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Abstract

Background: Admixed populations arise when two or more previously isolated
populations interbreed. A powerful approach to addressing the genetic complexity
in admixed populations is to infer ancestry. Ancestry inference including the
proportion of an individual’s genome coming from each population and its ancestral
origin along the chromosome of an admixed population requires the use of ancestry
informative markers (AIMs) from reference ancestral populations. AIMs exhibit
substantial differences in allele frequency between ancestral populations. Given the
huge amount of human genetic variation data available from diverse populations, a
computationally feasible and cost-effective approach is becoming increasingly
important to extract or filter AIMs with the maximum information content for
ancestry inference, admixture mapping, forensic applications, and detecting genomic
regions that have been under recent selection.

Results: To address this gap, we present MI-MAAP, an easy-to-use web-based
bioinformatics tool designed to prioritize informative markers for multi-ancestry
admixed populations by utilizing feature selection methods and multiple genomics
resources including 1000 Genomes Project and Human Genome Diversity Project.
Specifically, this tool implements a novel allele frequency-based feature selection
algorithm, Lancaster Estimator of Independence (LEI), as well as other genotype-
based methods such as Principal Component Analysis (PCA), Support Vector Machine
(SVM), and Random Forest (RF). We demonstrated that MI-MAAP is a useful tool in
prioritizing informative markers and accurately classifying ancestral populations. LEI is
an efficient feature selection strategy to retrieve ancestry informative variants with
different allele frequency/selection pressure among (or between) ancestries without
requiring computationally expensive individual-level genotype data.

Conclusions: MI-MAAP has a user-friendly interface which provides researchers an
easy and fast way to filter and identify AIMs. MI-MAAP can be accessed at https://
research.cchmc.org/mershalab/MI-MAAP/login/.
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Background
Markers with large differences in allele frequencies between ancestral populations,

known as ancestry informative markers (AIMs), provide genetic information useful to

infer ancestry [1]. Genetic ancestry inference is an area of considerable interest in

disease genetics, population genetics, anthropology and forensics and genetic testing

[2]. Identification of such a subset of genetic markers that is sufficiently informative for

inferring genetic ancestries but still small enough to reduce the computational cost for

resource-limited laboratories is of particular importance. With the rapid development

of the field of human genetics, enormous amounts of genetic variation in large data re-

positories have been generated, such as 1000 Genomes Project, HapMap Project, Hu-

man Genome Diversity Project (HGDP) and Exome Aggregation Consortium (ExAC)

[3–5]. Due to the growing number of the available genomic data, new computational

analytics are required to effectively process massive SNP data and extract informative

AIMs for multiple racial ancestries.

The task of identifying informative markers to assign individual genomic regions to

correct ancestries can be difficult in admixed populations with multiple ancestral

origins [6, 7]. Hence, prioritizing AIMs using various feature selection methods is of

paramount significance in studies of population structure and to map risk loci via ad-

mixture mapping [8]. One of the most powerful methods for identifying such inform-

ative AIMs is to apply feature selection techniques where subsets of relevant SNPs are

selected based on the classification model construction [9]. Machine learning tech-

niques such as Support Vector Machine (SVM), Random Forest (RF) and Principal

Components Analysis (PCA) can be applied to score and rank informative SNPs by

modeling classifiers. Numerous AIM panels from autosomal chromosomes have been

published [1–5, 8, 10]. Briefly, these studies have shown that 60–150 informative

markers are useful for population clustering into major geographic regions [9, 11, 12].

Previous work to develop AIMs considered binary classification with pairs of sub-

populations [12]. There are limited statistical tools to develop informative markers for

three-way or multi-way admixed populations including Latino populations [11–13]. It

is thus desirable to develop an efficient feature selection method, which not only identi-

fies AIMs to estimate the admixture proportions in samples from multi-way admixed

population with high accuracy, but is also computationally feasible for small

laboratories.

