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Cancer cells share several properties, high proliferation potential, reprogramed metab-
olism, and resistance to apoptotic cues. Acquiring these hallmarks involves changes in 
key oncogenes and non-oncogenes essential for cancer cell survival and prosperity, and 
is accompanied by the increased energy requirements of proliferating cells. Mitochondria 
occupy a central position in cell life and death with mitochondrial bioenergetics, biosyn-
thesis, and signaling are critical for tumorigenesis. Voltage-dependent anion channel 
1 (VDAC1) is situated in the outer mitochondrial membrane (OMM) and serving as a 
mitochondrial gatekeeper. VDAC1 allowing the transfer of metabolites, fatty acid ions, 
Ca2+, reactive oxygen species, and cholesterol across the OMM and is a key player in 
mitochondrial-mediate apoptosis. Moreover, VDAC1 serves as a hub protein, interacting 
with diverse sets of proteins from the cytosol, endoplasmic reticulum, and mitochondria 
that together regulate metabolic and signaling pathways. The observation that VDAC1 
is over-expressed in many cancers suggests that the protein may play a pivotal role 
in cancer cell survival. However, VDAC1 is also important in mitochondria-mediated 
apoptosis, mediating release of apoptotic proteins and interacting with anti-apoptotic 
proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-xL, and hexokinase (HK), which are 
also highly expressed in many cancers. Strategically located in a “bottleneck” position, 
controlling metabolic homeostasis and apoptosis, VDAC1 thus represents an emerging 
target for anti-cancer drugs. This review presents an overview on the multi-functional 
mitochondrial protein VDAC1 performing several functions and interacting with distinct 
sets of partners to regulate both cell life and death, and highlights the importance of the 
protein for cancer cell survival. We address recent results related to the mechanisms 
of VDAC1-mediated apoptosis and the potential of associated proteins to modulate of 
VDAC1 activity, with the aim of developing VDAC1-based approaches. The first strategy 
involves modification of cell metabolism using VDAC1-specific small interfering RNA 
leading to inhibition of cancer cell and tumor growth and reversed oncogenic proper-
ties. The second strategy involves activation of cancer cell death using VDAC1-based 
peptides that prevent cell death induction by anti-apoptotic proteins. Finally, we discuss 
the potential therapeutic benefits of treatments and drugs leading to enhanced VDAC1 
expression or targeting VDAC1 to induce apoptosis.
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death in some tumor cells that harbored activating mutations in 
the RAS–RAF–MEK pathway (30).

Immunofluorescence, flow cytometry, and EM immunogold 
labeling have detected VDAC in other cell compartments in 
addition to mitochondria (3) [for review, see Ref. (31)]. These 
compartments include the plasma membrane (3), includ-
ing location in caveolae and caveolae-like domains (32), the 
sarcoplasmic reticulum (SR) of skeletal muscles (33), and 
the ER of rat cerebellum (34). Patch-clamping of intact cells 
demonstrated channel with properties similar to those of 
planar-bilayer reconstituted purified VDAC1 (35). VDAC has 
also been detected in synaptosomes of Torpedo electric organ 
(36). VDAC2 and VDAC3 have been reported in bovine outer 
dense fibers and in the cytoskeletal component of sperm flagel-
lum (37).

A possible mechanism for targeting VDAC protein to the 
plasma membrane proposes that the N-terminal signal peptide 
of the protein is responsible for this targeting (38). Indeed, 
plasmalemmal (pl) VDAC1 was found to contain a hydrophobic 
leader sequence (39). Other targeting mechanisms, such as 
alternative mRNA untranslated regions, were also suggested (35) 
for trafficking via ER/mitochondria-associated membranes or 
plasma membrane/ER associations (40).

Several possible functions of the extra-mitochondrial VDAC 
were proposed. These include intracellular communication, as 
mediating calcium signal between the ER and mitochondria 
(41), being part of the outwardly rectifying depolarization-
induced chloride (ORDIC) channel complex (42), regulate cell 
volume in brain (43), and mediate ATP release (44). Interestingly, 
silencing VDAC1 expression by specific small interfering RNA 
(siRNA) was shown to prevent the entry of amyloid beta (Aβ) 
into the cytosol, as well as Aβ-induced toxicity (45), suggesting 
the involvement of pl-VDAC1 in Aβ cell entry and in inducing 
mitochondrial dysfunction and apoptosis (46). These and other 
proposed functions for plVDAC were recently presented and 
discussed (31).

vDAC1 Structure, Channel Conductance, 
Properties, and Regulation
The three-dimensional structure of VDAC1 was solved using 
X-ray crystallography, NMR, and a combination of both (47–49). 
The methods propose that VDAC1 is composed of 19 β-strands 
arranged as a barrel, and with the N-terminal domain located within 
the pore. The pore diameter of the channel has been estimated to be 
between 3 and 3.8 nm (47) and decreased to about 1.5 nm when the 
N-terminal domain is located within the pore (47–49).

This imaging-derived structure is in disagreement with the 
conclusions of biochemical and biophysical approaches, which 
argue for the existence of additional extra-membranal VDAC1 
regions (50). The discrepancy may be attributed to the fact that 
all three imaging methods employed refolded recombinant  
E. coli expressed VDAC1, purified from inclusion bodies and the 
refolding conditions may be responsible for the appearance of 
non-native structures.

An important VDAC1 structural element is the stretch 
of multiple glycine residues (21GlyTyrGlyPheGly25) [1,5] that 

Abbreviations: AIF, apoptosis-inducing factor; ANT, adenine nucleotide trans-
locase; APAF-1, apoptosis protease-activating factor 1; Bcl-2, B-cell lymphoma 2; 
caspase, cysteinyl/aspartate-specific protease; CLL, chronic lymphocytic leukemia; 
CyP D, cyclophilin D; Cyto c, cytochrome c; DIDS, 4,4′-diisothiocyanostilbene-
2,2′-disulfonic acid; ER, endoplasmic reticulum; FNQs, furanonaphthoquinones; 
G-6-P, glucose-6-phosphate; HK, hexokinase; IMM, inner mitochondrial mem-
brane; IP3Rs, inositol-1,4,5-trisphosphate receptors; LDH, lactate dehydrogenase; 
MAC, mitochondrial apoptosis-inducing channel; NADH, reduced nicotinamide 
adenine dinucleotide; NSCLC, non-small cell lung cancer; OMM, outer mitochon-
drial membrane; PDH, pyruvate dehydrogenase; PLB, planar lipid bilayer; PT, 
permeability transition; PTP, permeability transition pore; RNAi, RNA interfer-
ence , shRNA, short-hairpin RNA; ROS, reactive oxygen species; RuR, ruthenium 
red; SR, sarcoplasmic reticulum; STS, staurosporine; TNF-α, tumor necrosis factor 
alpha; TSPO, translocator protein; VDAC, voltage-dependent anion channel.

vOLTAGe-DePeNDeNT ANiON CHANNeL 
(vDAC) iSOFORMS, STRUCTURe, AND 
CHANNeL ACTiviTY

vDAC isoforms and Cellular Localization
In mammals, three VDAC isoforms have been identified, 
VDAC1, VDAC2, and VDAC3, sharing ~70% identity as well as 
several structural and functional properties (1, 2), although they 
are significantly different with relation to functionality (1, 3, 4). 
The three isoforms are expressed in most tissue types, with the 
expression levels of VDAC2 and VDAC3 being lower in most but 
not all tissues (1, 2). Here, we only briefly consider the VDAC 
isoforms, as a full chapter in this issue (De pinto et al.) is devoted 
to VDAC isoforms.

The expression of hVDAC-2 is associated with neurodegen-
erative diseases, including amylotropic lateral sclerosis (ALS) 
(5), epilepsy (6), and Alzheimer’s disease (AD) (7). By contrast, 
VDAC3−/− mice showed only in heart muscle defects in complex 
IV activity, a component of the electron transfer chain (8).

While both VDAC1- and VDAC3-deficient mice are viable, 
which permits the study of the role(s) of VDAC in cellular 
metabolism in intact animals, the reduced number of Vdac1−/− 
progeny (according to the Mendelian ratio) suggests partial 
embryonic lethality (9). Studies using Vdac−/− mice confirmed 
the importance of this protein as a transporter of metabolites 
across the outer mitochondrial membrane (OMM). Detergent-
“skinned” muscle fibers, which lack VDAC1, displayed reduced 
ADP-stimulated oxygen consumption, defects in the electron 
transport chain (ETC) complex activities, reduction of mito-
chondria-associated hexokinase (HK), and finally, abnormal 
mitochondrial morphology (9).

A number of regulatory functions involving the generation 
of reactive oxygen species (ROS), steroidogenesis, and mito-
chondria-associated endoplasmic reticulum (ER) pathways have 
been variously ascribed to the different isoforms (10). VDAC1 is 
involved in apoptosis, interacting with different proteins and fac-
tors and mediating the release of Cyto c (1, 11–26). The metabo-
lite transport properties of VDAC1 are also superior to those of 
VDAC2 and VDAC3 (1). By contrast, VDAC2 is anti-apoptotic 
(27), is crucial for Bak recruitment (28), and is a critical inhibitor 
of Bak-mediated apoptosis (29). The anti-tumor agent erastin was 
found to bind directly to VDAC2 and induce non-apoptotic cell 
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connects the N-terminal domain to β-strand 1 of the barrel. This 
glycine-rich 21GYGFG25 sequence, which is highly conserved 
between mammals, is thought to provide the flexibility required 
for N-terminal region translocation out of the internal pore of 
the channel (51). Using site-directed mutagenesis and cysteine 
substitution, in combination with a thiol-specific cross-linker, it 
was demonstrated that the N-terminal domain of VDAC1 located 
within the pore can be translocated (51).

