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Abstract

Social influence can lead to behavioural ‘fads’ that are briefly popular and quickly die out.

Various models have been proposed for these phenomena, but empirical evidence of their

accuracy as real-world predictive tools has so far been absent. Here we find that a ‘complex

contagion’ model accurately describes the spread of behaviours driven by online sharing.

We found that standard, ‘simple’, contagion often fails to capture both the rapid spread and

the long tails of popularity seen in real fads, where our complex contagion model succeeds.

Complex contagion also has predictive power: it successfully predicted the peak time and

duration of the ALS Icebucket Challenge. The fast spread and longer duration of fads driven

by complex contagion has important implications for activities such as publicity campaigns

and charity drives.

Introduction

Social influence

There is a large body of evidence—which is increasingly quantitative—that the effect of social

influence can be a significant driver of human behaviour. Improved understanding of this phe-

nomenon should help to predict various phenomena of interest, for example how well public-

health interventions will work, or the use of ‘nudges’ in public policy [1–7].

In particular, the work of Christakis and Fowler [7] analysed longitudinal social network

and health data from the Framingham Heart Study and showed that if an individual had a

friend, sibling, or spouse who had become obese in a given time interval then that individual

was significantly more likely to also become obese. Similar results were also found when study-

ing the cessation of smoking [6]. This proved controversial; it has been shown that social influ-

ence cannot be distinguished from homophily, or the clustering of individuals who are similar,

in observational studies [8]. Aral et al. [9] try to determine an upper bound for the importance

of social influence for behaviour spread, and find that for the adoption of a particular social

media app at least half of the observed adoption events can be attributed to homophily. This

discussion highlights the difficulty of using observational data to distinguish the effect of indi-

vidual-level factors, in the form of homophily, from social influence. This same difficulty is not

present in experimental data, however. Bond et al. performed a randomised controlled trial
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over Facebook to find evidence for social influence on the decision to vote [3]. By sending

direct messages to ‘seed’ nodes in a network, and then tracking the behaviour of their contacts,

the experimenters showed that individuals were significantly more likely to vote if one of their

close friends had received a message. In a study also related to electronically mediated real-

world behaviour, Centola [5] placed individuals in an artificially-structured online community

in which users were informed about the health activities of their assigned contacts. This experi-

ment showed that social signals significantly increased the likelihood of an individual taking

part in a behaviour, and that up to three additional social signals significantly increased this

likelihood even further. Taken together, these studies show that while individual-level factors

are significant, social influence is also important in determining health behaviours.

Previous models

Models of social influence have taken three main forms: experimental generalisations, agent-

based models, and compartmental models. Experimental generalisations take historical data

on the spread of a behaviour and try to find functional forms which match that data. One of

the first examples of this approach was by Bass [10], who created a model of product adoption

based on the idea of innovators and imitators. More recent attempts include fitting a variety of

statistical distributions to the popularity of Internet memes [11]. The main disadvantage to

this approach is that it does not provide a mechanistic model for social influence, and hence

does not provide much insight into individual-level processes.

Agent-based models take almost the opposite approach to the experimental generalisations

mentioned above, in that they simulate all of the individual- (or ‘agent’-) level processes occur-

ring and then try to calibrate the model by matching the aggregate behaviour to data [12, 13].

Agent-based models are useful tools for reproducing the complex phenomena observed in real

systems, but it is extremely difficult to fit their parameters to data well.

