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M O L E C U L A R  B I O L O G Y

Preferred synonymous codons are translated more 
accurately: Proteomic evidence, among-species 
variation, and mechanistic basis
Mengyi Sun and Jianzhi Zhang*

A commonly stated cause of unequal uses of synonymous codons is their differential translational accuracies. A 
key prediction of this long-standing translational accuracy hypothesis (TAH) of codon usage bias is higher trans-
lational accuracies of more frequently used synonymous codons, which, however, has had no direct evidence 
beyond case studies. Analyzing proteomic data from Escherichia coli, we present direct, global evidence for this 
prediction. The experimentally measured codon-specific translational accuracies validate a sequence-based proxy; 
this proxy provides support for the TAH from the vast majority of over 1000 taxa surveyed in all domains of life. 
We find that the relative translational accuracies of synonymous codons vary substantially among taxa and are 
strongly correlated with the amounts of cognate transfer RNAs (tRNAs) relative to those of near-cognate tRNAs. 
These and other observations suggest a model in which selections for translational efficiency and accuracy drive 
codon usage bias and its coevolution with the tRNA pool.

INTRODUCTION
Eighteen of the 20 amino acids are each encoded by more than one 
codon, but the synonymous codons are usually used unequally in a 
genome (1, 2). Among the synonymous codons of an amino acid, 
those used more often than the average are referred to as preferred 
codons, while the rest are designated unpreferred. This phenomenon 
of codon usage bias (CUB), initially discovered more than four decades 
ago from the first few determined gene sequences (3–6), is a result 
of the joint forces of mutation, genetic drift, and natural selection, 
but the specific selective agents have not been fully deciphered (1, 2). 
One long- standing hypothesis, known as the translational accuracy 
hypothesis (TAH), asserts that synonymous codons are translated 
with different accuracies and that CUB results at least in part from 
natural selection for translational accuracy (7). The importance of 
accurate protein translation cannot be overstated, because mistrans-
lation may lead to the loss of normal protein functions and gain of 
cellular toxicity (8) and cause severe diseases including cancer and 
neurodegenerative diseases (9). Several cellular mechanisms to en-
sure the overall fidelity of protein synthesis have been discovered. For 
example, conformational changes of the ribosome decoding center 
can be more efficiently induced by cognate codon-anticodon inter-
actions than near-cognate codon-anticodon interactions (10), allowing 
discrimination against incorrect decoding. In addition, the accuracy 
of many steps in translation, such as tRNA aminoacylation (10) 
and codon-anticodon matching, is enhanced by the energy-consuming 
kinetic proofreading (11).

The TAH of CUB comprises the following two elements: (i) Trans-
lational accuracy varies among synonymous codons, and (ii) CUB 
is at least in part due to selection for translational accuracy. These 
two elements together make two predictions. First, preferred codons 
are translated more accurately than unpreferred synonymous codons. 
In an early study, Precup and Parker (12) used site-directed muta-
genesis followed by peptide sequencing to show that AAT, an 

unpreferred codon of Asn, is misread as Lys four to nine times more 
often than is AAC, a preferred codon of Asn, at a particular position 
of the coat protein gene of the bacteriophage MS2 under Asn star-
vation. Similarly, Kramer and Farabaugh (13) observed that AAT has 
a significantly higher rate of mistranslation to Lys than AAC at a par-
ticular position of a reporter gene in Escherichia coli. Nonetheless, 
Kramer and Farabaugh (13) also observed that the unpreferred Arg 
codons of CGA and CGG and the preferred Arg codons of CGT and 
CGC exhibited similar rates of mistranslation to Lys (13). While the 
above experiments directly tested the first prediction of the TAH, they 
were each based on the investigation of one amino acid site of one 
protein, so the genome-wide generality of their findings is unknown.

The second prediction of the TAH was formulated by Akashi (7), 
who reasoned that the benefit of using relatively accurate codons 
should be greater at functionally more constrained amino acid sites 
than at less constrained sites when the expression level is controlled; 
hence, the TAH predicts a higher usage of preferred codons at evo-
lutionarily conserved than unconserved sites of the same protein. 
Akashi’s test (7) based on genomic data is positive for several spe-
cies investigated (7, 14, 15).

It is important to recognize that the two predictions of the TAH 
are complementary to each other. Specifically, evidence for the first 
prediction alone does not prove selection for translational accuracy, 
because synonymous codons differ in multiple properties including 
the translational elongation speed (16, 17), and selection for trans-
lational efficiency (18) might also lead to a higher usage of more 
accurate codons (see Discussion). Hence, confirming the second 
prediction when the first prediction is true could exclude the possi-
bility of no selection for translational accuracy (7). Conversely, evi-
dence for the second prediction supports the TAH only when the 
first prediction is true, because if preferred codons are not found by 
sensitive methods to be more accurately decoded than unpreferred 
codons under relevant conditions, then evidence for the second 
prediction becomes difficult to interpret. Therefore, in the presence 
of global evidence for the second prediction in a few species 
(7, 14, 15), global evidence for the first prediction is needed to vali-
date the TAH.
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Capitalizing on a proteome-wide probe of mistranslation in E. coli 
(19), we here show that preferred codons are generally translated 
more accurately than unpreferred synonymous codons, confirming 
the first prediction of the TAH. We then use the E. coli data to vali-
date a sequence-based proxy for relative translational accuracies of 
synonymous codons. Using this proxy and Akashi’s test (7), we show 
that the TAH is supported in the vast majority of over 1000 diverse 
taxa surveyed, but that the relative translational accuracies of syn-
onymous codons vary substantially among taxa. We find that the 
relative translational accuracy of a synonymous codon is strongly 
correlated with its cognate tRNA abundance relative to near-cognate 
tRNA abundance, offering a mechanistic insight into the translational 
accuracy variations across synonymous codons and species. These 
and other results suggest a model in which selections for translational 
efficiency and accuracy drive the CUB and its coevolution with the 
tRNA pool.