In this study, we extend the two-way ancestry analysis into multi-way ancestry classi-

fication, and present a user-friendly web-based tool called Marker Informativeness for

Multi-Ancestry Admixed Populations, MI-MAAP, to facilitate selection of informative

SNPs in multi-admixed population using 1000 Genomes Project, Human Genome Di-

versity Project as well as user-generated data. It adopts a novel likelihood-based feature

selection method, Lancaster Estimator of Independence (LEI), which has the ability to

efficiently compare multiple ancestral populations using allele frequency information

[14]. LEI potentially reduces the computation costs associated with individual-level

genotype data and yields cost-efficient AIMs panel for ancestry inferences. The lack of

easy-to-use-analytical tools is a substantial barrier for most biologists with limited com-

puter programming background. Exploiting recent advancements in web framework

technologies the MI-MAAP was developed to simplify informative marker selection for

genetic studies in admixed populations. Users are able to freely access MI-MAAP and
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retrieve large genomic datasets and extract AIMs on-the-fly through the user-friendly

interface. We also further investigated the identified SNPs or their nearby genes, with

specific functional information and associated diseases that are known to be prevalent

in certain ancestry. Additional information (e.g. gene expression, gene ontology, path-

way information, protein information and species orthologs) is made available for users

to explore their AIMs known to be prevalent in certain ancestry.

Implementation
Measure of marker Informativeness

Lancaster estimator of independence (LEI) is a maximum likelihood-based estimator of

ancestry informativeness of markers using allele frequency data under Hardy-Weinberg

Equilibrium (HWE). LEI can compute the quantitative score from the marker-

population joint distribution and thus account for 3 or more populations simultan-

eously. Let m and M be the alternate and reference alleles at a marker and X = (x1 =

mm, x2 =mM, x3 =MM) be the three genotypes. Let Y = (y1, y2,…, yk) be the k distinct

ancestral populations and fj represents the population reference allele frequency in the

jth population with cj indicating the number of individuals in the jth population. Then,

under the assumption of HWE in individual populations, the expected genotype counts

of genotype x1, x2, and x3 in the jth population can be expressed as n̂1 j ¼ c jð1− f jÞ2; n̂2 j
¼ 2c j f jð1− f jÞ; and n̂2 j ¼ c j f

2
j , respectively. If n = c1 + c2 +… + ck is the total sample

size, the joint probability distribution of X and Y, pij = P(X = xi, Y = yj) can be estimated

as p̂ij ¼ n̂ij

n , i = 1, 2, 3 and j = 1, 2, …,k. Then, the Lancaster estimator of independent

(LEI) is defined as –

θ̂
2 ¼

X
i; j

p̂2ij
p̂iþp̂þ j

−1 ð1Þ

where p̂iþ ¼
P

j
nij

n ¼ PðX ¼ xiÞ and p̂þ j ¼
P

i
nij

n ¼ PðY ¼ y jÞ are the marginal distribu-

tions of X and Y, respectively. θ̂
2
is the measure of the magnitude of independence be-

tween the two categorical variables X and Y, with θ̂
2 ¼ 0 if X and Y are independent

and 0≤ θ̂
2
≤ minð3; kÞ−1 [15] . In particular, for genotype data with biallelic markers, 0

≤ θ̂
2
≤1 when the sample constitutes two populations (i.e. k = 2) and 0≤ θ̂

2
≤2 when the

sample constitutes three or more populations (i.e. k ≥ 3).

Programmatic architecture

MI-MAAP was built on the Django web development framework which can be run on

different operating systems. PHP APIs were developed to retrieve SNP data from the

local database and Python scripts were written to access them and perform feature se-

lection calculations. Python’s Scikit-Learn library was used to conduct PCA, SVM, and

RF. The combination of HTML and CSS was used to construct the user interface. In

addition, jQuery Javascript library as well as jQuery plugins were used to build dynamic

input forms, add interaction controls to output tables, and assist in some client-side de-

sign details. The tool was deployed on Apache httpd web server.



