asymptotically) arises

from a multivariate normal (MVN) distribution [53], and

incorporates within- and between-study covariance. Specifically,

the model fits the following marginal distributions:

âaj

b̂bj

" #
*MVN

a

b

" #
,

t
2

a tab

tab t2
b

2
4

3
5z

var(âaj) cov(âaj ,b̂bj)

cov(âaj ,b̂bj) var(b̂bj)

2
4

3
5

0
@

1
A
ðModel1Þ

Table 1. Overview of the DVT data.

Study N ddimdich = 1 notraum = 1 coag = 1 eryt = 1 sex = 1 malign = 1 par = 1

1 1028(131) 472 (117) 743 (104) 19 (3) 382 (52) 376 (66) 54 (15) 13 (2)

2 814(318) 598 (313) 307(146) 86 (43) 35(17)

3 153 (26) 103 (16) 51(15) 73 (10) 7 (4) 12 (1)

4 1756(411) 910 (387) 1497 (361) 68 (20) 654(192) 224 (84) 101(35)

5 791 (126) 572 (91) 650 (111) 191(31) 301(59) 38 (8) 112(18)

6 1075(190) 424 (161) 857 (158) 52 (17) 471 (97) 55 (25) 50 (11)

7 429 (61) 153 (28) 47 (17) 12 (2)

8 325 (52) 214 (51) 57 (11) 128 (24) 12 (5) 14 (2)

9 1295(289) 897 (276) 1098 (257) 467(137) 81 (34) 178(37)

10 436 (42) 82 (5) 145 (20) 26 (8) 13 (2)

11 541 (121) 266 (108) 373 (92) 14 (4) 144(38) 238 (62) 99 (47) 34 (13)

12 550 (55) 210 (27) 50 (17) 12 (1)

13 809 (42) 324 (21) 55 (10) 27 (5)

tend = 1 leg = 1 calfdif3 = 1 pit = 1 vein = 1 altdiagn = 1 surg = 1

1 1028(131) 562 (69) 232 (46) 311 (72) 704(108) 155 (28) 669 (22) 81 (11)

2 814 (318) 541 (237) 169 (89) 353 (186) 419(196) 127 (57) 217 (58) 75 (34)

3 153 (26) 82 (19) 51 (20) 59 (19) 73 (22) 25 (8) 74 (3) 24 (10)

4 1756(411) 664 (238) 607 (251) 426 (210) 950(272) 283 (92) 906 (92) 198(77)

5 791 (126) 572 (90) 353 (79) 322 (79) 490 (85) 155 (32) 300 (43) 105(25)

6 1075(190) 494 (118) 217 (67) 303 (106) 357(100) 43 (16) 448 (26) 168(45)

7 429 (61) 203 (41) 30 (13) 96 (33) 87 (24) 33 (5) 176 (17) 25 (6)

8 325 (52) 161 (31) 47 (21) 93 (33) 97 (29) 39 (9) 114 (8) 16 (6)

9 1295(289) 924 (208) 583 (164) 556 (194) 799(193) 257 (82) 782 (98) 181(54)

10 436 (42) 222 (28) 168 (28) 66 (13) 91 (18) 1 (0) 119 (5) 58 (9)

11 541 (121) 239 (74) 152 (67) 162 (63) 270 (86) 38 (16) 313 (22) 96 (34)

12 550 (55) 176 (21) 83 (16) 114 (30) 251 (40) 28 (8) 245 (16) 39 (7)

13 809 (42) 258 (22) 75 (8) 153 (18) 196 (17) 32 (3) 399 (9) 45 (4)

Observed factor level counts (for which dvt = 1) for binary risk factors in each study of the DVT case study. Entries are left blank for studies that did not measure the
corresponding factor.
doi:10.1371/journal.pone.0060650.t001

ðModel \ 1Þ

ðModel 1Þ

IPD Meta-Analysis: One-Stage or Two-Stage?
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with unknown parameters a, b, ta, tb and tab. Here, a and b

represent the average baseline risk and factor-outcome association

across studies, respectively, ta and tb describe their respective

degree of heterogeneity between studies, and tab their between-

study covariance.

Option 2. Traditional (univariate) meta-analysis AD
model: Most researchers ignore within-study and between-study

covariances in parameter estimates and thus assume that

cov(aj ,bj) and tab equal 0 [51]. Essentially, this reduces Model

1 to a univariate meta-analysis of the factor-outcome association,

and is similar to the commonly applied DerSimonian and Laird’s

classical random-effects meta-analysis model [21,54], where:

b̂bj*N b,t2
bzvar(b̂bj)

� �
ðModel2Þ

with unknown parameters b and tb. This model no longer

synthesises the baseline risk across studies, and just pools the

factor-outcome associations.

One-stage Methods
In a one-stage method, the IPD from all studies are modeled

simultaneously whilst accounting for the clustering of subjects

within studies. The one-stage IPD-MA framework is a (multilevel)

logistic regression model with random effects. Different specifica-

tions are possible, as now described.

Option 1. Fully (bivariate) random-effects one-stage
model: Here, as in Model 1, random effects are specified for both

the intercept and the slope, and their between-study covariance is

modelled

yij*Bernoulli (pij)

logit pij

� �
~ajzbjxij

aj

bj

" #
*MVN

a

b

" #
,

t2
a tab

tab t2
b

" # !

where i indicates observations at the individual level and j again

represents the study level. Note that aj and bj are not explicitly

estimated (in contrast to Model 1, where it represents the AD from

the individual studies) but follow from the unknown parameters a,

b, ta, tb and tab. These parameters have the same interpretation

as those from Model 1.

Option 2. Reduced random-effects one-stage model: In

a reduced one-stage model, independent random effects are

assumed for the intercept and slope in order to avoid estimating

the between-study covariance, which can often be problematic:

yij*Bernoulli (pij)

logit pij

� �
~ajzbjxij

aj

bj

" #
*MVN

a

b

" #
,

t2
a 0

0 t2
b

" # !