The notion of the mobility of the N-terminal region is further 
supported by observations that this protein domain moves upon 
changes in the voltage gradient (51, 52), that antibodies directed 
against the N-terminal region of the VDAC1 interact with 
membrane embedded protein (53–55), and that anti-apoptotic 
and pro-survival factors HK-I, HK-II, and Bcl-2 interact with this 
domain (16, 51). These results strongly support the suggestion 
that the N-terminal domain is highly dynamic and can translo-
cate out of the pore (51, 56).

Several different roles have been proposed for the N-terminal 
segment. These include acting as a voltage sensor (16, 51), as no 
voltage-dependent conductance was obtained with N-terminal-
truncated VDAC1 (16, 57). The N-terminal domain was further 
proposed to regulate the fluxes of ions and metabolites via 
VDAC1 (49) and to stabilize the β-barrel (58). The structure of 
the N-terminal domain of VDAC1, its potential role in regulat-
ing barrel shape, and its interaction with HK have been reviewed 
recently (59). Additional roles of this region in VDAC1 oli-
gomerization and regulation of apoptosis (16, 51) are presented 
below (see VDAC1 Homo-Oligomer Forming the Cyto c Release 
Pathway) and as the binding site for HK, Bcl-2, and Bcl-xL (see 
VDAC1-Based Peptides As Potential Anti-Cancer Therapy). 
Thus, it seems that the N-terminal domain of VDAC1 regulates 
a wide variety of VDAC1 functions, such as its channel conduct-
ance and apoptosis.

Another property of VDAC1 is the ability to form an oligo-
meric structure. Chemical cross-linking and fluorescence reso-
nance energy transfer analysis showed dimers, trimers, tetramers, 
and higher order oligomers (1, 11, 14, 56, 60–62). In addition, the 
NMR-based structure of recombinant human (h)VDAC1 implies 
that it forms a dimer of monomers arranged in parallel (47), while 
analysis of the crystal packing of murine (m)VDAC1 revealed 
strong anti-parallel dimers that can further assemble into hexam-
ers (63). The modulation and function of VDAC1 oligomerization 
are presented below (see VDAC1 Homo-Oligomer Forming the 
Cyto c Release Pathway).

The structural characterization of VDAC2 and VDAC3 is 
limited, with zebrafish VDAC2 structure was resolved at 2.8A 
resolution, revealing a dimeric organization (64).

The properties of VDAC1, purified by various procedures and 
detergents (65), from mitochondria isolated from liver, brain, and 
other tissues, have been studied when the purified protein was 
reconstituted into a planar lipid bilayer. Such bilayer-reconstituted 
VDAC1 assumes a variety of voltage-dependent conformational 
states, with different selectivities and permeabilities. VDAC1 
shows symmetrical bell-shaped voltage-dependent conductance, 
with the highest conductance (4 nS at 1 M KCl) occurring at low 
potentials of −20 to +20 mV (1, 66). At low voltages (~10 mV), 
VDAC1 exists in a high conductive state and shows a preference 

for transporting anions over cations. VDAC1 is permeable to 
small ions (e.g., Cl−, K+, Na+), and also to large anions, such 
as glutamate (66) and ATP (67), and to large cations, such as 
acetylcholine and dopamine (66). At high positive or negative 
potentials (>40  mV), VDAC1 switches to lower conductance 
states with different ionic selectivities and permeabilities (66, 68). 
In this state, the protein is permeable to small ions but becomes 
less permeable to ATP and ADP (1, 67, 68).

VDAC1 channel conductance is thought to rely on two sepa-
rate gating processes, one at positive trans-membrane potentials 
and the other at negative potentials (1, 68) with the N-terminal 
α-helical segment of the channel acting as the voltage sensor, gat-
ing the pore via conformational changes and/or movements (16, 
51). Additional studies are required before the VDAC1 gating 
mechanism can be fully resolved.

vDAC1 As a Hub Protein
VDAC1 functions in metabolism, Ca2+ homeostasis, apoptosis, 
and other activities are regulated via the interaction of VDAC1 
with many proteins associated with cell survival and cellular 
death pathways (1, 14, 56, 61). Indeed, VDAC1 in the OMM 
serves as a hub protein interacting with diverse sets of cytosolic, 
ER, and mitochondrial proteins that together regulate metabolic 
and signaling pathways, providing energy for cellular functions 
or triggering cell death.

As support for this viewpoint, the conserved nature of VDAC1 
(1), is in agreement with the finding that hub proteins are more 
evolutionarily conserved than are non-hub proteins (69). The 
VDAC1 interactome includes proteins involved in metabolism, 
apoptosis, signal transduction, anti-oxidation, and DNA- and 
RNA-associated proteins (Figure 1) (1, 11, 14, 56). Furthermore, 
these proteins may be located in the OMM, inner mitochondrial 
membrane (IMM), the IMS, the cytosol, ER, plasma membrane, 
and nucleus. Thus, VDAC1 functions as an anchoring site for 
proteins that mediate and/or regulate metabolic, apoptotic, and 
other processes in normal and diseased cells. In addition, some of 
these proteins, such as Bcl-2, Bcl-xL, and HK, are overexpressed 
in many cancers (see VDAC Interaction with HK and Other 
Metabolism-Related Proteins, Interaction of VDAC1 with Bcl-2 
Family Members). Importantly, we have been able to develop 
VDAC1-based peptides, which can interfere with these interac-
tions, leading to impaired cell metabolism and apoptosis (18–20, 
70, 71) (see VDAC1-Based Peptides As Potential Anti-Cancer 
Therapy).

vDAC1 AS A MULTi-SUBSTRATe 
TRANSPORTeR

The transport of a variety of metabolites, nucleotides, and coen-
zymes across the IMM is mediated by about 53 secondary trans-
port proteins called mitochondrial carriers. These transporters 
are substrate specific, such as the Pi carrier, the ADP/ATP carrier 
[adenine nucleotide translocase (ANT)] and the aspartate/gluta-
mate carrier (72). On the other hand, VDAC1 is the sole channel 
mediating the fluxes of ions, nucleotides, and other metabolites 
up to ~5,000  Da, including hemes and cholesterol, across the 
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OMM (1) (Figure  2). Thus, at the OMM, VDAC1 is perfectly 
positioned to function as gatekeeper for the entry and exit of 
substrates and products into and out of the mitochondria, and to 
interact with proteins that mediate and regulate the integration of 
mitochondrial functions with other cellular activities (1, 12, 14, 
56, 61, 68, 73) (Figures 1 and 2).

vDAC1 As a Cellular Metabolite 
Transporter Controls Cell energy and 
Metabolites
VDAC1 mediates the passage of metabolites, including pyruvate, 
malate, and succinate, into and out of mitochondria (1). In addi-
tion, VDAC1 also allows shuttling of ATP and ADP, and NAD+/
reduced nicotinamide adenine dinucleotide, with mitochondria-
generated ATP being transported to the cytosol in exchange for 
ADP, which is utilized in oxidative phosphorylation (OXPHOS) 
to generate ATP. As such, VDAC1 controls the ETC (1) (Figure 2) 
as well as the normal flow of metabolites (74). The importance of 
VDAC1 in cell energy and metabolism homeostasis is reflected 
in the findings that closure of VDAC1 (73), or downregulation 

of VDAC1 expression decreased metabolite exchange between 
mitochondria and the cytosol and inhibited cell growth (53, 75) 
[see Silencing VDAC1 Expression by Short Hairpin RNA (shRNA) 
or siRNA as a Tool to Reprogram Cancer Cell Metabolism].

The importance of VDAC1 in channeling ATP from the 
mitochondria to kinases has been presented in several studies. 
These showed that VDAC1 interacts with HK and creatine kinase 
(CrK) that produce high-energy metabolites, such as glucose-
6-phosphate (G-6-P) and creatine phosphate in brain and mus-
cle, respectively. The interaction of VDAC1 with HK mediates 
a coupling between OXPHOS and glycolysis (see Alterations 
in VDAC1 Expression Level in Cancer), while VDAC1 forms 
a complex with the ANT, and CrK at the contact sites between 
the IMM and OMM (76). Dimeric αβ-tubulin was proposed as a 
regulator of permeability of VDAC1 to ATP, with monomers of 
αβ-tubulin decreasing the passage of ATP through the channel 
(77). The function of VDAC1 in energy metabolism of cancer 
cells and the significance of the overexpression in many cancer 
cells (11) is discussed further below (see VDAC1 Expression 
Level and Cell Death Induction—a New Concept, Unraveling 
VDAC1-Based Therapies).
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5

Shoshan-Barmatz et al. VDAC1 As a Cancer Drug Target

Frontiers in Oncology | www.frontiersin.org July 2017 | Volume 7 | Article 154

Cholesterol is another metabolite transported across the 
OMM (78) (Figure  2), with VDAC1 being a component of a 
multi-protein complex, the transduceosome, involved in the pro-
cess. In addition to VDAC1, the transduceosome also includes 
the OMM high-affinity cholesterol-binding protein translocator 
protein (TSPO) and the steroidogenic acute regulatory protein 
(79) (Figure 2).

Cholesterol synthesis is highly elevated in various cancer 
cells, mainly in the OMM (80). In cancer cells, the increased 
mitochondria-bound HK is proposed to increase synthesis and 
uptake of cholesterol into the mitochondria. (81). Recently, it 
has been suggested that a glycine rich motif 21GYGFG25 sequence 
in the N-terminal part of VDAC1 is responsible for cholesterol 
binding (82). Cholesterol at high levels can reduce the activity of 

membrane-associated proteins and, thus, inhibit the metabolic 
functions of VDAC1 (83).