RESULTS
Preferred synonymous codons are more accurately decoded 
than unpreferred ones
Testing the first prediction of the TAH requires comparing the mis-
translation rate among synonymous codons. Using mass spectrometry, 
Mordret et al. (19) quantified mistranslations at individual sites of 
the E. coli proteome. After removing sites and codons where mis-
translation rates cannot be quantified because of technical reasons 
(see Materials and Methods), we grouped mistranslation events ac-
cording to the identities of their original codons. We then computed 
the absolute mistranslation rate of a codon as the ratio of the total 
intensity of mistranslated peptides to that of all peptides mapped to 
the codon. Last, we computed the relative mistranslation rate (RMR) 
of a codon by dividing its absolute mistranslation rate by the mean 
absolute mistranslation rate of all codons coding for the same amino 
acid. RMR >1 means that the codon has a higher mistranslation rate 
than the average among all codons for the same amino acid, whereas 
RMR <1 means the opposite. Codon usage was assessed by the relative 

synonymous codon usage (RSCU). The RSCU of a codon equals its 
frequency in the genome relative to the average frequency of all 
codons for the same amino acid (20). A codon with RSCU >1 is 
preferred, while a codon with RSCU <1 is unpreferred.

We were able to estimate the RMR for 27 codons of nine amino 
acids (Fig. 1A). Except for Gly, the most preferred synonymous 
codon of an amino acid shows an RMR <1, providing a significant 
support for the first prediction of the TAH (P = 0.02, one-tailed 
binomial test). Similarly, except for Gly and Val, the least prevalent 
synonymous codon of an amino acid shows an RMR >1 (P = 0.09, 
one-tailed binomial test). Because both RSCU and RMR of a codon 
are relative to the mean of all codons for the same amino acid, they 
can be compared among codons of different amino acids. A strong 
negative correlation was observed between RSCU and RMR among the 
27 codons [Pearson’s correlation coefficient (r) = −0.56, P < 0.001, 
permutation test; Spearman’s  = −0.49, P = 0.006, permutation test; 
Fig. 1B]. Together, these findings from the proteomic data of E. coli 
demonstrate that preferred codons tend to have lower mistransla-
tion rates, confirming the first prediction of the TAH.

Relative translational accuracies of synonymous codons 
vary across taxa
How do certain synonymous codons achieve higher translational 
accuracies than others? There are two general possibilities. In the 
first possibility, referred to as the constant accuracy hypothesis 
hereinafter, the translational accuracy is intrinsically higher for a 
synonymous codon than another because of their different chemical 
nature that affects codon-anticodon interactions. Consequently, the 
relative translational accuracies of synonymous codons should be 
more or less the same in different species. For instance, a higher trans-
lational accuracy of AAA (Lys) than AAG (Lys), evident in E. coli 
(Fig. 1A), should hold in all species. Hershberg and Petrov (21) ob-
served some general patterns of codon usage across species after 
controlling the genomic GC content. However, whether these 
generalities reflect intrinsic accuracies of different synonymous 
codons is unknown. Alternatively, relative translational accuracies 

A B

Fig. 1. More frequently used synonymous codons tend to be decoded more accurately in E. coli. (A) Comparison of RSCU (bars) and RMR (dots) among synonymous 
codons for nine amino acids with proteome-based RMR estimates. (B) A significant negative correlation between RSCU and RMR across the 27 codons in (A). The red line 
is the linear regression. In both panels, error bars represent 1 SE estimated by the bootstrap method. The SE of RSCU estimated by the bootstrap method is negligible 
because of the large number of occurrences of each codon in the genome, and so is not shown. P values are based on permutation tests.
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of synonymous codons may be greatly influenced by species-specific 
factors such as the tRNA pool. Under this possibility, referred to as 
the variable accuracy hypothesis hereinafter, the relative accuracies 
of synonymous codons vary across species. That is, AAA is more 
accurate than AAG in many species, but the opposite is true in 
many other species.