Option 3. Stratified one-stage model: Finally, it is possible

to reduce the number of assumptions by estimating a stratified one-

stage model. This model no longer estimates an underlying

average for the intercepts but rather estimates a separate intercept

for each study. Thus the between-study normality assumption for

the intercept term is no longer required for aj , and there is no need

to estimate a between-study covariance term. However, heteroge-

neity in the the factor-outcome association is still modelled using a

random effect:

yij*Bernoulli (pij)

logit pij

� �
~
XM
m~1

amIm~j

� �
zbjxij

bj*N b,t2
b

� �
ðModel5Þ

where the indicator term Im~j indicates that a separate intercept

should be estimated for each study j~1, . . . ,M. Similar to Model

3 and Model 4, bj is not explicitly estimated but follows from the

unknown parameters a1, . . . ,aM , b and tb.

Extending the One-stage and Two-stage Models to
Examine Multiple Risk Factors

Previously, we described models for summarizing unadjusted

factor-outcome associations. Although these models are fairly

straightforward to implement, it is well known that factor-outcome

associations are often influenced by extraneous variables rendering

exposure groups incomparable. This situation may, for instance,

arise when associations are estimated from cohort and cross-

sectional studies (prognostic research) or treatment-by-patient-

characteristic interactions occur (intervention research). In addi-

tion, several authors have recommended that each factor should

be studied for their incremental (causal or predictive) value beyond

established risk factors [55,56]. This raises the need for multivar-

iable analyses, where the factor-outcome association under

investigation is adjusted for potential confounders or other known

predictors. Consequently, the methods from previous section

performing a univariate (or bivariate) meta-analysis need to be

extended to perform a (multivariate) meta-analysis where the

factor-outcome associations (and intercept) are adjusted for K

additional factors.

Extended two-stage models. For the two-stage method,

multivariable logistic regression models are estimated in each

study:

yi*Bernoulli (pi)

logit pið Þ~azbxiz
XK

k~1

hkzik

ðModelÞ

which yields an intercept âaj , a risk factor-outcome association b̂bj ,

confounder-outcome associations ĥhj1, . . . ,ĥhjK and a within-study

covariance matrix ŜSj for each study. A summary estimate for the

regression coefficients and model intercept can be obtained by

extending the bivariate random-effects model from Model 1 into a

multivariate generalization [43,52,57,58].

ðModel 2Þ

ðModel 3Þ

ðModel 4Þ

ðModel 5Þ

ðModel \ 2Þ

IPD Meta-Analysis: One-Stage or Two-Stage?
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ĥhj1

..

.
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ðModelAÞ

Usually researchers assume zero within-study and between-study

correlation, and so perform a separate univariate meta-analysis to

each factor-outcome and confounder-outcome association sepa-

rately; that is Model 2 is fitted for each of the log odds ratio terms

separately (Model B).

Extended one-stage models. The fully random-effects one-

stage model with multiple risk factors is specified as follows:

yij*Bernoulli (pij)

logit pij

� �
~ajzbjxijz

XK
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hjzij
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k
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1
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ðModelCÞ

Alternatively, a reduced one-stage model can be estimated by

assuming independent random effects for a,b,h1, . . . ,hK , i.e. the

off-diagonal terms in Model,C are set to 0 (Model D).

Finally, it is possible to reduce the number of random effects by

stratifying the intercepts and/or predictors for which a summary

estimate is not of interest. For example, one-stage stratified model

that estimates a separate intercept for each study can be achieved

as follows:

yij*Bernoulli (pij)

logit pij

� �
~
XM
m~1

amIm~j

� �
zbjxijz
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k
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.
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0
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1
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ðModelEÞ

Stratification on all confounders may, however, not always be

feasible due to sample size constraints. For this reason, we

generally recommend to model separate intercept terms and to

assume random effects for all predictor effects (and hence reduce

model complexity by introducing additional assumptions). The

underlying rationale is that accurate estimates for confounding

parameters are usually not required. Although this simplification

may introduce bias in all parameter estimates, baseline risks are

likely most affected because they capture all unexplained variation.

A non-parametric modeling approach for the intercept terms may

thus better accommodate model misspecification.

Estimation Procedures and Approximations
In the two-stage methods, the first stage model (logistic

regression in each study) is estimated using maximum likelihood

(ML). In the second stage, the AD meta-analysis models are

estimated using, for example, methods of moment (MOM) or

restricted maximum likelihood (REML) [21,52,54,59,60]. This

can be implemented in numerous software, with packages such as

lme4 and mvmeta in R, Proc Mixed in SAS and mvmeta in STATA.

However, difficulties may arise in the first or second stage

estimation. For risk factors that are binary, if zero cell counts occur

in some of the included studies (e.g. when all patients with the risk

factor presence also have the outcome), the likelihood function

may not converge or converges in an unstable factor-outcome

association. This problem is also known as (partial) separation

[61,62], and can be overcome by penalization [63–67] or adding a

continuity correction [68,69]. A second problem may arise when

the number of included studies is small as estimation of between-

study covariance may become problematic [43,52,70].

One-stage methods involve the estimation of a mixed effects

(multilevel) model which is often high dimensional [67]. For this

reason, numerical integration is often achieved through approx-

imate methods such as adaptive Gauss-Hermite Quadrature

[29,71–73]. Although estimation becomes more precise as the

number of quadrature points increases, it often gives rise to

computational difficulties and convergence problems [74]. Fur-

thermore, it has been demonstrated that the one-stage method

may yield (downwardly) biased variance parameters when studies

are small or limited in number [29,75–77]. The one-stage method

may also produce downwardly biased coefficient estimates when

an incorrect model is specified, for instance when random effects

are wrongly assumed [78]. This may increase type-II errors.