Thus, VDAC1 is involved in cholesterol synthesis and trans-
port, and is regulated by cholesterol.

Finally, in rat liver mitochondria, VDAC1 is proposed as part 
of a complex mediating the transport of fatty acids through the 
OMM (84). In this case, the hypothesis is that VDAC1 allows 
docking of the long-chain acyl-CoA synthetase (ACSL) at the 
OMM and, thus, linking it to carnitine palmitoyltransferase 1a 
(CPT1a). According to this proposal, activation of VDAC1 by 
ACSL allows the transfers acyl-CoAs via VDAC1, thus acrossing 
the OMM to the IMS, where they are converted into acylcarnitine 
by CPT1a. Finally, it was recently proposed that VDAC serves as 
a lipid sensor (85).

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
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factor (AIF), from the mitochondrial inter-membrane space to the cytosol, leading to apoptosis. These models include (a) VDAC1 closure and outer mitochondrial 
membrane (OMM) rupture serving as the Cyto c release pathway—prolonged VDAC1 closure leads to mitochondrial matrix swelling and OMM rupture, resulting in 
the appearance of a non-specific release pathway for apoptogenic proteins; (b) a permeability transition pore (PTP) provides the apoptogenic protein release 
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vDAC1 As a Ca2+ and ROS Transporter
Mitochondria are also a major hub of cellular Ca2+ homeostasis 
that is fundamental for a wide range of cellular activities. Intra-
mitochondrial Ca2+ controls energy metabolism modulation 
of critical enzymes, such as members of the tricarboxylic acid 
(TCA) cycle and enzymes responsible for fatty acid oxidation 
(FAO) (86) (Figure  2). Ca2+ overload in the mitochondria is 
involved in apoptotic cell death, triggering Cyto c release, and 
subsequent cell death (Figure 3).

Ca2+ transport across the IMM is mediated by several proteins, 
including the mitochondrial Ca2+ uniporter (87, 88) and the Ca2+ 
efflux mediator Na+/Ca2+ exchanger NCLX (89, 90) (Figure 2). 
A number of studies have reported that VDAC1 in the OMM 

can transport Ca2+ (91–94). VDAC1 possesses divalent cation-
binding site(s) (91, 95) and it was proposed that VDAC1 activity 
is modulated by physiological [Ca2+]i (94) with the magnitude 
of transfer into the mitochondrial matrix regulated by Bcl-xL 
binding to VDAC (96, 97). VDAC1 also functions in the Ca2+ 
cross-talk between ER and mitochondria (98).

Inhibitors of VDAC1, such as 4,4′-diisothiocyanostilbene-
2,2′-disulfonic acid (DIDS), were shown to prevent the apoptosis 
stimulus following an increase in intracellular Ca2+ levels (99) 
or Ca2+-mediated oxidative stress and apoptosis, as induced by 
5-aminolevulinic acid (100).

Mitochondria are a major source of ROS, that are linked to anti-
tumor immunity, the tumor microenvironment, proliferation, 
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and death of cancer cells (101). While ROS promote tumorigenic-
ity through signaling, they can also selectively kill a number of 
cancer cell lines (102) as well as normal cells, attacking DNA, 
lipids, and proteins (103). VDAC1 has been proposed to mediate 
ROS release from the IMS to the cytosol (104) (Figure 2), with 
HK-I and HK-II bound to VDAC1 decreasing this release (105), 
and thereby reducing intracellular levels of ROS (106).

CANCeR, MeTABOLiSM, 
MiTOCHONDRiA, AND vDAC1

It is now well accepted that in cancers, regardless of cellular or 
tissue origin, impaired cellular energy metabolism is the defin-
ing characteristic. Cancer cells exhibit significant metabolic 
alterations with respect to several critical substrates, including 
important changes in the metabolism of both glucose and 
glutamine that require plasticity of the metabolic machinery 
(107, 108). The view of cancer as a metabolic disease originated 
with the experiments of Otto Warburg in the 1920s, however, 
this view was gradually displaced by the concept of cancer as 
a genetic disease. Recently, although the Warburg effect and 
metabolic defects expressed in cancer cells are thought to arise 
primarily from genomic mutability selected during tumor pro-
gression (109, 110), the genetic origin of cancer has come into 
question. Accordingly, the genomic instability and essentially all 
hallmarks of cancer, including aerobic glycolysis were connected 
to mitochondria dysfunction and energy metabolism (111, 112). 
Indeed, supporting evidence suggests that cancer is primarily a 
mitochondrial metabolic disease (111).

Evidence for a metabolic rather than genetic origin includes 
the absence of a specific gene mutation or chromosomal abnor-
mality that is common to all cancers (113), while nearly all 
cancers display aerobic glycolysis, regardless of their tissue or cel-
lular origin. Cancer cells typically display high rates of glycolysis, 
even when fully oxygenated (aerobic glycolysis), and an altered 
redox balance (Warburg effect) (114–116). To increase glycolysis, 
cancer cells upregulate the transcription of genes involved in the 
glycolytic pathway (i.e., glucose transporters, glycolytic enzymes, 
etc.). Cancer cells actually use both glycolysis and OXPHOS, 
according to normoxic or hypoxic conditions and their capac-
ity to regulate the expression of genes important for cell growth 
(117). By regulating the metabolic and energetic functions of 
mitochondria, VDAC1 can, therefore, control the fate of cancer 
cells. Mitochondrial-bound HK, considered the rate-limiting 
enzyme of glycolysis, is overexpressed in cancer (1, 23, 118) and, 
as discussed in Section “VDAC Interaction with HK and Other 
Metabolism-Related Proteins,” is associated with VDAC1, an 
interaction that offers several advantages to cancer cells (1, 11), 
as outlined below (see VDAC Interaction with HK and Other 
Metabolism-Related Proteins). The HK–VDAC1 complex forma-
tion is regulated by Akt (119) and glycogen synthase kinase 3 beta 
(GSK3β), while the HK–VDAC1 complex is disrupted by VDAC1 
phosphorylation (24). In addition, it was shown that an increase 
in the amount of free cytoplasmic tubulin decreased VDAC 
conductance and mitochondrial membrane potential (ΔΨm) in 
all three VDAC isoforms (120).

The association of VDAC1 with the process of FAO is also 
important. Hetero-oligomeric complexes containing VDAC and 
CPT1a, a liver OMM protein catalyzing the first step in mito-
chondrial FAO and ACSL were detected and thought to transfer 
activated fatty acids through the OMM (84).

Specifically targeting metabolism in cancer cells presents a 
potential therapeutic strategy. However, although glucose metabo-
lism is increased in cancer cells, they mostly use the same glycolytic 
enzymes as do normal cells so that the choice of glycolytic enzymes 
as a target for cancer treatment may increase the risk of affecting 
normal cells as well (121).

MiTOCHONDRiA, APOPTOSiS,  
vDAC, AND CANCeR

Apoptosis can be initiated by two signaling cascades, the extrinsic 
and intrinsic pathways. The extrinsic pathway can be activated by 
binding of tumor necrosis factor (TNF), tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL), and other ligands to 
their specific death receptor (122). Such interactions lead to cascade 
of events leading to activation of procaspase 8 which then activates 
cysteinyl/aspartate-specific protease (caspases)-3, -7, and -6, pro-
moting apoptosis (123).

The intrinsic pathway can be activated by intracellular signals, 
such as oxidative stress, Ca2+ overload, DNA damage, and by 
various compounds, such as chemotherapeutic drugs (124). This 
leads to the release of IMS apoptogenic proteins [e.g., Cyto c, 
apoptosis-inducing factor (AIF), Smac/DIABLO] (124). The 
released Cyto c is a constituent of the apoptosome and activates 
procaspase-9, which in turn, activates the executioner caspases, 
caspase-3 and -7, leading to cell destruction (124). The AIF 
released is translocated to the nucleus, leading to chromatin 
condensation and DNA fragmentation (124). The intrinsic 
pathway is regulated by members of the B-cell lymphoma 2 
(Bcl-2) family of proteins (125), and by the inhibitor of apopto-
sis protein (IAP) family of proteins (126).

The two pathways can be connected through the caspase-
8-mediated cleavage of Bid into tBid (truncated Bid), which is 
translocated to the mitochondria, where it causes Cyto c release 
and subsequent cell death (123). In this way, tBid links extrinsic 
pathway to intrinsic, mitochondria-mediated apoptosis.

Cancer Cells Avoid Apoptosis
In many cancers, there is a deregulation of the balance between 
cell growth and death (115). Tumor cells avoid apoptosis by 
alterations in the expression levels of pro- and anti-apoptotic 
proteins, as well as because of reduced caspase function and 
impaired death receptor signaling (127). Overexpression of 
anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, has been 
demonstrated in numerous cancers, including colon, thyroid, 
breast, and endometrial cancer (128). Moreover, Bcl-2 expression 
is correlated with the degree of aggressiveness and resistance to 
chemotherapy-induced apoptosis (129).

One of the most common apoptotic pathways involves 
transcription factor p53, which plays a role in promoting tran-
scription of pro-apoptotic factors, such as Puma, Noxa, Bax, and 
apoptosis protease-activating factor 1 (APAF1). In response to 
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a spectrum of apoptotic stimuli, such as oxidative stress, p53 
translocates to the mitochondria (130), where it may regulate 
VDAC1-mediated apoptosis (131). As already discussed, cancer 
cells possess elevated levels of mitochondria-bound HK that not 
only enhances glycolysis but also protects against mitochondria-
mediated apoptosis via direct interaction with VDAC1 (16, 17, 
20, 21, 132, 133).