Measuring the relative translational accuracies of synonymous 
codons in a large number of species will allow differentiating be-
tween the above two hypotheses, which will, in turn, help understand 
the mechanism underlying the translational accuracy differences 
among synonymous codons. Because codon-specific, proteome-based 
translational accuracies have not been measured beyond E. coli, we 
resort to a sequence-based proxy referred to as the odds ratio (OR) 
that originated from Akashi’s test (7). Specifically, the OR of syn-
onymous codon X that encodes amino acid Y in a gene is the number 
of times that X is used at invariant Y sites relative to the number of 
times that X is not used at invariant Y sites, divided by the number 
of times that X is used at variant Y sites relative to the number of 
times that X is not used at variant Y sites (Fig. 2A). Here, invariant 
and variant Y sites refer to Y sites in the focal species whose counter-
parts in the ortholog from a related species have Y and non-Y, re-
spectively. The OR values computed from individual genes can be 
combined to yield a single OR using the Mantel-Haenszel procedure 
(see Materials and Methods). While OR was originally developed 
for preferred codons, it can be computed for any codon of the 
18 amino acids that have multiple synonymous codons (18). On the 
basis of Akashi’s test (7), OR has been used as a proxy for the rela-
tive translational accuracy of a codon (18). To verify the relation-
ship between OR and relative translational accuracy, we computed 
OR values by aligning E. coli genes with their Salmonella enterica 
orthologs at the genomic scale. For the 27 codons with RMR esti-
mates, OR and RMR are strongly negatively correlated (r = −0.63, 
P < 0.001;  = −0.43, P = 0.01; Fig. 2B), confirming that the OR of a 
codon is a valid proxy for its relative translational accuracy (OR >1 
indicates a higher-than-average translational accuracy among syn-
onymous codons and vice versa).

To examine whether the relative translational accuracies of syn-
onymous codons vary across species, we took advantage of a recently 
built phylogenetic tree of 10,575 microbial taxa (22). Because most 
taxa (9867) in the tree are from the domain Bacteria, we first focused 
our analysis on Bacteria. We picked all 1197 pairs of sister bacterial 
taxa from the tree and aligned their orthologous genes (see Materials 
and Methods). We randomly assigned one taxon in each pair as the 
focal taxon and computed OR for each codon as described above. A 
positive correlation between RSCU and OR across codons was 
observed in 95% of the taxa examined (Fig. 2C), demonstrating an 
overwhelming support for the TAH of CUB in Bacteria.

We computed ln(OR) to make its distribution relatively symmetric 
to aid visualization and examined, as an example, ln(OR) for codon 
CAT (His) in each of the focal taxa arranged according to the bacte-
rial tree (one taxon per order is presented in Fig. 2D). We found 
ln(OR) to vary greatly from negative values to positive values, with 
a high density near 0 (Fig. 2E). Furthermore, the extreme values of 
ln(OR) (orange and blue in Fig. 2D) are scattered across the tree 
rather than concentrated in a few clades, suggesting that the relative 
translational accuracy of CAT has changed substantially and frequently 
in evolution. The inter-taxon variation of OR indicates that CAT is the 
relatively inaccurate one of the two synonymous codons of His in 
many taxa (blue in Fig. 2D) but the relatively accurate one in many 

other taxa (orange), supporting the variable accuracy hypothesis. From 
Fig. 2E, which shows the 18 amino acids each with multiple codons, 
it is clear that the pattern observed for CAT applies to all codons. 
Furthermore, every codon has an OR >1 in at least 8.9% of the taxa 
examined (fig. S1A). These results thus support the variable accura-
cy hypothesis for all synonymous codons. The above observations 
of OR variation among taxa are not primarily caused by sampling 
error, because a similar pattern was detected when we analyzed 
a subset of taxa for each amino acid where the number of occur-
rences of each synonymous codon considered in OR estimation is at 
least 1000 per taxon (fig. S1B). They are not mainly caused by genetic 
drift either, because a similar pattern was found when we analyzed 
a subset of taxa with strong signals of selection for translational 
accuracy (correlation between RSCU and OR exceeding 0.5) (fig. 
S1C). Note that, despite the general support for the variable accu-
racy hypothesis, for a minority of codons such as ATA (Ile), AGA 
(Arg), and AGG (Arg), the distribution of ln(OR) is strongly skewed 
toward negative values (Fig. 2E), suggesting that their relative trans-
lational accuracies are somewhat constrained in evolution, although 
not invariable. For these codons, the constant accuracy model may 
have merit, and future studies should attempt to identify the mech-
anistic basis of these codons’ relatively constant accuracies.

To investigate whether the above observations from Bacteria are 
generalizable to the other two domains of life, we first expanded our 
analysis to Archaea represented in the large phylogeny previously 
mentioned (22). We found that the correlation between RSCU and 
OR is positive in 90% of taxa examined and that ln(OR) varies 
greatly across taxa for each codon (fig. S2), further supporting the 
TAH and the variable accuracy hypothesis. For Eukaryota, we ana-
lyzed five commonly used model organisms: human, mouse, round-
worm, fly, and budding yeast (see Materials and Methods). In each 
of these species, the correlation between RSCU and OR is significantly 
positive (table S1), supporting the TAH. Except for the two mammal 
species, which are closely related, the ORs estimated from one spe-
cies are not well correlated with those estimated from another species 
(fig. S3). Furthermore, the correlation in OR generally declines 
with the divergence time between the two species (fig. S3), consist-
ent with the variable accuracy hypothesis. Together, our results 
show that the TAH is generally supported in all domains of life, 
but the relative translational accuracies of synonymous codons vary 
across taxa.