Although these issues could be reduced by penalization, there is a

lack of REML procedures due to the computational difficulty of

the second-order Laplace approximation [75].

ðModel A)

ðModel C)

ðModel E)

IPD Meta-Analysis: One-Stage or Two-Stage?
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Case Studies

In this section, we illustrate the benefits, limitations and

differences of one-stage and two-stage methods in the DVT data.

For all case studies, in the two-stage models we used MLE in the

first stage and MLE, REML or MOM in the second stage. For the

one-stage models we used adaptive Gauss-Hermite Quadrature

with 1 (Laplacian approximation) and 5 quadrature points.

In the first case study, we performed meta-analyses to estimate

the unadjusted factor-outcome association for 16 risk factors using

each of the models described above, and we examined the

obtained log odds ratio (b), standard error (S.E.), between-study

variability (tb) and between-study correlation (rab). The models

considered are: full bivariate two-stage meta-analysis (Mod-

el\1+Model 1), traditional univariate two-stage meta-analysis

(Model\1 +Model 2), fully random-effects one-stage meta-analysis

(Model 3), reduced random-effects one-stage meta-analysis (Model

4) and stratified one-stage meta-analysis (Model 5). For two-stage

methods, we penalized the likelihood using Jeffreys invariant prior

in datasets with (partial) separation in order to stabilize study-

specific estimates [63,64].

In the second case study, we performed meta-analyses to

investigate the risk factor ddimdich, adjusted for 3 covariates (malign,

surg and calfdif3). Hereto, we estimated the following models:

extended full two-stage model (Model\2+Model A), extended

reduced two-stage model (Model\2+Model B), extended full one-

stage model (Model C), extended reduced one-stage model (Model

D) and extended stratified one-stage model (Model E).

For all models, we calculated p-values (with a~0:05) and

corresponding 95% confidence intervals for the estimated odds

ratios, according to:

b̂b+za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE(b̂b)2

q
where za is the 0:975 percentile of the standardized normal

distribution. Finally, we calculated 95% prediction intervals to

indicate a range for the predicted odds ratio in a new study

[32,34]. Assuming the random effects are normally distributed

with between-study standard deviation, then an approximate 95%
prediction interval for the factor-outcome association in an

unspecified study can be obtained as:

b̂b+ta
M{2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̂t2

bzSE(b̂b)2
q

where b̂b is the estimate of the average factor-outcome association

across studies, and ta
M{2 is the 0:975 percentile of the Student’s t

distribution with M{2 degrees of freedom, where M is the

number of studies in the meta-analysis.

All models were implemented in R 2.15.1 using Linux Mint 14

Nadia (MATE 64-bit) and incorporated the packages lme4

(v0.999999-0), mvmeta (v0.3.4), logistf (v1.10) and metamisc (v0.0.4).

Additional source code is available in Supporting Information S1.

Results

One-stage Versus Two-stage Methods
Results in Table 2 and Table S3 indicate that one- and two-

stage methods often yield similar estimates for pooled factor-

outcome associations, but importantly not always. For example,

for the factor par we found an odds ratio of 1.45 (Model,1 using

MLE) versus 1.32 (Model,5 using MLE). Occasionally, differ-

ences led to the one-stage and two-stage models disagreeing upon

statistical significance (e.g. eryt). These differences mainly occurred

when relatively few data were available per study (coag and par), or

relatively few studies were at hand (eryt and ddim). For instance, the

OR of eryt was 1.52 (95% CI: 0.93 to 2.47) for the univariate two-

stage approach (using DerSimonian and Laird’s MOM estimator),

versus 1.35 (95% CI 1.03 to 1.77) for the stratified one-stage

approach. Furthermore, one-stage and two-stage methods tend to

provide different estimates for standard errors and between-study

heterogeneity parameters, leading to different prediction intervals.

For instance, the prediction interval for the odds ratio of ddimdich

ranged from 8.65 to 36.20 (Model 2 using MLE), versus 14.24 to

24.17 (Model 5 using MLE). Although usually they give similar

results, the univariate two-stage method (Model 2) sometimes

obtains different conclusions to the bivariate two-stage method

(Model 1). For instance, for eryt we respectively found an odds ratio

of 1.55 (p~0:115) versus 1.38 (p~0:043) when REML was used

as estimation procedure. Finally, the bivariate two-stage method

(Model 1) often gives more similar results to the one-stage method.

For the factor eryt, we found OR~1:37 with p~0:036 using

Model 1 (bivariate two-stage model), versus OR~1:37 with

p~0:037 for Model 3 (bivariate one-stage model), OR~1:39 with

p~0:046 for Model 4 (reduced one-stage model) and OR~1:35
with p~0:029 for Model 5 (stratified one-stage model). These

estimates were all somewhat different to the results for Model 2

(univariate two-stage MoM) where OR~1:52 with p~0:094.

Estimation of Correlation between Random Effects
As previously described, only the full one- and two-stage models

(Model 1 & Model 3) estimate a parameter for the correlation

between random effects. Results in Table 2 demonstrate that these

models often yield correlation estimates that are close to +1 or 21,

particularly when insufficient data are available and MLE is used.

If correlations between random effects are assumed zero (Model 2

& Model 4), we noticed that parameter estimates may considerably

change and thereby affect the calculation of p-values and

prediction intervals. A good example is the unadjusted factor coag,

where the prediction interval for the OR ranged from 0.62 to 2.47

(Model 1 with MLE) versus 0.75 to 2.23 (Model 2 with MLE), and

the corresponding p-value decreased from 0.172 to 0.078. Similar

findings were obtained for the adjusted analyses (Table 2). Finally,

results indicate that the estimated correlation between random

effects tends to be less extreme when REML is used (Table 3). The

factor surg is a good example, as rab decreased from 20.90 (MLE)

to 20.65 (REML).