Fig. 1 Schematic representation of MI-MAAP workflow. In the flow diagram, once the user enters the
information and clicks the submit button, information is mined from specific local databases, and MI-MAAP
algorithm computes all comparisons for LEI to output Ancestry Informative Markers (AIMs)
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Results
Workflow of MI-MAAP

MI-MAAP was designed as a web-based tool for analyzing the marker informativeness

in multi-ancestry admixed populations. Its workflow is described in Fig. 1. Users have

two types of input options: a) users can input a chromosome, SNP list or a single gene

they are interested in from public databases (e.g., 1000 Genomes Project, International

Haplotype Map (HapMap), Human Genome Diversity Project (HGDP) and Exome Aggre-

gation Consortium (ExAC) [3–5, 10]; b) users can also upload their own SNP data files

that include the population-specific allele frequency or genotype information. When the

input is provided as chromosome or SNPs/gene, MI-MAAP first maps chromosomes or

genes to their corresponding SNP sets and then uses a local database to retrieve and col-

lect the population-specific SNP allele frequencies from the selected database.
Databases and populations

The local database stores allele frequency data from four different public data reposi-

tories: the 1000 Genomes Project [10], HapMap [16], Human Genome Diversity Project

(HGDP) [5] and Exome Aggregation Consortium (ExAC) [17]. Databases utilized and

their number of populations and sample sizes with the number of SNPs are presented

in Table 1. For example, the default database, 1000 Genomes Project Phase III data, in-

cludes a total of 2504 samples from 26 populations (Fig. 2). Reference population with

labels, sample sizes that are available from each public database to infer ancestry and

web link are provided in Additional file 1: Table S1. The 1000 Genomes Project (n =

84.7 million SNPs) across chromosomes are provided in Table 2.
Table 1 Reference populations and sample size with the number of SNPs databases accessed by
MI-MAAP

Database Populations Individuals SNPs

1000 Genomes 26 2504 84.7 million

HapMap 11 1397 3.2 million

HGDP 53 1043 657,000

ExAC 6 60,706 10 million



Fig. 2 Geographical distribution of 26 populations in the 1000 Genomes Project. The major continental
regions are represented in 1000 Genomes Project. Source: The International Genome Sample Resource
(IGSR) and 1000 Genomes Project https://www.internationalgenome.org)
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Feature selection methods

After obtaining population-specific SNP data from either the public database or the

user uploaded file, feature selection methods will be performed. LEI is an efficient

likelihood-based approach which is computed by using the reference allele frequency

data to estimate the genotype count data based on the Hardy-Weinberg Equilibrium

(HWE) assumption; while PCA, SVM, and RF require the individual-level genotype

data. When using summary-level allele frequency data, LEI will be applied. When using

user-generated individual-level genotype data, one of the feature selection methods

from LEI, PCA, SVM and RF can be performed. If LEI is chosen for genotype data, esti-

mated allele frequencies will be first calculated from the genotype data and then used

to compute LEI values. Thresholds for the computation values of the selected feature

selection method can be set to filter relevant SNPs. In order to select the most inform-

ative SNPs and remove redundant and uninformative SNPs, we implemented filtering

criteria including spacing between markers to account the linkage disequilibrium (LD).

Removal of redundant and uninformative SNPs reduces the time and genotyping costs

while increasing the power for extracting the most informative panels of SNPs. MI-

MAAP also provides various ways to export the output, including Excel, CSV and PDF
Table 2 Number of SNPs on each chromosome for 1000 Genomes Phase III dataset

Chr No. of SNPs Chr No. of SNPs Chr No. of SNPs

1 6,468,094 9 3,560,687 17 2,329,288

2 7,081,600 10 3,992,219 18 2,267,185

3 5,832,276 11 4,045,628 19 1,832,506

4 5,732,585 12 3,868,428 20 1,812,841

5 5,265,763 13 2,857,916 21 1,105,538

6 5,024,119 14 2,655,067 22 1,103,547

7 4,716,715 15 2,424,689 X 3,468,093

8 4,597,105 16 2,697,949

https://www.internationalgenome.org
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files. The ability of LEI to determine ancestry proportion in multi-ancestry admixed

populations using allele frequency data without requiring the individual-level genotype

data provides a more efficient alternative to the existing computationally and time-

consuming genotype-based analysis for ancestry inference. When other choices are

made instead of LEI, we recommend using Random Forest or SVM. In our analyses,

the PCA based approach requires a larger set of informative markers to achieve similar

performance as of LEI, RF, and SVM to estimate the ancestry proportion of admixed

samples. We would also like to point out that the reference panels used for the con-

struction of an informative marker set should be representative of the samples. We sug-

gest developing AIMs from representative populations of interest.
Attributes to SNPs/genes