Mechanistic basis of among-codon and across-taxon 
variations of translational accuracies
The empirical support for the variable accuracy hypothesis strongly 
suggests that the determinants of the RMRs of synonymous codons 
vary among species. In the aforementioned study of Kramer and 
Farabaugh (13), the authors found that artificially increasing the ex-
pression level of the cognate tRNA for Arg codons AGA and AGG 
reduces their mistranslations to Lys, and so proposed that the com-
petition between cognate and near-cognate tRNAs determines the 
mistranslation rate of a codon. Here, the cognate tRNA is the tRNA 
whose anticodon pairs with the codon correctly (allowing wobble 
pairing), whereas the near-cognate tRNA corresponds to a different 
amino acid and has an anticodon that mismatches the codon at one 
position. Consistent with the above proposal, Mordret et al. (19) 
inferred that most of the mistranslation events in E. coli arose from 
the mispairing between codons and near-cognate tRNAs. They further 
noted that, for certain types of mistranslation, there is a negative 
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correlation across growth phases between the mistranslation rate 
and the ratio (Rc/nc) in abundance between cognate and near-cognate 
tRNAs, although the correlation was rarely statistically significant 
(19). On the basis of these past observations, we hypothesize that 
the relative translational accuracy of a synonymous codon increases 
with its relative Rc/nc, or RRc/nc, which is Rc/nc divided by the mean 
Rc/nc of all codons coding for the same amino acid (see Materials 

and Methods). We further hypothesize that, because the tRNA pool 
varies substantially across species (23), the across-species variation 
of relative translational accuracies arises from the across-species 
variation in RRc/nc.

To test the above hypotheses, we computed RRc/nc for each 
codon using published tRNA expression levels in E. coli (19). We 
observed a significant negative correlation between RRc/nc and RMR 
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Fig. 2. Variation of relative translational accuracies of synonymous codons across taxa. (A) Diagram explaining the calculation of OR of the codon CAT that serves 
as a proxy for its relative translational accuracy. Shown here is a hypothetical alignment of orthologous proteins (and the underlying coding sequences) between the 
focal species and a related species. (B) OR is negatively correlated with RMR across codons in E. coli. P values are based on permutation tests. The red line shows the linear 
regression. (C) Frequency distribution of Pearson’s correlation between RSCU and OR in 1197 bacterial taxa. Ninety-five percent of these taxa show positive correlations. 
(D) ln(OR) of codon CAT for each of 118 bacterial taxa, one per order, arranged according to their phylogeny shown in the middle. (E) Violin plots showing frequency 
distributions of ln(OR) of individual codons across 1197 bacterial taxa.
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(r = −0.54, P = 0.003;  = −0.56, P = 0.002; Fig. 3A) and a significant 
positive correlation between RRc/nc and OR (r = 0.51, P = 0.02; 
 = 0.68, P = 0.01; Fig. 3B) across codons, supporting the hypothesis 
that the relative ratio of cognate to near-cognate tRNA abundances 
is a major determinant of a codon’s relative translational accuracy in 
E. coli. Note that the relative cognate tRNA abundance alone is not 
significantly correlated with RMR (r = −0.24, P = 0.2;  = 0.03, P = 0.5; 
fig. S4A), supporting the role of competition between cognate and near- 
cognate tRNAs in determining RMR. As previously reported (18), the 
relative cognate tRNA level is highly correlated with RSCU (r = 0.78, 
P < 0.001;  = 0.47, P < 0.001; fig. S4B), which is likely a result of 
selection for high translational efficiency (i.e., more codons trans-
lated per unit time per cell), because balanced codon usage relative 
to cognate tRNA concentrations maximizes translational efficiency (18).

We next investigated whether the above finding in E. coli applies 
to other bacterial taxa surveyed in Fig. 2. Because tRNA expression 

levels are unknown for the vast majority of these taxa, we used the 
gene copy number of each tRNA species as a proxy for the total 
expression level of the tRNA species (24). E. coli RRc/nc computed 
from tRNA gene copy numbers is highly correlated with that com-
puted from tRNA expression levels (r = 0.80, P = 4 × 10−7;  = 0.91, 
P = 4 × 10−11). Furthermore, E. coli RRc/nc computed from tRNA 
gene copy numbers is significantly correlated with RMR (Fig. 3C), 
confirming the validity of using this proxy. We obtained the tRNA 
gene annotations for 1094 of the 1197 focal bacterial taxa examined 
in Fig. 2. However, in many of these taxa, there is little tRNA gene 
redundancy or variation in cognate tRNA gene copy number among 
synonymous codons despite considerable CUB; in these taxa, the 
tRNA gene copy number is unlikely a good proxy for tRNA abundance 
(25). Because the tRNA gene copy number is a good proxy for tRNA 
abundance in E. coli, which has 85 tRNA genes, we decided to filter 
out taxa with fewer than 81 tRNA genes to strike a balance between 