Estimation of Stratified Models
It is possible to avoid estimating correlation between random

effects without assuming independence by using a stratified one-

stage model, for example where a separate intercept is estimated

for each study (Model 5) and, in the adjusted analyses, where

predictors not of key interest are also stratified. Results indicate

that the estimation of a separate intercept for each study (Model 5)

tends to decrease the standard errors and between-study

heterogeneity of factor-outcome associations (unless between-study

correlations are +1 or 21). This, in turn, resulted in smaller

prediction intervals for estimated odds ratios. For instance, the

prediction interval for the unadjusted OR of ddimdich ranged from

8.08 to 38.78 (Model 3), versus 14.24 to 24.17 (Model 5).

Estimation of One-stage Models
One-stage models were estimated with 1 and 5 quadrature

points, and sometimes suffered from convergence problems (e.g.

par and coag in Table 2 where positive indefiniteness occurred

IPD Meta-Analysis: One-Stage or Two-Stage?
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Table 2. Estimated unadjusted factor-outcome associations for the DVT case study.

Risk Factor Model Estimation b S.E.(b) tb ra b OR 95% CI 95% PI p-value

\1z1 MLE 2.76 0.15 0.30 0.52 15.86 11.73 to 21.45 6.98 to 36.06 ,0.001

\1z1 REML 2.78 0.17 0.33 0.28 16.10 11.64 to 22.27 6.48 to 40.00 ,0.001

\1z2 MLE 2.87 0.15 0.25 17.69 13.15 to 23.80 8.65 to 36.20 ,0.001

\1z2 REML 2.89 0.17 0.31 17.97 12.88 to 25.06 7.49 to 47.04 ,0.001

ddimdich (8 ) 3 MOM 2.89 0.17 0.32 17.98 12.87 to 25.13 7.43 to 43.54 ,0.001

3 MLE 1QP 2.87 0.15 0.28 0.07 17.70 13.14 to 23.86 8.08 to 38.78 ,0.001

3 MLE 5QP 2.85 0.14 0.25 0.58 17.35 13.15 to 22.89 8.62 to 34.91 ,0.001

4 MLE 1QP 2.88 0.15 0.29 17.79 13.15 to 24.07 8.00 to 39.56 ,0.001

4 MLE 5QP 2.85 0.19 0.41 17.37 12.06 to 25.01 5.74 to 52.55 ,0.001

5 MLE 1QP 2.92 0.11 0.00 18.55 15.01 to 22.93 14.24 to 24.17 ,0.001

5 MLE 5QP 2.92 0.11 0.00 18.46 14.94 to 22.81 14.17 to 24.04 ,0.001

\1z1 MLE 0.37 0.14 0.26 20.47 1.45 1.11 to 1.90 0.76 to 2.75 0.007

\1z1 REML 0.38 0.14 10.29 20.45 1.46 1.10 to 1.93 0.71 to 2.98 0.009

\1z2 MLE 0.33 0.13 0.23 1.38 1.06 to 1.80 0.76 to 2.51 0.016

\1z2 REML 0.33 0.14 0.27 1.39 1.05 to 1.84 0.71 to 2.73 0.020

\1z2 MOM 0.33 0.13 0.24 1.38 1.06 to 1.80 0.76 to 2.52 0.016

par (13 ) 3 MLE 1QP 0.32 0.13 0.23 20.37 1.38 1.07 to 1.79 0.77 to 2.48 0.013

3 MLE 5QP

4 MLE 1QP 0.29 0.13 0.21 1.33 1.03 to 1.71 0.78 to 2.27 0.026

4 MLE 5QP

5 MLE 1QP 0.28 0.13 0.19 1.32 1.03 to 1.70 0.79 to 2.21 0.026

5 MLE 5QP

\1z1 MLE 0.32 0.15 0.10 1.00 1.37 1.02 to 1.84 0.13 to 13.97 0.036

\1z1 REML 0.32 0.16 0.13 1.00 1.38 1.01 to 1.87 0.10 to 18.23 0.043

\1z2 MLE 0.30 0.14 0.00 1.35 1.03 to 1.77 0.23 to 7.87 0.030

\1z2 REML 0.44 0.28 0.39 1.55 0.90 to 2.66 0.00 to 664.30 0.115

\1z2 MOM 0.42 0.25 0.33 1.52 0.93 to 2.47 0.01 to 303.63 0.094

eryt (3 ) 3 MLE 1QP 0.31 0.15 0.10 1.00 1.37 1.02 to 1.83 0.14 to 13.02 0.037

3 MLE 5QP 0.31 0.15 0.10 1.00 1.37 1.02 to 1.83 0.14 to 13.04 0.037

4 MLE 1QP 0.33 0.17 0.14 1.39 1.01 to 1.92 0.09 to 22.31 0.046

4 MLE 5QP 0.33 0.17 0.14 1.39 1.01 to 1.93 0.09 to 22.62 0.046

5 MLE 1QP 0.30 0.14 0.00 1.35 1.03 to 1.77 0.23 to 7.80 0.029

5 MLE 5QP 0.30 0.14 0.00 1.35 1.03 to 1.77 0.23 to 7.80 0.029

\1z1 MLE 0.10 0.18 0.20 21.00 1.11 0.78 to 1.57 0.35 to 3.52 0.574

\1z1 REML 0.10 0.19 0.23 21.00 1.10 0.76 to 1.60 0.31 to 3.97 0.595

\1z2 MLE 20.02 0.15 0.00 0.98 0.73 to 1.31 0.52 to 1.86 0.898

\1z2 REML 0.02 20.15 0.00 0.98 0.73 to 1.31 0.52 to 1.86 0.898

\1z2 MOM 20.02 0.15 0.00 0.98 0.73 to 1.31 0.52 to 1.86 0.898

oachst (4{ ) 3 MLE 1QP 0.08 0.17 0.18 21.00 1.09 0.77 to 1.53 0.37 to 3.22 0.629

3 MLE 5QP

4 MLE 1QP 20.03 0.15 0.00 0.98 0.73 to 1.31 0.51 to 1.85 0.866

4 MLE 5QP

5 MLE 1QP 20.03 0.15 0.00 0.97 0.72 to 1.30 0.51 to 1.84 0.830

5 MLE 5QP

\1z1 MLE 0.21 0.16 0.22 0.98 1.24 0.91 to 1.68 0.62 to 2.47 0.172

\1z1 REML 0.22 0.17 0.29 0.82 1.24 0.88 to 1.75 0.52 to 2.95 0.218

\1z2 MLE 0.26 0.15 0.15 1.29 0.97 to 1.72 0.75 to 2.23 0.078

\1z2 REML 0.26 0.16 0.23 1.29 0.94 to 1.78 0.63 to 2.65 0.116

\1z2 MOM 0.26 0.16 0.21 1.29 0.95 to 1.76 0.66 to 2.51 0.103
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when 5 quadrature points were used). Possibly, these problems are

related to poor model specification. Parameter estimates were

similar for 1 and 5 quadrature points in the unadjusted analyses,

however, some small differences occurred in the adjusted analyses

(e.g. ddimdich in Table 3).

Discussion

We have described several random-effects IPD-MA models that

implement a one-stage or two-stage method, where one desires to

evaluate a potential causal (risk) factor or predictor of outcome.

We detailed how they can be estimated and also extended to adjust

for other factors. Despite the conventional belief that one-stage

and two-stage methods yield similar conclusions [35–37], our

empirical investigation shows that this is not always the case.

Specifically, we found that different estimates for pooled effects,