Although induction of apoptosis in cancer cells conceptu-
ally represents an effective therapeutic approach, conventional 
apoptosis-inducing chemotherapy is limited by a lack of specific-
ity, by cancer cell resistance, and by side effects of cytotoxicity for 
normal cells.

vDAC1 involvement in Apoptosis
VDAC1 is now well-accepted as an important player in apop-
tosis and is being explored as a new target for cancer therapy 
(1, 11, 13–15, 55, 134). Evidence supporting the activity of 
VDAC1 in apoptosis includes (a) Cyto c release, cell death, and 
Bax–VDAC1 interaction were all inhibited by anti-VDAC1 anti-
bodies (135–137); (b) HK-I and HK-II interacting with VDAC1 
inhibited staurosporine (STS)-induced Cyto c release and 
apoptosis in native but not mutated VDAC1-expressing cells (14, 
17, 133); (c) the interaction of ruthenium red (RuR) with native 
but not mutated VDAC1 prevented Cyto c release and apoptosis 
(95, 133, 138); (d) siRNA-mediated downregulation of VDAC1 
prevented cell death induced by cisplatin (139); (e) reducing the 
level of VDAC1 expression attenuated endostatin (ES)-induced 
apoptosis (140); (f) over-expression of VDAC1 induced apop-
tosis, regardless of cell type and the effect was antagonized by 
anti-apoptotic proteins (17, 133, 141); (g) VDAC1 mediated 
Cyto c release from proteoliposomes (25, 62, 135); (h) VDAC1-
deficient mitochondria from mutant yeast did not exhibit Bax/
Bak-induced Cyto c release (25, 142); (i) the anti-apoptotic effect 
of Bcl-2 and Bcl-xL was obtained in cells expressing native but 
not mutated VDAC1 (18, 19); (j) VDAC1 channel conductance 
inhibitors, such as DIDS, DPC (diphenylamine-2-carboxylate), 
and VBIT-4, inhibited apoptosis triggered by various inducers 
(99, 104, 133, 143); and finally, (k) cyathin-R, a cyathane-type 
diterpenoid from the medicinal fungus Cyathus africanus, could 
induce apoptosis in Bax/Bak-depleted cells but not when VDAC1 
was depleted. Cyathin-R-induced apoptosis was inhibited by 
DPC (144).

Proposed Pathways and Mechanisms  
for Apoptogenic Factor Release from 
Mitochondria
All of the mitochondrial apoptotic proteins (Cyto c, AIF, Smac/
DIABLO, and endonuclease G) that activate apoptosis in the 
cytosol are located in the IMS. Therefore, only increase in the 
OMM permeability is required for the release of apoptogenic 
proteins. It remains, however, unclear how these pro-apoptotic 
proteins cross the OMM for release into the cytosol. Based on 
a variety of approaches and strategies, several mechanisms 
describing the release of apoptotic proteins from the IMS were 
proposed [for reviews, see Ref. (1, 11–13, 61, 145)] (Figure 3). 
Some models propose that release of apoptotic proteins from the 

IMS is facilitated by a swelling of the mitochondrial matrix and 
subsequent rupture of OMM integrity (Figure 3a). Other models 
predict the formation of large channels that can allow the passage 
of Cyto c and other proteins and, thus, to be released from the 
IMS to the cytosol (Figure 3) such as:

(i) Permeability transition pore (PTP): the mitochondrial PTP 
is a high-conductance non-specific pore activated by ROS, 
Ca2+ overload, and other agents, leading to mitochondrial 
swelling and the release of Cyto c into the cytosol. Initially, 
PTP was proposed to comprising VDAC1 in the OMM, 
ANT in the IMM, and cyclophilin D (CyD), a resident of the 
matrix (55, 146, 147) (Figure 3b,h). However, in knockout 
experiments performed in mice, even mitochondria exam-
ined from cells lacking some but not all ANT isoforms (148, 
149), or VDAC1 (150) showed PTP formation. Recently, it 
was proposed that dimers of the ATP synthase complex can 
form the PTP (151).

(ii) Bax/Bak complexes: Bax and Bak are pro-apoptotic proteins 
proposed to oligomerize to form a Cyto c release channel 
(152–154) (Figure 3c,d). Bcl-2 prevents Bax oligomerization 
and insertion into the OMM (152, 153). Bak can form a large 
pore due to its oligomerization (155) or due to formation of 
hetro-oligomers with Bax following their activation by tBid 
(156, 157).

(iii) Bax/VDAC1 complexes: VDAC1 and Bax form hetero-
oligomers forming the Cyto c release channel (26, 158) 
(Figure 3e).

(iv) Mitochondrial apoptosis-inducing channel (MAC): MAC a 
supra-molecular complex forming channel at the OMM that 
can mediate Cyto c release (159) (Figure 3f). Recently, it was 
proposed that Bax and/or Bak form the MAC (160).

(v) VDAC1 oligomerization: upon apoptosis induction, VDAC1 
undergoes conformational changes and oligomerization, 
forming a channel within the homo-oligomer large enough 
to allow Cyto c release, and subsequent apoptosis (14, 16, 
56, 60–62, 145, 161, 162) (Figure 3g) (see VDAC1 Homo-
Oligomer Forming the Cyto c Release Pathway). It was also 
suggested that apoptosis stimuli lead to VDAC1 oligomeri-
zation by inducing upregulation of VDAC1 expression levels 
(see VDAC1 Expression Level and Cell Death Induction—a 
New Concept).

Finally, it should be noted that the release of Cyto c could be 
achieved by either of the above proposed mechanisms, depending 
on the nature of the apoptosis inducer and cell type (163).

vDAC1 Homo-Oligomer Forming the  
Cyto c Release Pathway
The determined VDAC1 pore diameter in its high conductance state 
is about 2.6–3.0 nm. This diameter is too small to allow the passage 
of Cyto c to be released to the cytosol. To overcome this issue, the 
formation of a large channel comprising VDAC1 monomers has 
been proposed to serve as the Cyto c release channel (56, 60–62,  
145, 161, 162). VDAC1 is known to exist as higher-order oligom-
ers (22, 60, 62, 145, 164–166) (see VDAC1 Structure, Channel 
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Conductance, Properties, and Regulation) and both purified 
soluble and membrane-embedded VDAC1 have been shown to 
assemble into dimers, trimers, and tetramers in a dynamic process 
(62). Recently, the particular lipid composition of the OMM has 
been shown to significantly enhance VDAC1 oligomerization 
(167). Finally, the connection between VDAC1 oligomerization 
and Cyto c release was supported by the finding that VDAC1 
oligomerization was highly enhanced by various inducers of 
apoptosis, including STS, curcumin, arsenic trioxide (As2O3), 
etoposide, cisplatin, selenite, TNF-α, H2O2, or UV light (60) 
reflecting a shift in VDAC1 status from the monomeric toward 
the oligomeric form. The oligomerization of VDAC1 was favored 
regardless of cell type or mechanism of action of the apoptosis 
inducer used, although all affected mitochondria. In addition, 
As2O3-induced homo-dimerization of VDAC1 was prevented by 
overexpression of the anti-apoptotic protein, Bcl-xL (137). The 
association between apoptosis induction and VDAC1 oligomeriza-
tion gained support with the finding that both processes are inhib-
ited by DIDS, SITS (4-acetamido-4′-isothiocyanato-stilbene-2, 
2′-disulfonic acid), H2DIDS (4,4′-diisothiocyanatodihydrostilbene-
2,2′-disulfonic acid), DNDS (4,4′-dinitrostilbene-2,2′-disulfonic 
acid), and DPC, known anion transport inhibitors that all interact 
with VDAC1 (60, 99, 144, 145, 168).

The results presented above led us to propose a novel model 
in which VDAC1 exists in a dynamic equilibrium between the 
monomeric and oligomeric states, with apoptosis inducers shift-
ing the equilibrium toward oligomers. VDAC1 oligomers form 
a large flexible pore between individual subunits of VDAC1, 
mediating the passage of released Cyto c across the OMM, leading 
to cell death (14, 56, 60–62, 144, 145, 161, 162) (Figure 4).

The passage of Cyto c requires a channel formed by minimal 
number of six VDAC1 monomers. When arranged in a circle, 
the central pore should be 4.0  nm in diameter, allowing the 
transport of Cyto c (3.4 nm external diameter). The formation of 
VDAC1 hexamers and higher oligomers involves the formation 
of several contact sites between adjacent VDAC1 monomers, 
involving β-strands 1, 2, 18, and 19 from both VDAC1 mono-
mers (47, 63).

The contact sites between VDAC1 molecules in dimers and 
higher oligomers were identified using structural- and compu-
tational-based approaches, in combination with site-directed 
mutagenesis, cysteine replacement and chemical cross-linking 
(170). A contact site involving β-strands 1, 2, and 19 that under-
goes conformational changes following apoptosis induction and 
assembles into higher oligomeric states with contact sites involv-
ing β-strands 8 and 16 was identified in dimeric VDAC1 (170).