A B

C D

Fig. 3. The relative ratio of cognate tRNA concentration to near-cognate tRNA concentration (RRc/nc) is a major determinant of a codon’s relative translational 
accuracy. (A) RMR is negatively correlated with RRc/nc across codons in E. coli. (B) OR is positively correlated with RRc/nc across codons in E. coli. (C) RMR is negatively cor-
related with RRc/nc computed using tRNA gene copy numbers instead of tRNA concentrations in E. coli. (D) Frequency distribution of Pearson’s correlation between OR 
and RRc/nc computed using tRNA gene copy numbers in bacterial taxa with >80 tRNA genes. Ninety-two percent of the taxa show a positive correlation. All P values are 
based on permutation tests. In (A) to (C), the red line is the linear regression.
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the noise level and number of taxa in our analysis. This filtering left us 
with 59 taxa, in each of which we correlated the OR of a codon with 
its RRc/nc computed from tRNA gene copy numbers. The vast major-
ity (92%) of these taxa show a positive correlation (Fig. 3D), support-
ing the generality of our hypothesis on the role of RRc/nc in determining 
the relative translational accuracy of a codon in Bacteria.

To investigate whether the above finding is generalizable to other 
domains of life, we analyzed tRNA genes in Archaea taxa and 
Eukaryotic model organisms. Unfortunately, no Archaea taxa ex-
amined have more than 80 tRNA genes. For each of the five eukaryotes 
(human, mouse, fly, roundworm, and yeast), the correlation between 
OR and RRc/nc computed from tRNA gene copy numbers is significantly 
positive for linear or rank correlation (table S2). Together, our findings 
support that, in the diverse taxa surveyed, the ratio of cognate tRNA 
abundance to near-cognate tRNA abundance is generally a major 
determinant of the relative translational accuracy of a codon. Hence, 
the across-species variation of the tRNA pool can explain the across- 
species variation of the relative translational accuracies of synony-
mous codons.

DISCUSSION
Analyzing the published proteomic data from E. coli, we found that 
preferred codons are generally decoded more accurately than un-
preferred synonymous codons, providing global evidence for the 
first prediction of the TAH. After validating Akashi’s OR as a proxy for 
the measured translational accuracy in E. coli, we applied Akashi’s 
test (7) to thousands of species across all three domains of life and 
found evidence for the second prediction of the TAH in the vast 
majority of the species examined, substantially expanding such evi-
dence previously collected in a few species (7, 14, 15). Using the OR 
of a codon as a proxy for its translational accuracy, we discovered 
that the relative translational accuracies of synonymous codons vary 
substantially among species, supporting the variable accuracy hy-
pothesis. Inspired by the qualitative observations of Kramer and 
Farabaugh (13) and Mordret et al. (19), we obtained quantitative 
evidence that the ratio of the cognate tRNA abundance to the near- 
cognate tRNA abundance is a major determinant of a codon’s relative 
translational accuracy. Hence, the inferred across-species variation 
in a codon’s translational accuracy is mechanistically explained by 
the across-species variation of the tRNA pool.

As mentioned in the Introduction, mistranslation could be deleterious 
because it lowers the fraction of protein molecules with normal 
functions and/or generates toxic molecules. When the mistransla-
tion rate is given, the number of toxic molecules (but not the frac-
tion of molecules with normal functions) rises with the number of 
protein molecules synthesized, so selection for translational accuracy 
is expected to be stronger in more highly expressed genes if mini-
mizing toxicity is an important cause of the selection. Results from 
Akashi’s test (7) in a few species (14) and the proteomic data of 
E. coli (19) both support that the mistranslation rate is lower for 
more highly expressed genes. Notwithstanding, signals of selection 
for translational accuracy were found even in lowly expressed genes 
in some species (7, 26, 27), suggesting the possibility that minimizing 
the loss of proteins with normal functions is also behind the selec-
tion for translational accuracy.

Our findings, together with the previous report on the selection 
for translational efficiency (18), suggest a model in which the tRNA 
pool and codon usage coevolve to improve both translational efficiency 

and accuracy (Fig. 4A). Specifically, mutation and drift can alter both 
codon frequencies and tRNA concentrations. The cellular transla-
tional efficiency is maximized when (transcriptomic) codon fre-
quencies equal relative cognate tRNA concentrations (18), whereas 
the translational accuracy of a codon is maximized when the ratio of 
its cognate tRNA concentration to near-cognate tRNA concentra-
tion is maximized. Under this model, selections for translational 
efficiency and accuracy are related but not perfectly aligned, which 
could introduce trade-offs between translational efficiency and 
accuracy (28). Our simulation of a simple genetic system with two 
amino acids, each encoded by two synonymous codons (Fig. 4B), 
found that imposing a selection for translational accuracy can lower 
translational efficiency (Fig. 4C).