In addition to prioritizing AIMs, MI-MAAP allows to retrieve and explore functional

annotation information associated with AIMs. These attributes are grouped into eight

categories: SNP information (chromosome, alleles, MAF, functional class, Regulome

Score, TSS Score, and links to GWAS Catalog, dbGap, Exome variant, Genome variant

and so on), gene information (such as gene ID, gene symbol, synonyms, gene descrip-

tion, CpG sites and mapped diseases), genome and variation (links to ENCODE, dbVar,

ClinVar and BioGPS), gene expression (such as GEO profiles, GTEx eQTL, Blood

eQTL and so on), biological pathways (links to KEGG pathways, Reactome and Bio-

Carta), gene ontology (cellular components, biological process and molecular function),

protein (links to UniProt, Protein Atlas, PFAM and SMART), and species orthologs

(such as Entrez IDs for chimp, rhesus, mouse, rat, zebrafish, cattle, chicken and dog) [7,

18, 19].
Components of MI-MAAP

Figure 3 shows the layout of the MI-MAAP homepage. The overall process of inform-

ative SNPs selection from public data is performed in six stages, each building on the

results from the preceding stage. The first stage is to select the marker data source.

One of the four public databases (1000 Genomes Project, HapMap, HGDP or ExAC)

can be selected to retrieve allele frequency data of the SNPs users are interested in. In

addition to the public reference datasets, users can upload their own generated data to

compute the measure of marker informativeness by selecting the ‘User Defined Input’

radio button. In the second stage, based on the selected database users are able to

choose the populations that are included in that database. Meanwhile, users are re-

quired to either select a chromosome in the dropdown menu or enter a list of SNPs or

a gene name in the given text area. If ‘User Defined Input’ is selected, users need to up-

load their own SNP allele frequency data or genotype data. A single file in text or excel

format of reference data can be uploaded. For the allele frequency data, the reference

file must have a header line (SNPID, Chromosome, Ref_Allele, Alt_Allele, Pop1_Freq,

…,Popk_Freq) and variants along the rows. Here ‘Popj_Freq’ is the reference allele fre-

quency in population j. In addition, a dynamic formset is attached to enter the number

of samples for all the populations used in the data file. For the genotype data, the file

must have a header line (SampleID, Population, SNP1, SNP2, …, SNPk) and individual

samples along the rows. ‘SNPj’ is the genotype of SNPj in a sample, coded as an integer



Fig. 3 MI-MAAP web interface. The architectural design consists of six layers where a user selects
populations, markers and filtering criteria to generate AIMs. The web interface allows user to either display
the information on the browser or to download to a local hard drive
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counting the number of the reference alleles. The third stage is the feature selection

threshold section. If the allele frequency data is used, LEI will be computed. If user-

generated genotype data is uploaded, users can select one of the methods from LEI,

PCA, SVM and RF. LEI values are in the range of 0 to 2 for three or more -population

analysis and 0 to 1 for two-population analysis. To set thresholds for LEI and other

genotype-data based feature selection approaches (PCA, SVM and RF), users can click

on the radio buttons or enter custom values manually in the provided space. The

fourth stage is the marker spacing section where the input SNPs list can be further re-

fined by specifying the desired physical distance between markers. Users can select a

distance ranging from 50 kb to 5Mb from the drop-down field or enter a custom value
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in the unit of kb (1000 base pairs). The fifth stage is the attribute section in the right

column. Users can optionally select several attributes through the collapsible menu

after entering the necessary input data. In the last stage, by clicking the display button

at the bottom of the page, the selected feature selection method will be performed on

the given input data and a computation output page will be generated.
Downloads

The output page contains a table which includes the variant ID, chromosome, reference

allele, allele frequencies among the used populations, and the computation values of

the selected feature selection method. The output table can be ordered by any columns

by clicking the sorting arrow in the column header. The table can also be downloaded

to Excel, CSV or PDF files, copied to the clipboard for further use or printed directly.