The proposed VDAC1 channel formed upon its oligomeriza-
tion is composed of several β-barrels; thus, is expected to be 
hydrophobic, making it difficult for the positively charged Cyto 
c to cross such a pore. As discussed above (see VDAC1 As a 
Hub Protein), structural, biochemical, and functional studies 
revealed that the N-terminal domain is mobile and can be cyto-
plasmically exposed. Following apoptosis induction along with 
VDAC1 oligomerization, the amphipathic N-terminal segment 
is thought to be move out of the pore and interact with surface 
of the newly formed channel in the oligomeric structure (51, 56, 
168) (Figure  4). The N-terminal domain is relocated in close 
proximity to Glu72 and is also surrounded by other hydrophilic 
residues, thereby converting the hydrophobic pore into a hydro-
philic pore, allowing the passage of Cyto c and other apoptogenic 
proteins across the OMM (16, 51, 56, 60, 168). Importantly, 
the N-terminal domain is a target for anti-apoptotic proteins, 
interacting with HK, Bcl-2, and Bcl-xL (16, 18, 19, 51). Thus, 
anti-apoptotic proteins may function by interacting with the 
VDAC1 N-terminal domain and preventing the conversion of the 
pore to a hydrophilic environment and, hence, the translocation 
of apoptogenic proteins from the IMS to the cytosol to trigger 
apoptosis.

vDAC1 eXPReSSiON LeveL AND CeLL 
DeATH iNDUCTiON—A New CONCePT

exogenous vDAC1 Overexpression 
induces Cell Death
The expression level of VDAC1 plays a critical role in mitochondria-
mediated apoptosis, as demonstrated using silencing or overexpres-
sion approaches (1, 16, 17, 133, 141, 161, 165, 171, 172). VDAC1 
overexpression-induced apoptosis was inhibited by VDAC1-
interacted compounds RuR (133, 138), Bcl-2, and DIDS (171), 
or by overexpression of HK-I (17, 21, 133). As further presented 
below (see Apoptosis Stimuli Induce VDAC1 Overexpression in 
Ca2+-Dependent Manner, Proposed Mechanism for Cell Death 
Induction by VDAC1 Overexpression—A New Concept), the cel-
lular expression level of VDAC1, associated with its oligomerization 
is an important factor regulating mitochondria-mediated apoptosis.

Apoptosis Stimuli induce vDAC1 
Overexpression in Ca2+-Dependent 
Manner
Several studies have demonstrated that the induction of apoptosis is 
followed by an increase in the levels of VDAC1 expression (12), UV 
irradiation (173), ROS (174), and arsenic trioxide (As2O3) (175).

Other examples include arbutin (hydroquinone-O-beta-
d-glucopyranoside), a tyrosinase inhibitor in A375 human 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


10

Shoshan-Barmatz et al. VDAC1 As a Cancer Drug Target

Frontiers in Oncology | www.frontiersin.org July 2017 | Volume 7 | Article 154

malignant melanoma cells (176), and somatostatin, used in the 
treatment of advanced prostate cancer, which upregulated the 
expression of VDAC1 and VDAC2 in the LNCaP prostate cancer 
cell line (177). Upregulation of VDAC1 expression was noted in 
acute lymphoblastic leukemia cell lines following prednisolone 
treatment (178). Cisplatin-induced VDAC1 overexpression in 
a cisplatin-sensitive cervix squamous cell carcinoma cell line 
(A431) but downregulation VDAC1 in a cisplatin-resistant cell 
line (A431/Pt) (179).

The causal nature of the relationship between VDAC1 expres-
sion levels and sensitivity to various treatments was illustrated in 
several studies (12, 161) where the correlation with drug efficacy 
suggests that numerous anti-cancer drugs and treatments act via 
the regulation of VDAC1 expression.

Apoptosis induction was shown to disrupt [Ca2+]i homeostasis 
and energy production (180). Indeed, many anti-cancer drugs and 
other cytotoxic agents, such as thapsigargin, STS, As2O3, and sele-
nite, induce apoptosis, and disrupt [Ca2+]i homeostasis (161, 162).  
The mechanism of upregulation of VDAC1 by the apoptosis 
induction is thought to involve an increase in [Ca2+]i (161, 162). 
The overexpressed VDAC1 then forms oligomers (as discussed 
in Section “VDAC1 Homo-Oligomer Forming the Cyto c Release 
Pathway”) and this triggers Cyto c release and, finally, cell death 
(161, 162). In support of this proposal, AKOS-022 and VBIT-4, 
compounds that interact directly with VDAC1 to prevent oli-
gomerization, prevented the process of elevation of [Ca2+]i, Cyto 
c release, and apoptosis (143).

Thus, although mechanisms employed by apoptosis inducers 
may differ, they all induce VDAC1 overexpression in a Ca2+-
dependent manner (161), suggesting that elevation [Ca2+] and 
upregulation of VDAC1 represent a common mechanism of 
apoptotic stimuli.

Proposed Mechanism for Cell Death 
induction by vDAC1 Overexpression— 
A New Concept
Upregulation of the expression of VDAC1 may, therefore, repre-
sent a new common denominator for the mechanism of action of 
apoptosis. This proposal is based on the observation that several 
cancer drugs and treatments induce apoptosis as well as upregu-
lating VDAC1 expression levels (176–179, 181).

Accordingly, a new concept of apoptosis induction can be 
formulated as: apoptosis inducers ⟶ enhanced VDAC1 expression 
levels ⟶ VDAC1 oligomerization ⟶ Cyto c release ⟶ apoptosis.

This novel mechanism provides a platform for developing a 
new class of drugs to treat cancer acting via modulating VDAC1 
levels through action on the gene promoter.

MODULATiON OF vDAC1-MeDiATeD 
APOPTOSiS BY SMALL MOLeCULeS 
ACTiNG VIA DiReCT iNTeRACTiON  
wiTH vDAC1

Several compounds have been shown to interact with VDAC1 
and thereby modulate the protein’s apoptotic function either 
positively or negatively. Some examples are given below.

Molecules interacting with vDAC  
to induce Apoptosis
Erastin is an anti-tumor agent selective for tumor cells bearing 
oncogenic RAS (30). The compound binds VDAC2 but not 
N-terminal truncated hVDAC2 (182).

Oblimersen (G3139), an 18-mer phosphorothioate anti-sense 
oligonucleotide targeting the initiation codon region of Bcl-2 
mRNA, has been shown to bind to bilayer-reconstituted VDAC1 
and reduces the channel conductance (183).

Avicins represent a family of triterpenoid saponins, which 
exhibit cytotoxic activity in tumor cells, as well as anti-inflamma-
tory and anti-oxidant properties. Avicins interact with bilayer-
reconstituted VDAC1 to reduce its channel conductance (184) 
and permeabilize the OMM to induce Cyto c release (185).

Cisplatin is a widely used anti-cancer drug that acts by inducing 
apoptosis through the formation of inter- and intra-strand nuclear 
DNA cross-links. Mitochondria have also been implicated as a 
cisplatin target. Cisplatin binds to VDAC1 (186) and modulates 
VDAC1 activity (179). It has been suggested that VDAC1 may 
serve as a cisplatin receptor in apoptotic pathways (187).

Endostatin has been shown to promote PTP opening via bind-
ing to VDAC1. Silencing VDAC1 expression by siRNA attenuated 
ES-induced apoptosis in endothelial cells (140).

Methyl jasmonate (MJ) is a natural cyclopentanone lipid 
belonging to the jasmonate family of plant oxylipin stress hor-
mones (188). MJ interacts directly with VDAC1 to reduce the 
channel conductance and also detaches HK from VDAC1 (189).

Cyathin-R, a cyathane diterpenoid, was found to interact with 
VDAC1 to decrease channel conductance and induce VDAC1 
oligomerization and apoptosis in Bax/Bak-deficient cells (144). 
Cyathin-R-induced VDAC1 oligomerization and apoptosis were 
inhibited by VDAC1-interacting molecules, such as DIDS, SITS, 
DNDS, and DPC (144). si-RNA targeting VDAC1 to reduce its 
expression prevented cyathin-R-induced apoptosis. Moreover, 
cyathin-R effectively attenuated tumor growth when Bax/Bak-
deficient cells were implanted into a xenograft mouse model 
(144). Cyathin-R, thus, represents a potential lead candidate to 
be an effective anti-cancer drug, inducing cell death in cancerous 
cells with inactivated Bax/Bak.

Molecules interacting with vDAC1  
to inhibit Apoptosis
DIDS, SITS, H2DIDS, DNDS, and DPC, which are known anion 
transport inhibitors, all interact with VDAC1, and inhibit apop-
tosis stimuli-induced apoptosis and VDAC1 oligomerization in 
many cancer cell lines (99, 144). DIDS blocked apoptosis trig-
gered by overexpression of rice VDAC in mammalian cells (171) 
and prevented cisplatin-(139) and STS-induced (190) cell death.

AKOS-022 and VBIT-4 are newly developed apoptosis 
inhibitors whose direct interaction with VDAC1 reduces VDAC1 
channel conductance and prevents VDAC1 oligomerization and 
apoptosis in a number of cell lines (143).

Ruthenium red (55, 91) and the ruthenium amine binuclear 
complex (Ru360) (191), which are proposed to specifically interact 
with Ca2+-binding proteins, decreased the channel conductance 
of VDAC1. RuR protects against cell death induced by various 
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stimuli (91, 192), or by VDAC1 overexpression (133). RuR had 
no effect on cells expressing E72Q-mVDAC1, or on VDAC1 
channel conductance, suggesting that RuR-mediated protection 
against apoptosis is exerted through its direct interaction with 
VDAC1 (138).

The action of these apoptosis inhibitors thus supports the 
concept of a tight coupling between VDAC1 oligomerization and 
apoptosis induction. Inhibiting apoptosis at an early stage, such 
as VDAC1 oligomerization, may be an effective approach to block 
or slow apoptosis in neurodegenerative disorders (193) and vari-
ous cardiovascular diseases, where there is enhanced apoptosis 
(194, 195).