The above model also implies that, even in the absence of selection 
for translational accuracy, the positive correlation between synonymous 
codon frequency and cognate tRNA concentration resulting from 
selection for translational efficiency (18) may render the cognate 
tRNA concentration relative to near-cognate tRNA concentration 
higher for more frequently used synonymous codons. Consequently, 
the positive correlation between the relative codon frequency and 
relative translational accuracy may arise in the absence of selection 
for translational accuracy. In E. coli, for 15 of the 18 amino acids 
with multiple synonymous codons, the codon with the highest 
cognate tRNA concentration has the highest RRc/nc. Upon randomly 
shuffling the expression levels among tRNA species, we found that, 
for over 50% of the 18 amino acids, the codon with the highest cognate 
tRNA concentration has the highest RRc/nc. This was true in each of 
the 1000 shufflings. Nevertheless, in only 6 of these 1000 shufflings 
did all 18 amino acids exhibit the above feature. Thus, a high but 
imperfect concordance between translational efficiency and accuracy 
is expected, confirming the notion in Introduction that the first pre-
diction of the TAH could be true even in the absence of selection 
for translational accuracy. In other words, the correlation in Fig. 1B 
alone does not prove selection for translational accuracy. However, 
the combination of this correlation and that between RSCU and OR 
(i.e., evidence for the second prediction of the TAH) demonstrates 
that evolutionarily conserved sites tend to use preferred synonymous 
codons, which tend to be relatively accurately translated. Therefore, 
the role of selection for translational accuracy in causing CUB is 
established, and the TAH is validated.

How codon usage and the tRNA pool evolve under the joint 
forces of selections for translational efficiency and accuracy in addi-
tion to mutation and drift is quite complex. For instance, because 
any tRNA is simultaneously a cognate tRNA for one or more codons 
and a near-cognate tRNA for some other codons, increasing the 
translational accuracy of a particular codon might be at the expense 
of that of another codon. A previous study showed that artificially 
increasing the cognate tRNA expression levels for Arg codons can 
result in proteotoxic stress (29). This subtle trade-off could cause 
nonindependent uses of codons of different amino acids, which were 
evident in the aforementioned simulation (Fig. 4D). Future modeling 
work with realistic parameters might shed more light on this issue. 
In addition to affecting translational efficiency and accuracy, synony-
mous mutations also affect mRNA folding (30), mRNA stability (31), 
mRNA concentration (31–33), pre-mRNA splicing (34), and cotrans-
lational protein folding (35, 36); thus, additional selective factors 
may shape CUB and its evolution.

Our study has several caveats. First, in our calculation of a codon’s 
mistranslation rate, we lumped all mistranslations of the codon 
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regardless of the erroneous amino acid it is translated to. Because 
different mistranslations of the same codon likely have differential 
fitness costs and because selection for translational accuracy likely 
minimizes the total fitness reduction caused by mistranslation instead 
of the mistranslation rate per se, properly weighting different mis-
translations in RMR calculation will likely strengthen its correlation 
with RSCU. Second, when calculating the ratio of cognate tRNA 
concentration to near-cognate tRNA concentration, we did not 
consider the difference in interaction strength between different 
codons and anticodons (37). Future research that takes into ac-
count this interaction under physiological conditions may signifi-
cantly improve the signal in the correlation analysis of Fig. 3. Third, 
our analysis in Fig. 3D was limited to taxa with >80 tRNA genes. 

Future research using tRNA expression levels (25), when they be-
come available, can confirm if the same pattern holds for taxa with 
fewer tRNA genes. Last, because of the data limitation, we did not 
consider variations in tRNA expression across environments, cell 
cycle stages, or tissues (38). In the future, it would be interesting 
to study how such variations simultaneously affect translational 
efficiency and accuracy.

Our results might help design organisms with expanded code 
tables (39). Expanding the code table is realized by introducing 
unnatural tRNAs that are charged with noncanonical amino acids. 
The introduction of these tRNAs often leads to fitness defects due to 
mistranslation of normal codons (40). Our findings suggest that 
one way to alleviate the proteotoxic stress is to identify potential 
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near-cognate codons that could be mistranslated by the unnatural 
tRNA and adjust the natural tRNA pool to minimize the impact.

MATERIALS AND METHODS
Estimating RMRs of synonymous codons from E. coli 
proteomic data
The proteomic data analyzed came from table S1 in Mordret et al. 
(19). The authors separately measured mistranslation events from 
high-solubility and low-solubility proteins using mass spectrometry, 
and both groups of events were considered in our analysis. We fo-
cused on the data from the wild-type strain BW25113 in the Mops 
complete medium, because (i) this dataset was the largest among 
datasets from all strain-medium combinations, and (ii) no artificial 
perturbation such as mutation, drug, or amino acid depletion was 
applied (19). We first removed sites that cannot be traced to a 
unique original codon. We also filtered out sites showing an inten-
sity of “NaN” for the unmodified (also known as base) peptide or 
mistranslated (also known as dependent) peptide. Because different 
synonymous codons tend to generate different mistranslations by 
mispairing with different near-cognate tRNAs, if these different mis-
translations have different detection probabilities, then the compar-
ison between synonymous codons would be unfair. Unfortunately, 
some mistranslations produce mass shifts indistinguishable from 
posttranslational modifications, and so cannot be reliably identified 
through mass spectrometry (19), causing unfair comparisons among 
synonymous codons in some cases. Therefore, we removed amino 
acids with undetectable mistranslations except for Leu and Ile. We 
kept these two amino acids because the only undetectable mistrans-
lations for them are Leu to Ile and Ile to Leu; both can be considered 
benign because of the high physicochemical similarity between Leu 
and Ile (41). Considering the structure of the genetic code table, we 
found that the underestimation of the mistranslation rate due to the 
negligence of mistranslations between Leu and Ile is more severe 
for unpreferred than preferred codons, suggesting that the actual 
strength of evidence for higher mistranslation rates of unpreferred 
than preferred synonymous codons is stronger than what is shown 
in Fig. 1. We then computed each codon’s absolute mistranslation 
rate by dividing the total intensity of mistranslated (i.e., dependent) 
peptides by that of all (i.e., dependent + base) peptides mapped to 
the codon. We divided each codon’s absolute mistranslation rate by 
the mean absolute mistranslation rate of all codons coding for the 
same amino acid to obtain the codon’s RMR. We removed an amino 
acid if any of its synonymous codons lacked data, because calcu-
lating RMR requires having data for all synonymous codons of the 
amino acid. In total, we computed RMR for 27 codons of nine 
amino acids.