At the bottom of the result page, the previously selected attributes are displayed under

each category. Clicking an SNP ID out of the result table redirects to a new page on

which the selected attribute information is displayed in a tabulated format. These attri-

bute data are obtained by either directly querying a local API, or providing the hyper-

links to external resources which are shown as the corresponding database logos. For

detailed information, we created a fully dedicated website with navigation bar that con-

tains links for manual, frequently asked questions, and contact information and can be

accessed at https://research.cchmc.org/mershalab/MI-MAAP/login/. In addition, a de-

tailed documentation including instructions and how to use the tool is provided in

Additional file 2: Table S2.
Genome wide scale and computation time and comparison with other methods

The computation time depends on the number of markers and the feature selection

threshold as well as the number of populations that are selected. Mining the informa-

tion for large chromosomes (e.g. chromosome 1 from 1000 Genome Project - about 6.5

million SNPs) takes longer than mining the information for smaller chromosomes (e.g.

chromosome 22 from 1000 Genome Project - about 1.1 million SNPs). For example,

with threshold LEI > = 0.2, analyzing LEI values of SNPs in chromosome 1 for CEU,

CHB and YRI takes about 32 s and gives 233,636 AIMs, while analyzing SNPs in

chromosome 22 is about 6 s and gives 43,532 AIMs. With threshold LEI > = 0.8, analyz-

ing SNPs in chromosome 1 and chromosome 22 for the same populations give an out-

put of 1089 AIMs and 243 AIMs, which take about 26 s and 4 s, respectively. Other

genotype-based methods are not scalable to a genome-wide data and cannot be directly

compared.
Illustrative examples
Ranking ancestry informative markers

Suppose we have identified a set SNPs on chromosome 22 which we want to investi-

gate the ancestry informativeness of the SNPs among three populations CEU (Northern

and Western European), CHB (Han Chinese in Beijing, China) and YRI (Yoruba in

Ibadan, Nigeria). Using MI-MAAP tool, we compute LEI measure for the desired set of

SNPs. Since all SNPs are investigated, we set threshold LEI > = 0. The corresponding

output table with a threshold LEI > = 0 is shown in Fig. 4. SNP rs7289657 has LEI = 0

https://research.cchmc.org/mershalab/MI-MAAP/login/


Fig. 4 SNPs output display from chromosome 22 for population CEU, CHB and YRI. We have identified a set
SNPs on chromosome 22 which we want to investigate the ancestry informativeness of the SNPs among
three populations CEU, CHB and YRI. Using MI-MAAP, we compute LEI measure for the desired set of SNPs.
The SNP rs2294368 has the highest LEI value (0.78) as it exhibits relatively large allele frequency differences
among the three populations (CEU: 0.79, CHB: 0.17, and YRI: 0.99), which suggests that it is the most
informative SNP among the SNPs under consideration to be ancestry informative
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which implies the SNP is non-informative of the ancestry as expected since the allele

frequencies of the three populations are the same. Meanwhile, the SNP rs2294368 has

the highest LEI value (0.78) because the SNP exhibits relatively large allele frequency

differences among the three populations (CEU: 0.79, CHB: 0.17, and YRI: 0.99), which

suggests that it is the most informative SNP among the SNPs under consideration. We

further explore the candidate SNP and gene using functional attributes are shown in

Fig. 5. The functional annotation scores from RegulomeDB and GWAVA TSS show

the SNP rs2294368 has Regulome score = 5 and TSS score = 0.4. By clicking the re-

spective logos, users can get additional association study results from GWAS Catalog

and dbGap, and SNP annotation information from HaploReg and SNPeffect. The SNP

rs2294368 is located in the Calcium Voltage-Gated Channel Subunit Alpha1 I (CACN

A1I) gene. Genome annotation and genomic variation information from ENCODE and

ClinVar can be accessed through the hyperlinks provided in the Genome and Variation

table. The Gene Expression table displays the number of expression quantitative locus

(eQTLs) in different tissues and blood eQTLs for each gene associated with the given

SNP. It shows that gene CACNA1I has 42 testis-specific eQTLs and no blood eQTLs.