MODULATiON OF vDAC1-MeDiATeD 
APOPTOSiS AND MeTABOLiSM VIA 
iNTeRACTiNG PROTeiNS

The location of VDAC1 in the OMM positions it well to interact 
with proteins that mediate and regulate the integration of mito-
chondrial functions with other cellular activities (Figure 1). Here, 
we focus on the interactions of VDAC1 with proteins associated 
with cancer.

vDAC interaction with HK and Other 
Metabolism-Related Proteins
The multiple regulatory roles of VDAC1 in cell metabolism are 
mediated not only through its function in the energy production 
and metabolic cross-talk between the mitochondria and the rest 
of the cell but also via interactions with other metabolism-related 
proteins. These proteins include ANT (196), CrK (76, 197), glyc-
erol kinase (198), HK (17, 20, 21, 24, 165, 189), C-Raf kinase (199), 
glyceraldehyde 3-phosphate dehydrogenase (41, 200), TSPO 
(201), and tubulin (202). Here, we concentrate on the interaction 
of VDAC1 with HK, which effectively couples OXPHOS and 
glycolysis, an important factor in cancer cell energy homeostasis 
(the Warburg effect).

Cancer Cell Bioenergetics and Apoptosis  
Are Regulated by VDAC1–HK Interaction
Cancer cells are well characterized by their high rate of glycoly-
sis, designed to satisfy the heavy demands of transformed cells 
for metabolic intermediates (203). The mitochondrial-bound 
isoforms HK-I and -II use newly synthesized ATP to catalyze 
the phosphorylation of glucose to G-6-P. These enzymes are 
overexpressed in many cancers, including colon, prostate, 
lymphoma, glioma, gastric adenomas, and breast cancers (118, 
132, 204–206). Both HK-II and HK-I bind to mitochondria (16, 
17, 81, 133) and possess the hydrophobic N-terminal domain 
necessary for binding to mitochondria. The isoforms have quite 
different mechanisms of expression regulation (207).

Various studies, including site-directed mutagenesis, have 
demonstrated that VDAC1 is the mitochondrial-binding site of 
HK (17, 18, 21, 133, 145, 208). HK binding to VDAC1 allows 
direct coupling of mitochondrially generated ATP to incoming 

glucose, permitting mitochondria to synchronize the glycolytic 
flux with that of the TCA cycle and ATP synthase (1, 23, 165). 
In this way, the VDAC1–HK complex can regulate not only the 
glycolytic pathway but also other seminal metabolic pathways, 
such as the pentose phosphate shunt. The VDAC1–HK interac-
tion was shown to be regulated by phosphorylation, possibly as 
a result of upregulation of glycogen synthase kinase 3β (GSK3β) 
(24) by protein kinase C, or in response to the cholesterol content 
of the OMM (81).

Hexokinase-I and HK-II were shown to function as 
anti-apoptotic proteins via binding to VDAC1, with their 
detachment enabling apoptosis activation (14, 17, 20, 21, 
24, 81, 165, 189, 209, 210). Thus, the interaction of HK with 
VDAC1 points to HK function not only in cell metabolism 
but also as regulator of apoptosis. This dual role of HK makes 
the VDAC1–HK complex an attractive target for anti-cancer 
therapy (see below).

Hexokinase interaction with VDAC1 protects cells against 
apoptosis as activated by Bax or Bak (81, 119, 132, 209) and 
HK-I acts at the mitochondria to block TNF-induced apop-
tosis while conversely HK-I depletion accelerates the process 
(211). Importantly, it has been shown that single mutations in 
VDAC1 or when N-terminal truncated VDAC1 were expressed, 
HK-I showed no anti-apoptotic effect or reduction of channel 
conductance of bilayer-reconstituted (16, 17, 133, 210). In addi-
tion, mitochondria-bound HK-II inhibited Cyto c release and 
apoptosis as induced by Bax (209). Finally, VDAC1-based pep-
tides, interacting with purified HK, were shown to prevent HK 
protection against apoptosis (20) (see VDAC1-Based Peptides As 
Potential Anti-Cancer Therapy).

HK Interaction with VDAC1 Offers Advantages  
to Cancer Cells
The advantages to cancer cells of HK binding to VDAC1 have 
been reviewed previously (12).

(a) Production and access to energy and metabolites: HK bound 
to VDAC1 has direct access to ATP newly produced in the 
mitochondria (212), facilitating the maintenance of a high 
glycolytic flux rate in tumors and, thus, increased energy and 
metabolite production (21). HK bound to VDAC1 is also less 
sensitive to inhibition by the product, G-6-P.

(b) VDAC1-bound HK acts as an anti-apoptotic protein: As 
presented above, HK-I and HK-II bound to VDAC1 func-
tion as anti-apoptotic proteins preventing Cyto c release 
and subsequent apoptosis (14, 17, 20, 21, 24, 81, 165, 189, 
209, 210). HK also protects against Bax- or Bak-mediated 
apoptosis (81, 119, 209).

(c) Regulation of ROS production/efflux from the mitochondria 
by HK: ROS production is usually increased in cancer cells 
(213). HK, when associated with the mitochondria, reduced 
both mitochondrial ROS generation (214) and intracellular 
levels of ROS (105).

(d) Increased synthesis and uptake of cholesterol: HK binding to 
the mitochondria mediates increased synthesis and uptake of 
cholesterol into the mitochondria of cancer cells (81).
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Disrupting VDAC1–HK Interaction As a Strategy  
to Interfere with Cancer Cell Growth and Induce  
Cell Death
The advantages for cancer cells presented above make the HK–
VDAC1 complex an attractive target for anti-cancer therapy.

A number of agents, including 2-deoxyglucose (2-DG), 
3-bromopyruvate (3-BP), an alkylating reagent, and lonidamine 
have been used to inhibit HK activity and disrupt glycolysis (215). 
In addition, the anti-fungal agents clotrimazole and bifonazole 
were shown to disrupt the HK-VDAC1 complex (189, 216).

However, glycolysis inhibitors can affect not only cancer cells 
but also normal tissues that use glucose as their main energy 
source (brain, retinae, and testis). Despite these concerns, target-
ing VDAC1–HK interaction proposed as a promising target for 
anti-cancer therapy (215, 217). Detachment of HK from VDAC1 
impairs energy and metabolic homeostasis, including the cou-
pling between glycolysis and mitochondrial metabolism, as well 
as enabling activation of apoptosis. Disturbing the VDAC1–HK 
interaction could, furthermore, influence cholesterol synthesis 
and distribution in the OMM (83).

Several agents have been identified that can dissociate the VDAC1–
HK complex including HK-I- (218) and HK-II-derived peptides,  
clotrimazole (165, 216), a cell-permeable HK-II-based peptide 
(119), and MJ (189). Recently, synthetic VDAC1-based peptides 
(20, 145, 210) were shown to interact directly with HK-I and HK-II 
and lead to their dissociation from VDAC1 (see VDAC1-Based 
Peptides As Potential Anti-Cancer Therapy).

Since VDAC1-bound HK is essential for tumor cells, the 
detachment of HK from VDAC1 represents a novel therapeutic 
strategy to impair cancer metabolism and augment apoptosis 
(11, 12, 73, 215).

interaction of vDAC1 with Bcl-2 Family 
Members
The resistance of cancer cells to apoptosis involves a variety 
of strategies. One of these involves the overexpression of anti-
apoptotic proteins of the Bcl-2 family, which contributes to 
disease progression and drug resistance (129, 219–221) The Bcl-2 
family comprises pro-apoptotic (e.g., Bid, Bax, Bim, and Bak) 
and anti-apoptotic (e.g., Bcl-2 and Bcl-xL, Mcl-1) members that 
up- or downregulate apoptosis, respectively (222). Mcl-1 has been 
shown to interact directly with VDAC1 to increase mitochondrial 
Ca2+ uptake and ROS generation (223).

The mechanisms by which Bcl-2 family proteins regulate 
apoptosis involve interactions with mitochondria and control 
of OMM permeability. Regulation of apoptosis by interactions  
of VDAC1 with these proteins has been reported in a number of 
studies (16, 19, 20, 22, 139, 224, 225). VDAC1 has been shown to 
interact with Bax/Bak (142, 226), Bcl-2 (16, 19, 51), Bcl-xL (18, 19, 
22, 25, 48, 96, 224, 225, 227), and with Bax and Bim (26, 158, 225), 
such that anti-VDAC antibodies inhibited Bax- and Bim-induced 
release of Cyto c (136). In addition, Bcl-2 and Bcl-xL block As2O3-
induced VDAC1 dimerization (137). BH4 oligopeptides derived 
from Bcl-2 and Bcl-xL were able to inhibit VDAC1 activity in 
liposomes, even in the presence of a pro-apoptotic protein, such 
as Bax (224). Bcl-2 and Bcl-xL were shown to reduce the con-
ductance of native but not mutated VDAC1, as well as to protect 

cells expressing native but not mutated VDAC1 against apoptosis  
(18, 19). In addition, activation of Bax by cisplatin was prevented 
in cells silenced for VDAC1 expression (25, 139). Finally, Bid was 
shown to interact with VDAC1 as reflected in the decrease in 
VDAC1 conductance (228).

Thus, VDAC1 binds members of the Bcl-2 family proteins 
thereby regulating their effects on apoptosis. Hence, interfering 
with such interactions could facilitate apoptosis induction and 
enhance the therapeutic effect of chemotherapeutic agents.

interaction of vDAC1 with Other Proteins
Translocator protein is closely associated with VDAC1 (229) and 
this association allows ROS generated via TSPO to affect VDAC1 
(201, 230). In addition, overexpression of TSPO inhibits VDAC1 
expression, while VDAC1 expression level was increased upon 
silencing of TSPO in endothelial cells (231).

A number of cytoskeletal proteins have been reported to 
interact with and regulate VDAC1. These proteins include the 
following.

Gelsolin (Gsn) is a Ca2+-dependent protein that regulates actin 
assembly and disassembly. Human (h)Gsn has pro-apoptotic or 
anti-apoptotic activity, depending on the cell type (232). hGsn 
inhibited VDAC1 channel activity and interacted with VDAC1-
containing liposomes in a Ca2+-dependent manner to inhibit 
Cyto c (232).