standard errors, between-study heterogeneity and correlation

between random effects can result from choosing a different

method (one-stage or two-stage), choosing a different estimation

procedure (MLE, REML, MOM, number of quadrature points)

and choosing a different model specification (independent random

effects, joint random effects, stratified estimation). Although these

differences were usually not substantial, in the DVT example they

lead to discrepancies concerning the statistical significance of age,

duration of symptoms, family history of thrombofilia, presence of

erythema, presence of paresis and (dichotomized) D-dimer value.

Thus, importantly the choice of IPD-MA method may actually

influence the conclusions about which factors are thought to be

risk factors. This makes it desirable to pre-specify in a study

protocol what meta-analysis method will be used, to avoid

unjustified post-hoc analyses being performed to achieve statistical

significance. We generally recommend that the one-stage method

should be used. This method models the exact binomial

distribution of the data in each study, and does not require a

continuity correction when (partial) separation occurs [61–64,67].

The one-stage method may therefore produce more reliable results

than the two-stage method when few studies or few subjects per

study are available, as the two-stage method incorrectly assumes

asymptotic normality (for the log odds ratio estimates from each

study) in such scenarios [67]. The one-stage method further

facilitates the adjustment for other factors, which is particularly

important in non-randomised settings. In addition, one-stage

models are more flexible, for example making the implementation

of non-linear associations and interactions straightforward

[24,37,79–82]. Finally, stratification in one-stage models avoids

the need for estimating correlations between random effects. One

can simply estimate study-specific intercepts and slopes and place

the random effect only on the factor of interest.

Although we focused on IPD-MA of prognostic factors in this

article, the two-stage methods can also be applied when only AD

data is available for the included studies. These methods are

usually preferred because sharing of IPD is often unfeasible due to,

Table 2. Cont.

Risk Factor Model Estimation b S.E.(b) tb ra b OR 95% CI 95% PI p-value

coag (7 ) 3 MLE 1QP 0.19 0.16 0.23 1.00 1.20 0.88 to 1.64 0.59 to 2.46 0.241

3 MLE 5QP

4 MLE 1QP 0.21 0.16 0.22 1.24 0.90 to 1.69 0.61 to 2.51 0.186

4 MLE 5QP

5 MLE 1QP 0.22 0.13 0.01 1.25 0.97 to 1.61 0.90 to 1.74 0.083

5 MLE 5QP

The number between brackets indicates the amount of available studies. Statistical significance (p-value), 95% confidence intervals (95% CI) and 95% prediction
intervals (95% PI) are given for the odds ratio (OR). For some one-stage models, estimates could not be obtained because the adaptive Gauss-Hermite approximation
did not converge.
{Zero-cells occurred in two studies for factor oachst.
doi:10.1371/journal.pone.0060650.t002

Table 3. Estimated factor-outcome associations in the DVT case study for ddimdich, adjusted for malign, surg and calfdif3.

Risk factor Model Estimation b S.E.(b) tb OR p-value

\1zA MLE 2.62 0.18 0.40 13.67 ,0.001

\1zA REML 2.64 0.20 0.44 13.80 ,0.001

\1zB MLE 2.67 0.15 0.25 14.48 ,0.001

\1zB REML 2.69 0.17 0.33 14.75 ,0.001

C MLE 1QP 2.70 0.18 0.39 14.81 ,0.001

ddimdich (10 ) C MLE 5QP 2.70 0.18 0.40 14.83 ,0.001

D MLE 1QP 2.67 0.16 0.33 14.42 ,0.001

D MLE 5QP 2.69 0.14 0.22 14.74 ,0.001

E MLE 1QP 2.72 0.11 0.00 15.25 ,0.001

E MLE 5QP 2.72 0.11 0.00 15.25 ,0.001

doi:10.1371/journal.pone.0060650.t003
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for instance, confidentiality agreements. Results from our empir-

ical example demonstrate that the full two-stage model, which

when pooling the AD accounts for heterogeneity of baseline risk

and risk factors, and their within-study and between-study

correlation, tends to yield most consistent results with the one-

stage models. The full two-stage method is a bivariate meta-

analysis, which by additionally using the correlation between

parameter estimates, is known to have benefits over a univariate

me-analysis [43]. The methods presented here could further be

extended using methods allowing for the combination of IPD with

AD [49,83,84]. Potential limitations such as missing data in a

subset of studies could be overcome using imputation methods that

account for clustering. A Bayesian approach would be the most

promising, as it would permit specification of the imputation

model alongside the one-stage model, resolving several estimation

limitations of the current approaches [32,85,86]. Furthermore,

Bayesian approaches facilitate sensitivity analyses through adjust-

ing prior specification, and permit the the robustness of fitted

models to be evaluated. This is particularly useful when few studies

are available and estimated parameters of one- and two-stage

models may be severely biased due to estimation difficulties.