Pathway information is also available by visiting multiple pathway databases KEGG,

Reactome and BioCarta. For gene ontology, three main categories, cellular components,

biological processes and molecular functions are provided. Gene-associated protein in-

formation from four external resources UniProt, Protein Atlas, PFAM and SMART is

available. Finally, the Gene Ortholog table contains Entrez Gene IDs for 9 different spe-

cies (chimpanzee, rhesus, mouse, rat, zebrafish, cattle, chicken, dog and frog) and hy-

perlinks to the corresponding gene data are provided [18].
Ancestry classification based on 100 AIMs

To demonstrate how MI-MAAP can efficiently extract few AIMs from multiple ances-

tral populations, and correctly cluster different individuals into their respective



Fig. 5 SNP attributes from chromosome 22 for population CEU, CHB and YRI populations: (a) SNP/Gene
Information, (b) Gene Expression Information and (c) Ortholog Information
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geographic populations, the top 100 AIMs selected from 1000 Genome Project dataset

were generated using LEI. The genotype data of the top 100 AIMs was examined using

the principal components analysis (PCA) algorithm to capture the genetic structure.

The PCA plots of the top 100 AIMs with the first and second principal components

(PCs) for three continental ancestral populations, CEU (Northern and Western Euro-

pean), CHB (Han Chinese in Beijing, China) and YRI (Yoruba in Ibadan, Nigeria) is

shown in Fig. 6a. The two-dimensional PCA plot reveals distinct separation of CEU,

CHB and YRI racial ancestry populations. The first PC contributes 73.5% of the total

variation, which clearly distinguishes between Africans from Yoruba and non-Africans

samples from Han Chinese. The second PC, contributing 6.8% of the total variation,

distinguishes between Europeans and Han Chinese. Figure 6b shows the PCA plot

using the first and second PCAs for the admixed population ASW (African American)

and its continental ancestries CEU and YRI. The first PC explains 64.5% of the total

variance and the second PC explains 6.4% of the total variance. CEU and YRI samples



Fig. 6 Scatterplots of principal components axis of PC1 and PC2. (a) CEU, CHB and YRI populations: the
two-dimensional PCA plot reveals distinct separation of CEU, CHB and YRI racial ancestry populations. The
first PC contributes 73.5% of the total variation, which clearly distinguishes between Africans from Yoruba
and non-Africans samples from Han Chinese. The second PC, contributing 6.8% of the total variation,
distinguishes between Europeans and Han Chinese; (b) ASW, CEU and YRI populations: CEU and YRI
samples form relatively dense clusters, whereas ASW has a lower density and the sample variance is large.
Most of the ASW samples are much closer to YRI than CEU and CEU is separated from the other two
populations along the PC1 axis. The first PC explains 64.5% of the total variance and the second PC explains
6.4% of the total variance
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form relatively dense clusters, whereas ASW has a lower density and the sample variance

is large. Most of the ASW samples are much closer to YRI than CEU and CEU is sepa-

rated from the other two populations along the PC1 axis. These observations confirm that

the African American population is an admixed population with a large contribution from

YRI population, and in fact, admixture analyses of ASW samples suggested an average of

80% African ancestry and 20% European ancestry [20–22]. We showed that continental

regions can be readily distinguished, while more markers are necessary to improve the

classification of closely related and admixed populations. These results further validated

that the markers selected from LEI were ancestry informative markers.
Selection of LEI threshold

To provide more insight into the variation of LEI values in different sets of populations,

we analyzed the distribution of LEI in multiple population groups. It should be pointed

out that the value of LEI is dependent on multiple factors including the number and gen-

etic diversity among the ancestry populations, level of structures one wishes to correct and

the sample size. LEI values are in the range of 0 to 1 for two populations and 0 to 2 for

three or more populations. Moreover, LEI values from genetically diverse populations tend

to be large while the values from similar populations tend to be smaller. When selecting

the LEI threshold for AIMs, it is necessary to consider all these factors together and find

the optimal LEI value can achieve the desired performance under different scenarios such

as classification accuracy or admixture proportion. As a case study of LEI distribution in

different sets of populations, we analyzed the distribution of LEI values and PCA clustering

for two population groups, CEU, CHB and YRI, and FIN, GBR and TSI. The maximum

LEI score for the diverse ancestral populations CEU-YRI-CHB is 1.21 and for the genetic-

ally similar populations FIN-GBR-TSI, the maximum LEI score is 0.52. Additional file 3:

Figure S1(A) shows the distribution of LEI values from CEU-YRI-CHB populations for