Compartmental models put each individual in the population into one of a certain number

of states, or compartments. Only the number of individuals in each compartment and the tran-

sitions between them are tracked, and hence the number of dimensions of the system can be

much less than an equivalent agent-based model. This in turn allows a compartmental model

to be fitted to data more easily than agent-based models, while remaining a mechanistic

description of the underlying system. Treating social influence in this compartmental way

has a long history, an example being Dietz [14] who developed a model for the spreading of

rumours similar to models from epidemiology. In fact, much of the social influence literature

using compartmental models has been based on the SIRS model of an epidemic. In the SIRS

model there are three compartments: susceptible (S), infectious (I), and recovered (R). Suscep-

tible individuals have not yet been infected with the disease, infected individuals currently

have the disease and are spreading it, and recovered individuals have had the disease but are

no longer spreading it. In the standard SIRS model used to model infections [15], individuals

moving between these compartments are modelled by a continuous time Markov chain with

events and rates

ðS; IÞ ! ðS � 1; I þ 1Þ at rate bSI;

ðS; IÞ ! ðS; I � 1Þ at rate gI;

ðS; IÞ ! ðSþ 1; IÞ at rate dR:

ð1Þ

This standard model can be modified by changing the functions for the rates, and by adding or

removing compartments. For models of social influence on behaviour, the ‘infectious’ com-

partment represents individuals taking part in a behaviour and spreading it, and ‘recovered’
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means the individual is no longer influencing others to take part in the behaviour. Many previ-

ous studies of social influence modify the standard model by changing the rates at which at

which individuals move between compartments. Isham et al. [16], for example, developed a

model for rumours on a network based on the SIR model modified to include ‘stiflers’ who

cause infectious individuals to recover at a faster rate. One important additional source of real-

ism is to consider the impact of contact network structure on spreading dynamics, however if

the degree distribution of the network is not too heterogeneous and other properties such as

clustering, assortativity and path length are not too far from a random graph then dynamics

such as Eq (1) should be a good approximation [17].

Very few compartmental models for social influence modify the form of the infection term

in the standard model. However, as shown in experimental studies [5], there is significant evi-

dence that the form of ‘infection’ in social influence is different to that in a biological epidemic.

The important difference is the number of exposures to infection that an individual must

receive before becoming infected: in biological infection only one source of infection is

required for a non-zero probability of infection, whereas in social influence multiple sources

are required. Dodds and Watts [18], for example, generalise the SIS model to allow for infec-

tion processes that require multiple exposures.

Testing complex contagion

While the work of Centola involved a controlled study to test for effects of complex contagion,

if this is a strong effect in general then it should be possible to find evidence for it in observa-

tional data at the population level. In this paper, we set up simple and complex contagion

models for populations, which we compare to search-interest data on photo fads—i.e. elec-

tronically mediated real-world behaviours—using maximum likelihood estimation and infor-

mation theoretic model selection. We show using these methods that complex contagion is

strongly favoured as a model of social influence, which can then be used predictively.

Materials and methods

Mathematical definition of the model

We propose here a general modelling framework based on a non-linear continuous-time sto-

chastic process that enables us to capture most existing models of behavioural contagion as

special cases. We start with a vector of non-independent integer random variables, X(t) = (S,

Y1, . . ., Yn, R), where S represents the number of individuals not engaging in the behaviour

who might start if exposed to it; R represents the number of individuals not engaging in the

behaviour who will not start if exposed, and Yi represents the number of individuals engaging

in the behaviour of ‘type’ i. The events and transition rates defining this stochastic process are

given by

ðS;Y1; . . . ;RÞ ! ðS � 1;Y1 þ 1; . . . ;RÞ at rate Sf ðS;Y1; . . . ;RÞ;

ð. . . ;Yi;Yiþ1; . . .Þ ! ð. . . ;Yi � 1;Yiþ1 þ 1; . . .Þ at rate YigiðS;Y1; . . . ;RÞ;

ðS;Y1; . . . ;RÞ ! ðSþ 1;Y1; . . . ;RÞ at rate RhðS;Y1; . . . ;RÞ:

ð2Þ

This model is ‘SIRS-like’, but if h!1 it becomes ‘SIS-like’, and if h! 0 it becomes ‘SIR-like’.

The general model can also be specialised to fit many spreading situations. We will now out-

line the specific choices that we have made to formulate models for the spread of photo fads.