RSCU, OR, and RRc/nc for E. coli
Peptide and cDNA sequences of E. coli (genome assembly: ASM584v2) 
and S. enterica (genome assembly: ASM78381v1) were downloaded 
from Ensembl Bacteria (42). We computed RSCU of codon j of amino 

acid i from all coding sequences of E. coli by   RSCU  i,j   =    n  i    x  i,j   _  ∑ 
j=1

   n  i       x  i,j  
  , where 

ni is the number of synonymous codons of amino acid i and xi,j is 
the number of occurrences of codon j of amino acid i in all coding 
sequences (20). Conventionally, RSCU is computed from highly ex-
pressed genes (20). However, because of the lack of gene expression 
information from most of the species analyzed, we computed RSCU 

from all genes. This should not qualitatively affect our analysis, 
because RSCU computed from highly expressed genes (e.g., the top 
20% of genes) is nearly perfectly correlated with that computed from 
all genes (e.g., in E. coli, r = 0.96, P < 2.2 × 10−16).

To calculate the OR of each codon, we first identified one-to- 
one orthologous proteins between E. coli and S. enterica using 
OrthoFinder (43). Next, we aligned these one-to-one orthologs 
using MUSCLE (44), separating all amino acid sites into invariant 
and variant sites. For a focal codon in gene i, we tabulated ai, 
number of occurrences of the focal codon at invariant amino acid 
sites; bi, number of occurrences of the focal codon at variant sites; 
ci, total number of occurrences of the focal codon’s synonymous 
codons at invariant sites; and di, total number of occurrences of the 
focal codon’s synonymous codons at variant sites. Here, the focal 
codon’s synonymous codons do not include itself. OR for gene i equals 
(aidi)/(bici). Using the Mantel-Haenszel procedure, we combined 
the ORs of the focal codon from individual genes into one OR (7) 

by  OR =  
 ∑ i      

 a  i   d  i   _ ( a  i   +  b  i   +  c  i   +  d  i  )
  
 _ 

 ∑ i     
 b  i   c  i   _ ( a  i   +  b  i   +  c  i   +  d  i  )

  
   .

To compute RRc/nc of a codon, we tabulated the cognate tRNAs 
and near-cognate tRNAs of the codon. Cognate tRNAs are all tRNAs 
that can pair with the focal codon, allowing wobble pairing at the 
third codon position, while near-cognate tRNAs are tRNAs coded 
for a different amino acid but can pair with the focal codon with one 
base pair mismatch (allowing wobble pairing at the third codon 
position). We then weighted each tRNA by their average relative 
expression levels across three growth stages in the Mopes complete 
media (Gene Expression Omnibus number: GSE128812). Last, we 
normalized the ratio for each codon by the average ratio of all 
codons coding for the same amino acid.

RSCU, OR, and RRc/nc for other species
RSCU, OR, and RRc/nc were calculated for non–E. coli taxa as 
for E. coli, with the differences noted below. For the non–E. coli 
prokaryotic taxa, we downloaded the phylogenetic tree of 10,575 taxa 
from the Web of Life (https://biocore.github.io/wol/) (22) and iden-
tified sister taxa from the tree. In brief, each pair of sister taxa are 
each other’s single closest relative in the tree. For each pair of sister 
taxa, we downloaded from the same website their protein-coding 
DNA sequences, protein sequences, and tRNA gene copy numbers. 
For eukaryotic model organisms, we downloaded protein-coding 
DNA sequences and protein sequences of human (Homo sapiens), 
mouse (Mus musculus), fly (Drosophila melanogaster), roundworm 
(Caenorhabditis elegans), and budding yeast (Saccharomyces cerevisiae) 
from the National Center for Biotechnology Information (NCBI) 
Reference Sequence (RefSeq) database (45). We further downloaded 
the protein sequences of Macaca mulatta (as a relative of H. sapiens), 
Rattus norvegicus (as a relative of M. musculus), Drosophila erecta 
(as a relative of D. melanogaster), Caenorhabditis briggsae (as a rel-
ative of C. elegans), and Saccharomyces paradoxus (as a relative of 
S. cerevisiae) from the NCBI RefSeq database. The tRNA gene 
annotations in the five model organisms were downloaded from 
GtRNAdb (23). RRc/nc was computed using tRNA gene copy numbers 
instead of tRNA expression levels.