Future research is needed to evaluate the performance of the

described methods, and to compare their accuracy and coverage

with Bayesian alternatives.

In summary, the choice of one-stage or two-stage method for

performing a random-effects IPD-MA may influence the statistical

identification of risk factors (predictors) for a binary outcome.

When the number of studies in the meta-analysis are large and the

number of events in each study are not few, we agree with Stewart

et al [37] that a two-stage method will usually suffice. However, we

generally recommend that a one-stage IPD-MA method is used as

this models the exact binomial distribution, accounts for within-

study parameter correlation, offers more flexibility in the model

specification and avoids continuity corrections. It is therefore

particularly preferable when few studies or few events in some

studies are available.

Supporting Information

Supporting Information S1 Full model specifications
and R code for implementation.

(GZ)

Table S1 Overview of the DVT datasets.

(PDF)

Table S2 Overview of the variables in the DVT datasets.

(PDF)

Table S3 Additional results Case Study.

(PDF)

Author Contributions

Conceived and designed the experiments: TPD KGM GAZ HK RDR.

Performed the experiments: TPD RDR. Analyzed the data: TPD KGM

HK RDR. Contributed reagents/materials/analysis tools: TPD KGM

GAZ HK RDR. Wrote the paper: TPD KGM GAZ HK RDR.

References

1. Hall PA, Going JJ (1999) Predicting the future: a critical appraisal of cancer

prognosis studies. Histopathology 35: 489–494.

2. Sauerbrei W, Holländer N, Riley R, Altman D (2006) Evidence-based

assessment and application of prognostic markers: The long way from single

studies to meta-analysis. Communications in Statistics - Theory and Methods 35.

3. Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman DG (2009)

Prognosis and prognostic research: what, why, and how? British Medical Journal

338.

4. Braitman LE, Davidoff F (1996) Predicting clinical states in individual patients.

Annals of Internal Medicine 125: 406–412.

5. Brotman DJ, Walker E, Lauer MS, O’Brien RG (2005) In search of fewer

independent risk factors. Archives of Internal Medicine 165: 138–145.

6. Bouwmeester W, Zuithoff NPA, Mallett S, Geerlings MI, Vergouwe Y, et al.

(2012) Reporting and methods in clinical prediction research: a systematic

review. PLoS Medicine 9: 1–12.

7. Hemingway H, Croft P, Perel P, Hayden J, Abrams K, et al. (2012) Prognosis

research strategy (PROGRESS) 1: a framework for researching clinical

outcomes. British Medical Journal in press.

8. Riley RD, Hayden JA, Steyerberg EW, Moons KGM, Abrams K, et al. (2012)

Prognosis research strategy (PROGRESS) 2: Prognostic factor research. PLoS

Medicine in press.

9. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Jones DR, et al. (2003)

Reporting of prognostic markers: current problems and development of

guidelines for evidence based practice in the future. British Journal of Cancer

88: 1191–1198.

10. Kyzas PA, Denaxa-Kyza D, Ioannidis JPA (2007) Almost all articles on cancer

prognostic markers report statistically significant results. European Journal of

Cancer 43: 2559–2579.

11. Simon R, Altman DG (1994) Statistical aspects of prognostic factor studies in

oncology. British Journal of Cancer 69: 979985.

12. Riley RD, Abrams KR, Lambert P, Sutton A, Altman D (2007) Where next for

evidence synthesis of prognostic marker studies? improving the quality and

reporting of primary studies to facilitate clinically relevant evidence-based

results. In: Auget NMG Jean-Louis;Balakrishnan, editor, Advances in Statistical

Methods for the Health Sciences, Birkhauser Boston, Statistics for Industry and

Technology. 39–58.

13. Shrier I, Boivin JF, Platt RW, Steele RJ, Brophy JM, et al. (2008) The

interpretation of systematic reviews with meta-analyses: an objective or

subjective process? BMC Medical Informatics and Decision Making 8: 19.

14. Altman DG (2001) Systematic reviews of evaluations of prognostic variables.

British Medical Journal 323.

15. Altman DG, Riley RD (2005) Primer: an evidence-based approach to prognostic

markers. Nature Clinical Practice Oncology 2: 466–472.

16. Sauerbrei W (2005) Prognostic factors. Confusion caused by bad quality design,
analysis and reporting of many studies. Advances in oto-rhino-laryngology 62:

184–200.

17. Riley RD, Ridley G, Williams K, Altman DG, Hayden J, et al. (2007) Prognosis

research: toward evidence-based results and a Cochrane methods group. Journal
of Clinical Epidemiology 60: 863–5; author reply 865–6.

18. Hemingway H, Riley RD, Altman DG (2009) Ten steps towards improving
prognosis research. British Medical Journal 339: b4184.

19. Abo-Zaid GMA, Sauerbrei W, Riley RD (2012) Individual participant data

meta-analysis of prognostic factor studies: state of the art? BMC Medical

Research Methodology 12: 56.

20. Crowther MJ, Riley RD, Staessen JA, Wang J, Gueyffier F, et al. (2012)
Individual patient data meta-analysis of survival data using poisson regression

models. BMC Medical Research Methodology 12: 34.

21. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled

Clinical Trials 7: 177–188.

22. Normand SL (1999) Meta-analysis: formulating, evaluating, combining, and

reporting. Statistics in Medicine 18: 321–359.

23. Montori VM, Swiontkowski MF, Cook DJ (2003) Methodologic issues in

systematic reviews and meta-analyses. Clinical Orthopaedics and Related
Research 413: 43–54.

24. Simmonds MC, Higgins JPT, Stewart LA, Tierney JF, Clarke MJ, et al. (2005)

Meta-analysis of individual patient data from randomized trials: a review of

methods used in practice. Clinical Trials 2: 209–217.

25. Higgins JPT, Green S (2011) Cochrane Handbook for Systematic Reviews of
Interventions Version 5.1.0. The Cochrane Collaboration.

26. Hlatky MA, Boothroyd DB, Bravata DM, Boersma E, Booth J, et al. (2009)
Coronary artery bypass surgery compared with percutaneous coronary

interventions for multivessel disease: a collaborative analysis of individual
patient data from ten randomised trials. Lancet 373: 1190–1197.

27. Deeks JJ (2002) Issues in the selection of a summary statistic for meta-analysis of
clinical trials with binary outcomes. Statistics in Medicine 21: 1575–1600.

28. Hedges LV, Vevea JL (1998) Fixed- and random-effects models in meta-analysis.

Psychological Methods 3: 486–504.

29. Guang G, Hongxin Z (2000) Multilevel modelling for binary data. Annual

Review of Sociology 26: 441–462.

30. Hunter JE, Schmidt FL (2000) Fixed effects vs. random effects meta-analysis

models: Implications for cumulative research knowledge. Implications for
cumulative research knowledge 8: 275–292.

31. Brockwell SE, Gordon IR (2001) A comparison of statistical methods for meta-
analysis. Statistics in Medicine 20: 825–840.

32. Higgins JPT, Thompson SG, Spiegelhalter DJ (2009) A re-evaluation of

random-effects metaanalysis. Journal of the Royal Statistical Society

Series A (Statistics in Society) 172: 137–159.

IPD Meta-Analysis: One-Stage or Two-Stage?

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e60650



33. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2010) A basic

introduction to fixed-effect and random-effects models for meta-analysis.
Research Synthesis Methods 1: 97–111.

34. Riley RD, Higgins JPT, Deeks JJ (2011) Interpretation of random effects meta-

analyses. British Medical Journal 342: d549.
35. Abo-Zaid GMA, Guo B, Deeks JJ, Debray TPA, Steyerberg EW, et al. (2012)

Individual participant data meta-analyses should not ignore clustering. Journal
of Clinical Epidemiology Submitted.

36. Mathew T, Nordström K (2010) Comparison of one-step and two-step meta-

analysis models using individual patient data. Biometrical Journal 52: 271–287.
37. Stewart GB, Altman DD, Askie L, Duley L, Simmonds M, et al. (2012)

Statistical analysis of individual participant data meta-analyses: a comparison of
methods and recommendations for practice. PLoS ONE 7: e46042.

38. Debray TPA, Moons KGM, Ahmed I, Koffijberg H, Riley RD (2013) A
framework for developing, implementing, and evaluating clinical prediction

models in an individual participant data metaanalysis. Statistics in Medicine

Accepted.
39. Olkin I, Sampson A (1998) Comparison of meta-analysis versus analysis of

variance of individual patient data. Biometrics 54: 317–322.
40. Mathew T, Nordström K (1999) On the equivalence of meta-analyis using

literature and using individual patient data. Biometrics 55: 1221–1223.

41. Jones AP, Riley RD, Williamson PR, Whitehead A (2009) Meta-analysis of
individual patient data versus aggregate data from longitudinal clinical trials.

Clinical Trials 6: 16–27.
42. Walter SD (1997) Variation in baseline risk as an explanation of heterogeneity in

meta-analysis. Statistics in Medicine 16: 2883–2900.
43. Jackson D, Riley R, White IR (2011) Multivariate meta-analysis: Potential and

promise. Statistics in Medicine 30: 2481–2498.

44. Steyerberg EW, Eijkemans MJ, Van Houwelingen JC, Lee KL, Habbema JD
(2000) Prognostic models based on literature and individual patient data in

logistic regression analysis. Statistics in Medicine 19: 141–160.
45. Fibrinogen Studies Collaboration, Jackson D, White I, Kostis JB, Wilson AC, et

al. (2009) Systematically missing confounders in individual participant data

meta-analysis of observational cohort studies. Statistics in Medicine 28: 1218–
1237.

46. Thompson S, Kaptoge S, White I, Wood A, Perry P, et al. (2010) Statistical
methods for the timeto-event analysis of individual participant data from

multiple epidemiological studies. International Journal of Epidemiology 39:
1345–1359.

47. Geersing GJ (2011) Strategies in suspected venous thrombo-embolism in

primary care. Ph.D. thesis, Utrecht University, Utrecht, The Netherlands.
48. Riley RD, Lambert PC, Abo-Zaid G (2010) Meta-analysis of individual

participant data: rationale, conduct, and reporting. British Medical Journal 340:
c221.

49. Riley RD, Lambert PC, Staessen JA, Wang J, Gueyffier F, et al. (2008) Meta-

analysis of continuous outcomes combining individual patient data and
aggregate data. Statistics in Medicine 27: 1870–1893.

50. Riley RD, Abrams KR, Lambert PC, Sutton AJ, Thompson JR (2007) An
evaluation of bivariate random-effects meta-analysis for the joint synthesis of two

correlated outcomes. Statistics in Medicine 26: 78–97.
51. Riley RD (2009) Multivariate meta-analysis: the effect of ignoring within-study

correlation. Journal of the Royal Statistical Society Series A (Statistics in Society)

172: 789–811.
52. Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and

Laird’s methodology to perform multivariate random effects meta-analyses.
Statistics in Medicine 29: 1282–1297.