Complex contagion model. We follow the broad mathematical approach of [19] that

seeks to capture the effects of ‘complex contagion’ seen in the work of Centola [5, 20, 21] in a
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relatively simple functional form. In the basic form of this model, each individual canvasses C
contacts selected from the rest of the population uniformly at random, and if the number of

these contacts taking part in a behaviour is greater than some threshold τ then the individual

changes state.

In terms of the ‘infectious’ classes that spread behaviour, we use two: Y1 = I for those new

to the fad and Y2 = J for others participating in the fad. This represents the greater attention

given to novel behaviour, and from a technical point of view stops the fad-free fixed point of

the system from being stable as would be the case in simpler models [19]. Since the transition

between these two states is just a question of time spent spreading behaviour, we simply

assume individuals moving from I to J at a constant rate �; this parameter affects the duration

of the trend with high values of � leading to sharper peaks and low values lead to wider ones.

For the other transitions we use complex contagions giving the following rate functions:

f ðI; JÞ ¼ b
XC

k¼ti

XC

l¼0

Multiðk; ljI=N; J=N;CÞ

þb
Xti� 1

k¼0

XC

l¼tj

Multiðk; ljI=N; J=N;CÞ;

g1 ¼ �;

g2ðJÞ ¼
XC

y¼tr

BinðyjJ=N;CÞ;

h ¼ 0:

ð3Þ

We have, therefore, assumed that individuals do not return to a fad in which they have previ-

ously participated. We note that there are various other well-motivated modelling choices that

could be made at this stage, and that while a systematic comparison of such approaches is

beyond the scope of the current work we believe it would be an interesting direction for future

study.

If we consider a large fixed population of size N = S + I + J + R then the stochastic Model (2)

with choices Eq (3) as above can be approximated by the following system of ODEs [22, 23],

with error O(N−1/2):

dS
dt
¼ � f ðI; JÞS;

dI
dt
¼ f ðI; JÞS � �;

dJ
dt
¼ �I � g2ðJÞJ: ð4Þ

What distinguishes this ODE system from many other approaches to social contagion is the

presence of high-order polynomials on the right-hand side of the equations. Roughly speaking,

this model is similar to some ‘excitable’ models in mathematical biology which exhibit fast

growth and shrinkage [24, 25], and this turns out to be the aspect of complex contagion that

causes it to be preferred over simple contagion.

Simple contagion model. Our simple contagion model is a straightforward modification

of the standard SIR model:

dS
dt
¼ � ðbiI þ bjJÞS;

dI
dt
¼ ðbiI þ bjJÞS � �;

dJ
dt
¼ �I � gJ: ð5Þ

Our aim will be to fit Eqs (4) and (5) to data to look for population-level evidence that can dis-

criminate between simple and complex contagion. For both models, we will also need to fit an
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initial number I(0) participating in the fad; we will also assume that J(0) = R(0) = 0 and so the

rest of the population is initially in the S compartment so that S(0) = N − I(0).

We can also now make our verbal argument above about ‘excitable’ models more quantita-

tively. Consider the special case of our models in which C = τi = 2 and � = 0. Early in the epi-

demic, for the simple contagion model, making the special choices βi = 1/N and I(0) = 1 for

simplicity, we will be able to make the large-N approximation

dI
dt
� I ) IðtÞ � et; ð6Þ

i.e. exponential early growth. For the complex contagion model, making the special choices

β = N and I(0) = 1 for simplicity, we will have the large-N approximation

dI
dt
� I2 ) IðtÞ �

1

1 � t
; ð7Þ

which represents super-exponential early growth. In both the simple and complex models I(t)
will eventually stop growing due to non-linear effects as S(t) decreases, but the early growth of

the complex model will be much more ‘explosive’, which is a feature that we will see in real

data.

Data

Our main data source was Google search volumes for a particular category of Internet meme:

photo fads. These fads consist of participants uploading photos of themselves in a particular

pose; descriptions of the fads are given in Table 1 and they are visualised in Fig 1.