Tubulin, co-immunoprecipitated with VDAC1 (233) and the 
association was also demonstrated by tubulin-induced VDAC1 
closure (202), an effect thought to sustain the Warburg effect 
(234). It is proposed that tubulin, VDAC1, and MtCK form a 
super-complex that is structurally and functionally coupled to 
the ATP synthasome (235).

Microtubule-associated protein 2 was shown by affinity chro-
matography to bind VDAC1 (236).

The mitochondrial anti-viral signaling protein, also known 
as IPS-1, VISA, or Cardif (237) and localized in the OMM, was 
demonstrated to modulate VDAC1 protein stability via the ubiq-
uitin–proteasome pathway (238).

Superoxide dismutase 1 (SOD1) mutated protein, which is 
associated with ALS, and reduced VDAC1 channel conductance 
(239) and altered the interaction between VDAC1 and Bcl-2 (240).

Endothelial NO synthase (eNOS) was also found to bind 
VDAC1, with this amplifying eNOS activity intracellularly in a 
Ca2+-dependent manner (241).

Several additional proteins were shown or proposed to 
interact directly with VDAC1. These include PBP74 (heat-shock 
protein peptide-binding protein 74), also known as mtHSP70/
GRP75/mortalin (242), and GRP78, a 78-kDa glucose-regulated 
protein that forms a complex with vaspin. The complex of 
GRP78, and VDAC on the plasma membrane, promotes prolif-
eration, inhibits apoptosis, and protects against vascular injury 
in diabetes mellitus (243). Other proteins that can interact with 
VDAC are the ORDIC channel, actin (244), Nek1 (NIMA-
related protein kinase 1) (173), aldolase (41), Tctex-1/DYNLT1 
(dynein light chain) (242), CRYAB (α-crystallin B) (245), and 
α-synuclein (246).

The pro-apoptotic protein BNIP3 was shown to interact with 
VDAC1 to induce mitochondrial release of endonuclease G (247) 
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and VDAC1 co-immunoprecipitated with the L-type Ca2+ chan-
nel (248).

A total of 44 VDAC1 interacting genes were identified as being 
commonly differentially expressed between normal and tumor 
tissues in human carcinomas (249).

In summary, VDAC1 serves as a central hub for responses to 
cellular signaling and the effects may be mediated by interaction 
with many proteins (Figure 1), indicating the central role played 
in cell metabolism and apoptosis.

ALTeRATiONS iN vDAC1 eXPReSSiON 
LeveL iN CANCeR

Voltage-dependent anion channel 1 is highly expressed in many 
cancer types compared to the levels in normal cells. VDAC1 
overexpressed in several cancer cell lines relative to fibroblast 
cell line (250) and, in ascites hepatoma AH130 cells, the three 
VDAC isoforms expression levels were significantly higher than 
in normal liver cells. Higher VDAC1 levels were connected to 
primary malignancies of the biliary tract (251), and were found 
in gastric cancer cells (252). Both VDAC1 mRNA and protein 
levels were upregulated in H358 cells (253). Induction of Cyto c 
release by G3139 in several melanoma and prostate cancer cell 
lines was found to be correlated with VDAC1 expression levels 
(254). In myeloma cells, CD45 expression was accompanied by 
elevated VDAC1 expression that sensitized the cells to a diverse 
set of apoptotic stimuli (255). These differences are not surpris-
ing in light of the of VDAC1 functions in cell metabolism and 
energy production, systems particularly important for cancer 
cells proliferation. Overexpressed VDAC1 presents anchoring 
sites for the cancer overexpressed HK and for Bcl-2 and Bcl-xL, 
interactions that are important for their anti-apoptotic activities 
(see Modulation of VDAC1-Mediated Apoptosis and Metabolism 
VIA Interacting Proteins).

Overexpression of VDAC1 was detected in tissue arrays for 
thyroid, lung, cervix, ovary, pancreas, melanoma, and glioblas-
toma cancers as well as in lung tissue samples taken from healthy 
and tumor-containing areas of the same patient (12). Similar 
results were obtained in other studies of breast, colon, liver, lung, 
pancreatic, and thyroid cancers (249) and lung tumors (256). 
VDAC1 was also found to be overexpressed in peripheral blood 
mononuclear cells (PBMCs) from chronic lymphocytic leukemia 
(CLL) patients, as compared to PBMCs from healthy donors (257). 
Cervical cancer patients with high VDAC1 displayed higher rates 
of recurrence and poorer overall survival than those with low 
VDAC1 (258). VDAC also appears to be a potential marker for 
the diagnosis of colorectal cancer (259) and gastric cancer (260). 
VDAC1 overexpression was demonstrated in lung cancer, where 
C-terminally truncated VDAC1 (VDAC1-ΔC) was present in 
tumor cells exposed to hypoxia in 50% of 46 patients with lung 
cancer (261). In addition, a significant positive correlation exists 
between the levels of VDAC1 and the histological grade of breast 
cancer (262) as well as poor prognosis of primary lung adenocar-
cinoma (263) and of non-small cell lung cancer (NSCLC) patients 
(264). In NSCLC VDAC1 was proposed as a potential predictor of 
poor outcome in the diseases early stage (264). In addition, tumor 
progression and sensitivity to chemotherapy was correlated with 

VDAC1 expression (263, 265). Thus, VDAC1 expression levels 
can serve as a biomarker for cancer development, treatment 
efficacy, and as a predictor of poor outcome.

UNRAveLiNG vDAC1-BASeD THeRAPieS

As already discussed, VDAC1 offers a unique target for anti-
cancer therapies because of its role as a key regulator of energy 
and metabolism and apoptosis. VDAC1-based therapeutic 
strategies include RNA interference (RNAi) designed to down-
regulate VDAC1 expression levels and cause growth arrest, as 
well as VDAC1-based peptides that impair energy homeostasis 
and minimize the self-defense mechanisms of cancer cells and 
small molecules that induce apoptosis. Together, such anti-cancer 
therapies are expected to be highly effective, even in drug-resistant 
tumors.

Silencing vDAC1 expression by Short 
Hairpin RNA (shRNA) or siRNA As a Tool 
to Reprogram Cancer Cell Metabolism
The role of VDAC1 as a key regulator of the cellular metabolic 
and energy reprogramming processes essential to cancer survival 
(1, 11, 12, 61) makes targeting VDAC1 an attractive strategy for 
anti-cancer therapy. As one approach, overexpressed VDAC1 can 
be downregulated by using RNAi, including shRNA and siRNA.

VDAC1 Silencing Using shRNA and siRNA As a 
Strategy for Cancer Therapy
We have demonstrated that downregulation of VDAC1 expres-
sion by hVDAC1-shRNA disrupts energy production, arrests cell 
growth, and inhibits tumor development in an animal model, 
illustrating the essential role of VDAC1 in energy production and 
cell growth (53, 266). Furthermore, tumors developed into nude 
mice from HeLa cervical cancer cells stably expressing shRNA 
directed against hVDAC1, strongly inhibited the development 
of tumors (266). Indeed, silencing VDAC1 by shRNA blocked 
TRAIL-induced mitochondrial apoptosis, suggesting that expres-
sion of VDAC1 is required for caspase-8 activation (267). The 
use of hVDAC1-shRNA permitted the demonstration of VDAC1 
involvement in arsenic trioxide-, ascorbic acid-, and disulfiram 
(AAA)-induced aponecrosis and the switch from apoptosis to the 
aponecrosis death pathways (268). The shRNA also reduced cell 
proliferation and migration of cervical cancer cells, and increased 
ROS production (258). Stable expression of hVDAC1-shRNA 
stimulated NLRP inflammasome activators and augmented 
caspase-1 and IL-1β secretion in THP cells (269). These multiple 
effects of VDAC1 silencing point to an additional role for VDAC1 
as a central protein in regulating cell signaling.

Silencing VDAC1 expression by a single siRNA specific to the 
human VDAC1 (si-hVDAC1) sequence resulted in cell prolifera-
tion and cancer cell growth inhibition both in cell cultures and 
in vivo animal models (75, 270). In addition, siRNA at nanomolar 
concentrations silenced VDAC1 expression in many tested cell 
lines, inhibited cell growth (over 90%) and decreased ATP levels 
(53, 75, 266). In in vivo experiments using a xenograft lung cancer 
mouse model, si-hVDAC1 inhibited tumor growth and even 
caused tumor regression (75).
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Recently (270), we demonstrated that depleting VDAC1 by 
si-hVDAC1 assaults critical functional nodes in the oncogenic 
network of GBM tumors, leading to a multi-pronged attack on 
cancer hallmarks, reversing cancer-reprogrammed metabolism, 
thereby inhibiting cell proliferation, tumor growth, EMT, and 
angiogenesis, and also targets GSCs, leading to their differentia-
tion into neuronal-like cells.

Other studies from our group (271) using a GBM xenograft 
mouse model showed that upon VDAC1 depletion, several 
pro-apoptotic proteins were overexpressed yet apoptosis was 
not induced. This suggests that essential players of the apoptosis 
executioner pathways may serve dual functions, acting either to 
kill cells or to promote differentiation, depending on the energy 
level of the cell.

Another connection between VDAC1 and cell energy signal-
ing was demonstrated in recent studies showing that VDAC1 
is a direct target of the anti-fungal agent, itraconazole, and 
that VDAC1 is a key mediator of the inhibition of mTOR and 
endothelial cell proliferation by the AMPK signaling pathway 
(270, 272).

si-hVDAC also markedly decreased HIF1-α levels and tumor 
growth in U-87MG and U-118MG cancer cells (270). These 
findings suggest a relationship between HIF1-α and VDAC1 
expression and tumor growth.