SNPs with LEI > 0.75. In total, we identified 32,530 SNPs with LEI > 0.75 from all
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autosomal chromosomes and over 2000 SNPs with LEI > 1.0. For the FIN-GBR-TSI

populations, we identified 2313 SNPs with LEI > 0.15 and only 251 SNPs with LEI ≥0.25

(Additional file 3: Figure S1(B)). Additional file 4 shows the PCA clustering of the two sets

of populations using different LEI thresholds. For CEU-YRI-CHB, SNPs with LEI > 1

separate the three populations as shown in Additional file 4: Figure S2(A). However, for

FIN-GBR-TSI, SNPs with LEI ≥0.25 fail to separate three populations and further lowering

the LEI threshold to 0.15 improves the PCA clustering (Additional file 4: Figure S2(B-C)).

Additionally, only the top 35 LEI SNPs (LEI > 1.0) were adequate to accurately classify the

CEU-YRI-CHB populations. A simulation study of the three-way admixed population with

CEU, YRI, and CHB as the parental population showed that the top 1000 LEI SNPs (with

LEI > 0.833) were required to achieve a root mean square error < 0.05 between the true

and estimated ancestry proportion. Because of the variation of the LEI score across

different sets of populations, we recommend using an iterative approach to find the opti-

mal set of SNPs that meet the acceptable decision criteria specific to research questions.
Conclusion
Although a large number of SNPs can provide high-resolution genomic information for

ancestry, a small but robust set of SNPs may be more desirable for certain applications in-

cluding population structure and sample classification based on continental ancestry [23].

The small number of ancestry panel is easy to implement in cost-effective routine labora-

tories for forensic science and disease genetics studies in resource constraint environment.

In this study, we developed MI-MAAP, a web-based tool using an allele frequency-based

method to identify smaller subsets of informative markers for multi-ancestry admixed

populations as well as retrieving SNP/gene related functional annotation. Building MI-

MAAP based on allele frequency data without requiring the individual-level genotype data

is appealing in the big data era. In summary, we used a case study to demonstrate that

MI-MAAP can explore the information in the genomic data more sufficiently and effi-

ciently from allele frequency data. We believe MI-MAAP is a useful tool for SNP panel

developments in population, evolutionary, forensic and disease genetics studies.
Availability and requirements
Project name: MI-MAAP.

Project home page: https://research.cchmc.org/mershalab/MI-MAAP/login/

Project documentation page: https://research.cchmc.org/mershalab/MI-MAAP/manual/

Operating system(s): Platform independent.

Programming language: Python, JavaScript, HTML, CSS, PHP.

Other requirements: JavaScript enabled web browsers.

License: GNU General Public License.

Any restrictions to use by non-academics: GNU.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3462-5.

Additional file 1: Table S1. Reference population with labels, sample size that are available from each public
database to infer ancestry and web link.

Additional file 2: Table S2. Step-by-step manual: Documentation including instructions and how to use the tool
in developing ancestry SNP markers in multi-ancestry population.

https://research.cchmc.org/mershalab/MI-MAAP/login/
https://research.cchmc.org/mershalab/MI-MAAP/manual/
https://doi.org/10.1186/s12859-020-3462-5


Chen et al. BMC Bioinformatics          (2020) 21:131 Page 13 of 14
Additional file 3: Figure S1. Distribution of LEI scores. (A) Histogram shows the distribution of LEI scores with
threshold 0.75 computed among CEU-YRI-CHB populations. (B) Histogram shows the distribution of LEI scores with
threshold 0.15 computed among FIN-GBR-TSI populations.

Additional file 4: Figure S2. PCA plots using different LEI thresholds. (A) PC1 vs PC2 produce clear separation of
three ancestral populations CEU, YRI, and CHB genome-wide markers with LEI ≥1. (B) PC1 vs PC2 produce some
separation of three closely related populations FIN, GBR, and TSI using markers with LEI > 0.15. We have used 2313
markers for the analysis. (C) Using markers with higher thresholds of LEI ≥0.25 failed to separate the three popula-
tions. Results were based on all 251 markers with LEI ≥0.25. PLINK 2 was used for the PCA analysis.
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