Photo fads were chosen because they tended to have distinctive names, allowing them to be

clearly identified in search data; they involved real-world behaviours that were spread by and

reported on the Internet; and they were undertaken for no ostensive reason beyond their

online popularity. These photo fads tended to be global phenomena, and hence took place in a

population large enough to satisfy the assumptions of the ODE model.

To acquire these data, we visited the site trends.google.comand entered the relevant

search term (e.g. ‘Vadering’) in the ‘Explore topics’ box, then downloaded the ‘Interest over

time’ data in CSV format using the site’s download link.

We avoided selection bias by taking all 37 Photo Fads listed on the website KnowYour-

Meme.com (a comprehensive source of information on internet memes). The search data was

obtained from Google Trends, and consisted of search volumes quoted in terms of a percent-

age of the peak value, and aggregated weekly. We fitted models to the 26 fads that had suffi-

cient (greater than 15) non-zero data points to allow the dynamics of behavioural contagion to

be identifiable.

Statistical methodology

The data take the form of a set of real-valued Google Trends at discrete time points y≔ðytÞ
T
t¼1

.

Search data was assumed to be a proxy for the number of people taking part in the trend: infected

individuals search for information about these fads at a constant rate. The noise in the data was

therefore modelled as arising from overdispersed sampling with mean μ(t)≔ I(t) + J(t), where

I(t) and J(t) are solutions to the ODE fad model defined by Eq (4). For known count data the

Negative Binomial distribution would be appropriate to model this overdispersed sampling, but

the data provided by Google Trends is instead given as a percentage of the peak and is therefore

real-valued. As such we use the Gamma distribution, which approximates the Negative Binomial

in the limit of large population size and is defined on the positive real numbers, to model the
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noise around the mean. This gives the following likelihood function:

LðyjθÞ ¼
YT

t¼1

GammaðytjAmðt þ DtÞ; rÞ; ð8Þ

where we use the ‘mean-shape’ parameterisation of the Gamma distribution. This likelihood

contains three additional ‘nuisance’ parameters: A is the relative amplitude term to adjust for the

fact that Google Trends data is quoted in terms of the fraction of the peak (given this parameter,

we will make the rescaling N = 1 in the ODE models to remove a source of unidentifiability)—a

larger A corresponds to a smaller imputed fad compared to the data; Δt is an additive time shift

to match model time with real time—a larger Δt moves the fad curve left; and r is the Gamma

shape parameter—if this is larger there is less noise in the fad at a given mean. Together with the

initial conditions and constants needed to solve the ODE Systems (4) and (5) this gives parame-

ter sets

Complex contagion model : θ ¼ ðA; r;Dt; Ið0Þ; b; ti; tj; tr; �Þ;

Simple contagion model : θ ¼ ðA; r;Dt; Ið0Þ; bi; bj; g; �Þ:
ð9Þ

Table 1. Fad descriptions. Explanations of the nomination and photo fads (excluding those that are poten-

tially offensive).

Nomination Fad Description

Neknomination Consuming an alcoholic drink in one gulp.

Icebucket Challenge Pouring a bucket of iced water over the participant’s head and / or donating to ALS

research.

Photo Fad Description

Cat Beard Posing so that a cat’s face looks like the participant’s beard.

Owling Crouching like an owl.

Cat Breading Putting bread around a cat’s face.

Bradying Copying a widely publicised photograph of NFL player Tom Brady.

Vadering Recreating the Star Wars scenes in which the character Darth Vader chokes an adversary.

Hadokening Recreating the ‘Hadoken’ move from the video game Street Fighter.

Batmanning Hanging upside-down like a bat.

Lying Down Game Lying rigidly in a public place.

Leisure Diving Appearing to carry out a leisure activity while diving into a swimming pool.

Sleeveface Holding a record sleeve that appears to replace the participant’s face.

241543903 Placing the participant’s head in a freezer.

Perfect Splits Performing the splits.