Statistical analysis
Many of the quantities estimated in our work, such as RMR, RRc/nc, 
RSCU, and OR, are not independent among synonymous codons. 
To deal with this nonindependence in statistical tests, we applied 

https://biocore.github.io/wol/
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permutation tests. Specifically, in Fig. 1B, we generated 1000 per-
muted samples by shuffling the absolute mistranslation rates among 
all codons and then re-estimated RMR values. We then computed 
the correlation between RMR and RSCU in each permuted sample 
while holding the RSCU value of each codon unchanged. P equals 
the fraction of permuted samples with the correlation coefficient more 
negative than that observed in the original sample. Similarly, when 
testing the correlation between RMR and OR (Fig. 2B), we shuffled 
the absolute mistranslation rate among all codons and recomputed 
RMR while holding the OR for each codon unchanged. When test-
ing the correlation between RMR (or OR) and RRc/nc (Fig. 3), we 
shuffled the absolute mistranslation rates among codons and the 
expression levels (or gene copy numbers) among tRNAs. Last, when 
testing the correlation between RMR (or RSCU) and relative cognate 
tRNA concentration (fig. S4), we shuffled the absolute mistransla-
tion rate among codons and the expression level among tRNAs.

To estimate the SE of the RMR of each codon, we constructed 
1000 bootstrap samples by resampling the sites in the original data 
with replacement. Similarly, we estimated the SE of the OR of each 
codon by constructing 1000 bootstrapped E. coli genomes via 
resampling its genes that have one-to-one orthologs in S. enterica.

Simulation
To assess the impact of selections for translational accuracy and ef-
ficiency on codon usage, we built a toy model with two amino acids, 
aa0 and aa1. Amino acid aa0 is encoded by synonymous codons 00 and 
01, while aa1 is encoded by synonymous codons 10 and 11 (Fig. 4B). 
Codon-anticodon pairing follows the rule that 0 pairs with 1 and 
vice versa. The cognate tRNA of a codon has an anticodon that pairs 
perfectly with the codon, while the near-cognate tRNA has an anti-
codon that pairs with the codon with exactly one mismatch and carries 
the other amino acid.

We considered a unicellular organism with one gene consisting 
of n codons. We assumed that the mRNA level of the gene does not 
change in the evolution simulated and that ribosomes are in shortage. 
We defined the organismal fitness as follows

    
Absolute fitness = Function − Cost, where

     Function = TE ×  ∑ i=1  n     f  i   and Cost =  ∑ i=1  n     c  i  
   

Here, fi and ci are the function and cost of codon i, respectively. We 
set fi = Fi if codon i encodes the prespecified optimal amino acid at 
the codon; otherwise, fi = 0. For each i, Fi is a random variable sam-
pled from an exponential distribution with the mean equal to 1 (46). 
Following a previous study (18), we set the expected codon selection 
time per amino acid aa0 during translation at t0 = p1

2/q1 + p2
2/q2, 

where p1 and p2 = 1 − p1 are the fractions of amino acid aa0 encoded 
by codon 00 and 01, respectively, and q1 and q2 = 1 − q1 are the frac-
tions of corresponding cognate tRNAs among all tRNAs of aa0, 
respectively. We similarly set the expected codon selection time per 
amino acid aa1 and computed the total codon selection time of all 
codons. Translational efficiency, TE, which is the number of codons 
translated per unit time, is the inverse of the total codon selection 
time. We set ci = Ci × TE if codon i does not encode the prespecified 
optimal amino acid at the codon; otherwise,   c  i   =  C  i   × TE ×   1 _  RR  c/nc  

  . 
When there is no selection for translational accuracy, Ci = 0; otherwise, 
Ci for codon i is a random variable sampled from an exponential 
distribution with mean equal to 1. Note that Ci and Fi are independent 

from each other. RRc/nc is computed as described in Results, and the 
inverse of RRc/nc measures the mistranslation rate.

We started the simulation with a coding sequence of 200 nucleo-
tides, coding for 100 amino acids. Each site had a 50% chance to be 
0 or 1. For simplicity, we assumed that the initial amino acid se-
quence is optimal such that the evolution in our simulation is 
primarily about synonymous codon usage. For each of the four 
different tRNAs (with anticodons of 00, 01, 10, and 11, respec-
tively), we sampled its initial copy number from 1 to 3 with equal 
probabilities.

Next, we simulated the coevolution between the tRNA pool and 
codon usage following a strong selection, weak mutation regime. 
We first generate a mutation. With a probability of 0.02, it alters the 
copy number of a tRNA. In this case, we randomly pick a tRNA 
species to change its copy number by +1 or −1 with equal probabilities 
unless the copy number is 1, in which case it is +1. With a probability 
of 0.98, the mutation is a random point mutation at a randomly 
picked site of the coding sequence. The fitness of the mutant is then 
computed following the above fitness definition. The mutation is 
fixed with a probability of    1 −  r   −1  _ 

1 −  r   −N 
  , where r is the ratio of the absolute 

fitness of the mutant to that of the wild type and N is the population 
size (47). The above mutation-selection process was repeated for 
100,000 rounds in each simulation to reach an equilibrium. For 
each N, we simulated 200 times with and 200 times without selec-
tion for translational accuracy.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl9812

View/request a protocol for this paper from Bio-protocol.
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