53. van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced methods in meta-

analysis: multivariate approach and meta-regression. Statistics in Medicine 21:
589–624.

54. Jackson D, Bowden J, Baker R (2010) How does the DerSimonian and Laird
procedure for random effects meta-analysis compare with its more efficient but

harder to compute counterparts? Journal of Statistical Planning and Inference

140: 961–970.
55. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, et al. (2009)

Criteria for evaluation of novel markers of cardiovascular risk: a scientific
statement from the american heart association. Circulation 119: 2408–2416.

56. Moons KGM (2010) Criteria for scientific evaluation of novel markers: a
perspective. Clinical Chemistry 56: 537–541.

57. Debray TPA, Koffijberg H, Vergouwe Y, Moons KG, Steyerberg EW (2012)

Aggregating published prediction models with individual participant data: a
comparison of different approaches. Statistics in Medicine 31: 2697–2712.

58. Mavridis D, Salanti G (2012) A practical introduction to multivariate meta-
analysis. Statistical Methods in Medical Research.

59. Hardy RJ, Thompson SG (1996) A likelihood approach to meta-analysis with
random effects. Statistics in Medicine 15: 619–629.

60. Chen H, Manning AK, Dupuis J (2012) A method of moments estimator for

random effect multivariate meta-analysis. Biometrics Accepted for publication.

61. Albert A, Anderson J (1984) On the existence of maximum likelihood estimates

in logistic regression models. Biometrika 71: 1–10.

62. Lesaffre E, Albert A (1989) Partial separation in logistic discrimination. Journal
of the Royal Statistical Society Series B (Methodological) 51: 109–116.

63. Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80:

27–38.

64. Heinze G, Schemper M (2002) A solution to the problem of separation in logistic

regression. Statistics in Medicine 21: 2409–2419.

65. Krishnapuram B, Carin L, Figueiredo MAT, Hartemink AJ (2005) Sparse

multinomial logistic regression: Fast algorithms and generalization bounds.

IEEE Transactions on Pattern Analysis and Machine Learning 27: 957–968.

66. Hastie T, Tibshirani R, Friedman J, Hastie T, Tibshirani R, et al. (2009) Basis

expansions and regularization. In: The Elements of Statistical Learning, New

York, NY: Springer New York, Springer Series in Statistics. 139–189.

67. Stijnen T, Hamza TH, Ozdemir P (2010) Random effects meta-analysis of event

outcome in the framework of the generalized linear mixed model with
applications in sparse data. Statistics in Medicine 29: 3046–3067.

68. Sweeting MJ, Sutton AJ, Lambert PC (2004) What to add to nothing? Use and

avoidance of continuity corrections in meta-analysis of sparse data. Statistics in
Medicine 23: 1351–1375.

69. Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A (2007) Much ado about

nothing: a comparison of the performance of meta-analytical methods with rare
events. Statistics in Medicine 26: 53–77.

70. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Thompson JR (2007) Bivariate
random-effects meta-analysis and the estimation of between-study correlation.

BMC Medical Research Methodology 7: 3.

71. Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in
the nonlinear mixed-effects model. Journal of Computational and Graphical

Statistics 4: 12–35.

72. Rabe-Hesketh S, Skrondal A (2002) Reliable estimation of generalized linear
mixed models using adaptive quadrature. The Stata Journal 2: 1–21.

73. Nia VP (2006) 8th iranian statistics conference. In: Gauss-Hermite quadrature:
numerical or statistical method?

74. Lesaffre E, Spiessens B (2001) On the effect of the number of quadrature points

in a logistic random-effects model: an example. Journal of the Royal Statistical
Society Series C (Applied Statistics) 50: 325–335.

75. Maengseok N, Lee Y (2007) REML estimation for binary data in GLMMs.

Journal of Multivariate Analysis 98: 896–915.

76. Austin PC (2010) Estimating multilevel logistic regression models when the

number of clusters is low: a comparison of different statistical software
procedures. International Journal of Biostatistics 6: Article 16.

77. Broström G, Holmberg H (2011) Generalized linear models with clustered data:

Fixed and random effects models. Computational Statistics & Data Analysis 55:
3123–3134.

78. Dutton MT (2010) Individual Patient-Level Data Meta-Analysis: A Comparison

of Methods For The Diverse Populations Collaboration Data Set. Ph.D. thesis,
Florida State University.

79. Stewart LA, Parmar MK (1993) Meta-analysis of the literature or of individual
patient data: is there a difference? Lancet 341: 418–422.

80. Stewart LA, Clarke MJ (1995) Practical methodology of meta-analyses

(overviews) using updated individual patient data. Statistics in Medicine 14:
2057–2079.

81. Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI, et al. (2002)

Individual patient- versus group-level data meta-regressions for the investigation
of treatment effect modifiers: ecological bias rears its ugly head. Statistics in

Medicine 21: 371–387.

82. Stewart LA, Tierney JF (2002) To IPD or not to IPD? Advantages and

disadvantages of systematic reviews using individual patient data. Evaluation &

the health professions 25: 76–97.

83. Sutton AJ, Kendrick D, Coupland C (2008) Meta-analysis of individual- and

aggregate-level data. Statistics in Medicine 27: 651–669.

84. Riley RD, Steyerberg EW (2010) Meta-analysis of a binary outcome using
individual participant data and aggregate data. Research Synthesis Methods 1:

2–19.

85. Browne WJ, Draper D (2006) A comparison of Bayesian and likelihood-based

methods for fitting multilevel models. Bayesian Analysis 1: 473–514.

86. Sutton AJ, Higgins JPT (2008) Recent developments in meta-analysis. Statistics
in Medicine 27: 625–650.

IPD Meta-Analysis: One-Stage or Two-Stage?

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e60650