Pottering Appearing to fly on a broomstick as in Harry Potter.

Planking Lying rigidly across a raised object.

Skywalking Posing on top of a high building.

Tebowing Copying the celebration stance of NFL player Tim Tebow.

Teapotting Holding the participant’s arms like a teapot.

Dufnering Copying a widely publicised photograph of golfer Jason Dufner.

Stocking Planking Recreating a stock photograph.

Caught Me Sleeping The participant pretends to be asleep while they are demonstrably photographing

themselves.

People Eating

Money

Pretenting to eat banknotes.

Playing Dead Simulating a murder scene.

Horsemanning Pretending to be a headless ghost.

https://doi.org/10.1371/journal.pone.0180802.t001
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Fig 1. Fitted models against data for different fads. Fitted simple and complex contagion models and data for search

volumes as a percentage of peak, ordered by log-likelihood difference from best fit to worst. Fads with potentially offensive

content are included for completeness, but without sketches.

https://doi.org/10.1371/journal.pone.0180802.g001
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To fit the model, L was maximized numerically with respect to all parameters listed above—the

parameter C for the complex contagion model was fixed at 10 since analysis of the model struc-

ture proposed (confirmed by our numerical work) suggests that this will not be identifiable from

data [19]. Integer parameters (the τ’s) were optimised using exhaustive (grid) methods, however

our parameter spaces are too high-dimensional for this to be appropriate for all parameters—

nevertheless, we were able to obtain robust maximum likelihood estimates through the use of

Powell’s method [26].

For each set of fad data we calculated the Akaike Information Criterion (AIC) [27] defined

as

AIC ¼ 2k � 2lnL�; ð10Þ

where k is the number of parameters for each model and L� is the maximum value of the likeli-

hood. In this way AIC represents a trade-off between goodness of model fit and model com-

plexity, so more complex models are not automatically selected simply because they fit the

data better. There are 8 parameters in our simple contagion model and 9 parameters in our

complex contagion model, meaning that these are not massively different in complexity. To

quantify the level of preference for one model over another, we classified the difference in AIC

between the two models into different grades of evidence, based on the suggestions of Stylia-

nou et al. [28].

Some fads showed two clear peaks in the data. For each time series with more than one

mode, we therefore fitted a model in which two separate sub-populations become infected,

with the total infected fraction being the sum of infected in the sub-populations. The parame-

ters for each population were fitted independently, except for the thresholds in the complex

contagion model that were assumed constant. The AIC was again used to select between one-

population and two-population versions of both contagion mechanisms.

Prediction

The complex contagion model was used to predict the future spread of another fad, ‘ALS Ice-

bucket Challenge’. This was a charity campaign that spread in a viral manner, with friends

directly nominating each other to take part. A previous fad, ‘Neknomination’, had spread in a

similar way, and so we used the parameters fitted from that fad to predict the future spread

of ‘ALS Icebucket Challenge’. We made a verifiable prediction at the start of the campaign,

shown in Fig 2, and overlaid the final data when the campaign had finished. The original Fig 2,

unedited, is stored at https://www.facebook.com/photo.php?fbid=10100902252555809&l=

931e0d22a5. The data are generally within the 95% prediction interval of the model, and the

time and duration of interest in the campaign were predicted well: the peak occurred in the

week predicted by the model, and the campaign was popular for the same length of time as the

model.

Results and discussion

Of these fads, 22 of 26 showed significant evidence that complex contagion was a better model

for the data than simple contagion. The fitted timeseries for all fads are provided in Fig 1,

ordered by log-likelihood difference. Most fads showed similar characteristics: a fast uptake, a

drop in interest after the peak that was almost as fast, and then a long tail of activity taking a

long time to die out.

The complex contagion model’s threshold for social influence allows it to capture the fast

increase in popularity seen in most of the trends. The linear force of influence in the simple

contagion model, however, means that it is slower to build to peak popularity. After the peak,
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the simple contagion model has a constant rate for individuals leaving the fad, leading to expo-

nential decay in popularity. The complex contagion initially shows a fast drop in popularity as

individuals see that their contacts are already taking part in the fad, but once most of the popu-

lation has stopped taking part the few individuals remaining take longer to give it up. This cor-

rectly captures the ‘long tail’ of popularity seen in the data.

For a minority of fads, the simple contagion model was also adequate, but this was typically

linked to few datapoints and / or poor signal quality. In terms of values for the parameters,

these were quite variable between fads, which would be expected given e.g. the differing levels

Fig 2. Results for the Icebucket Challenge. Prediction of search volume for Icebucket Challenge, based on

data available at the time (circles) and compared to the final volume (crosses). Top plot: complex contagion

model; bottom plot: simple contagion model.

https://doi.org/10.1371/journal.pone.0180802.g002
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of effort needed to participate in each fad. Full fitted parameter values are available in S1 and

S2 Files.

Table 2 shows the log-likelihood difference, DL ¼ lnL�c � lnL�s , between the complex conta-

gion and the simple contagion models (the difference in number of parameters is constant for

the single population models and for the double population models) and the AIC evidence

grade for each fad. For 22 out of 26 fads the complex contagion model is significantly better

than simple contagion. The three fads with no positive evidence for either model were noisier

and had higher background search volumes than the other fads. The names of these fads

(‘caught me sleeping’, ‘people eating money’, ‘playing dead’) are phrases that could appear in

searches unrelated to photo fads, leading to higher noise. It is interesting that the one case

where simple contagion was a significantly better model, ‘horsemanning’, was the only one

started by the Internet news site BuzzFeed in an attempt to create a fad artificially. This sug-

gests that a strong external driver not included in the model, such as mass media influence,

can have a significant effect on the spread of a fad.

Conclusions

Social influence, or the effect of others’ behaviour on our own, is important in understanding

many aspects of human behaviour. Although several mechanisms have been proposed to

Table 2. Model evidence. The log-likelihood difference between the simple and complex contagion models. (***) is very strong evidence, (**) is strong evi-

dence, (*) is positive evidence, (.) is no significant evidence for either model, (–) is strong evidence against. † means that AIC selected models with two peaks.

Photo Fad Log-likelihood difference AIC Evidence

Sneaky Hat 47.4 ***

Cat Beard 44.0 ***

Owling 39.3 ***

Cat Breading 38.9 ***

Lynndie England 27.3 ***

Bradying 26.6 ***

Vadering 24.6 ***

Hadokening 24.2 ***

Batmanning 24.2 ***

Lying Down Game 17.8 ***

Leisure Diving 16.8 ***

Sleeveface 12.1 ***

241543903 11.7 *** †

Perfect Splits 11.7 ***

Mamming 10.2 ***

Pottering 9.5 ***

Planking 8.5 *** †

Skywalking 7.1 *** †

Tebowing 6.9 *** †

Teapotting 6.0 ***

Dufnering 4.7 **

Stocking Planking 2.0 *

Caught Me Sleeping -0.0 . †

People Eating Money -1.7 . †

Playing Dead -1.9 . †

Horsemanning -3.2 –

https://doi.org/10.1371/journal.pone.0180802.t002
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model this influence, it has not so far been possible to distinguish between these mechanisms

in observational data. Here we have shown that the observed spread of real-world behaviours

linked to online trends can be explained using a complex contagion model, and demonstrate

that this model provides a predictive modelling framework for real-world behaviours spread

online.

Supporting information

S1 File. Complex contagion parameters. Fitted parameter values for complex contagion

models. The second sets of parameters, if present, are for two-peak fits. Plain text comma-sepa-

rated values.

(CSV)

S2 File. Simple contagion parameters. Fitted parameter values for simple contagion models.

The second sets of parameters, if present, are for two-peak fits. Plain text comma-separated

values.
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