MicroRNA (miRNA) Acts via Modification of VDAC 
Expression Levels
MicroRNAs belong to a class of small, non-coding, regulatory 
RNAs which bind to the 3-UTR of target mRNAs to reduce target 
protein levels.

The level of miR-7 has been shown to be downregulated in 
various cancer cells, such as GBM (273), breast cancer (274), 
urothelial carcinoma (275), gastric tumors (276), pancreatic 
cancer (277), colorectal cancer (278), and in hepatocellular 
carcinoma tissues, as compared to adjacent non-tumor tissue 
(279). These findings suggest that miR-7 has a tumor suppressor 
function. Several studies have demonstrated that the miR-7 regu-
lates the function of the mitochondrial PTP by downregulating 
VDAC1 expression. Overexpressing VDAC1 without the 3-UTR 
significantly abolished the protective effects of miR-7 against 
1-methyl-4-phenylpyridinium ion (MPP)-induced cytotoxicity 
and mitochondrial dysfunction (280).

Proteomic profiling of cells showed that overexpression of 
miR-29a also resulted in downregulation of VDAC1 and the 
VDAC2 protein (281).

Thus, considering the high expression level of VDAC1 in 
tumors and the specificity of si-hVDAC1 in inhibiting cancer cell 
and tumor growth, silencing VDAC1 expression can be consid-
ered as a novel strategic therapeutic approach to treat cancer.

vDAC1-Based Peptides As Potential Anti-
Cancer Therapy
VDAC1-Based Peptides—Development and Cell 
Death Induction
Cancer cells share several features that distinguish them from 
normal cells, including avoiding apoptosis, thereby drug 

resistance (282). Indeed, defects in the regulation or even eva-
sion of apoptosis are hallmarks of cancer (1, 11, 61, 115). To 
avoid apoptosis, cancer cells developed several strategies, such 
as overexpression of anti-apoptotic proteins, such as the Bcl-2 
family of proteins and HK, to prevent the release of Cyto c from 
mitochondria (1, 11, 124).

To mediate their anti-apoptotic activities, HK, Bcl-2, and 
Bcl-xL interact with VDAC1 (16–20, 133). Therefore, we engi-
neered VDAC1-based peptides designed to interfere with these 
interactions. We identified those VDAC1 domains and amino 
acid residues important for the interaction of VDAC1 with HK, 
Bcl-2, and Bcl-xL and designed VDAC1-based peptides specifi-
cally targeting these interactions (15–20, 22, 133, 224, 225). These 
peptides are designed to serve as “decoy” peptides that compete 
with VDAC1 for the HK-, Bcl-2-, and Bcl-xL–VDAC1 interac-
tions and consequently abolish their anti-apoptotic activities. As 
the VDAC1-based peptide target intracellular proteins, several 
cell-penetrating peptides were developed.

VDAC1 derived sequences corresponding to the N-terminal 
domain (N-Ter) and a VDAC1 sequence partially exposed to the 
cytosol (LP4) were fused to Antp (penetrating), a 16 residue-long 
sequence from the Drosophila antennapedia-homeodomain, 
to yield the Antp-LP4 and N-Ter-Antp peptides (Figure  5). 
These peptides promoted cell death in a variety of genetically 
characterized cell lines derived from different human cancers 
(70, 283).

Antp-LP4—this is a loop-shaped cell-penetrating peptide 
comprising the SWTWE sequence at the N-terminal end and the 
KWTWK sequence at the C-terminal end of a VDAC1-derived 
sequence (LP4, residues 199–216). This generates a tryptophan 
zipper and a stable β-hairpin conformation (284), mimicking the 
LP4 loop in the native VDAC1 protein, which is fused to Antp. 
Antp-LP4 peptide prevented the anti-apoptotic effects of HK, Bcl-
2, or Bcl-xL (16–20, 133) and induced cell death in several cancer 
cell lines, while being less effective in non-cancerous cells (70).

N-Ter-Antp—in this peptide, the N-terminal sequence was 
selected based on the findings that N-terminal domain-truncated 
VDAC1 had lost the ability to bind HK, Bcl-2, or Bcl-xL (16–20, 133).  
N-Ter-Antp peptide interacted with HK, Bcl-2, and Bcl-xL and 
inhibited their anti-apoptotic effects (16–20, 133).

Tf-D-LP4 peptide—this peptide comprises a VDAC1-
derived sequence (LP4), with the tryptophan zipper fused to a 
cell penetrating peptide, a human transferrin receptor (hTfR) 
(CD71)-recognition sequence, HAIYPRH (Tf) (Figure 5). hTfR 
is overexpressed (up to 100-fold) in liver, pancreatic, prostate, 
GBM, and other cancers (285), relative to their normal counter-
parts and is also highly expressed in the BBB (286).

Based on results obtained using over 40 versions of cell-
penetrating peptides, several modifications were introduced 
into the VDAC1-based peptides to in order to address peptide 
efficacy, stability, cell penetration, and specificity toward cancer 
cells as described below.

The effects of the selected designed VDAC1-based peptides 
were tested on 42 different cancer cell lines and found to 
induce cell death regardless of cancer type or mutation status, 
with specificity toward cancerous cells (16, 17, 19, 20, 70, 133). 
VDAC1-based peptides (N-Ter and LP4 derived sequences) were 
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FiGURe 6 | Proposed mode of action of VDAC1-based peptides leading to 
mitochondria-mediated cell death. VDAC1 is overexpressed in the 
mitochondria of cancer cells and associated with hexokinase (HK) and Bcl-2, 
Δψ is maintained, the cell remains in homeostasis with respect to energy 
production and is protected from apoptosis. VDAC1-based peptides interact 
with anti-apoptotic proteins HK and Bcl-2 causing the proteins to 
disassociate from VDAC1, and leading to Δψ dissipation, decreased ATP 
production, mitochondrial dysfunction, VDAC1 oligomerization, and Cyto c 
release. These events ultimately lead to cell death.

FiGURe 5 | Structure of VDAC1-based peptides. Schematic illustration of 
D-N-terminus-Antp (D-N-Ter-Antp) (A) and D-Antp-LP4 and Tf-D-LP4 
(B) peptides. The VDAC1-derived sequences N-terminus and LP4 are in 
blue and orange, respectively. The cell-penetrating peptide Antp in green 
and Tf is in light blue. The loop shape of LP4 stabilized by a tryptophan 
zipper (Trp) is in purple. The N-terminus of LP4 and Antp is composed of 
d-amino acids. (C) The sequences of D-LP4 and retro-D-LP4.
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shown to limit Ca2+ uptake into the mitochondrial matrix and 
inhibit ROS generation in lung cancer cells (223). In addition, 
the use of VDAC1-based peptides (residues 10–30) suggests 
that VDAC1 is part of a system controlling cell proliferation in 
neuroblastoma cells via its interaction with glucose-regulated 
protein 78 (GRP78) (287).

The Mode of Action of VDAC1-Based Peptides
Our results suggest that the VDAC1-based peptides lead to:  
(i) impaired cell metabolism and energy homeostasis; (ii) nega-
tion of the anti-apoptotic activities of HK, Bcl-2, and Bcl-xL, and 
(iii) induction of massive apoptosis (16, 17, 70) (Figure 6).

Voltage-dependent anion channel 1-based peptides were 
found to impair cell metabolism and energy homeostasis. 
Altered energy metabolism, including the use of glucose via 
glycolysis as an energy source, is a common feature of most 
malignant tumors (115, 288). Mitochondrial-bound HK is 
highly expressed in glycolytic cancer cells (289), support-
ing aerobic glycolysis (23) but also conferring stability to 
mitochondria (290) and resistance to apoptosis (14, 17, 20, 
21, 24, 81, 165, 189, 209, 210). As already discussed, VDAC1 
is overexpressed in many cancer types (see Alterations in 

VDAC1 Expression Level in Cancer) (12) and, thus, presents 
anchoring sites for overexpressed HK, allowing direct access 
to mitochondrial ATP and an increased glycolytic rate (1). The 
VDAC1-based peptides interact with and detach HK from its 
binding site in VDAC1, leading to decreased glycolysis, and 
decreases in ΔΨ and cellular ATP levels (16, 20). Thus, detach-
ment of mitochondria-bound HK leads to a disruption of the 
cellular energetics status of cancer cells.

VDAC1-based peptides were found to prevent the anti-
apoptotic activity of anti-apoptotic proteins to induce apoptosis. 
As already described above, cancer cells utilize a variety of 
strategies to limit or avoid apoptosis, including overexpression 
of anti-apoptotic proteins, such as members of the Bcl-2 family 
of proteins and HK. VDAC1 binds HK, Bcl-2, and Bcl-xL (16, 
18–20, 51, 96, 142, 224, 227). The VDAC1-based cell-penetrating 
peptides N-Ter and LP4 were shown to interact directly with 
purified anti-apoptotic proteins and, after penetrating into 
cells, antagonized their anti-apoptotic activities (18–20). These 
findings suggest that VDAC1-based peptides interfere with the 
binding of anti-apoptotic proteins to VDAC1 thereby permitting 
apoptosis induction.

VDAC1-based peptides induced VDAC1 oligomerization, 
release of Cyto c and other molecular hallmarks of apoptosis, 
promoting membrane blebbing, phosphatidylserine surface 
exposure, and nuclear condensation and fragmentation (20, 70) 
(Figure 6). This multiple mode of peptide activities may explain 
their high potency and specificity toward tumor cells.

The Effects of VDAC1-Based Peptides on Cancer—
Ex Vivo and In Vivo Studies
Peptide activity was tested in an ex vivo study using samples from 
CLL patients (70). CLL is characterized by a clonal accumula-
tion of mature neoplastic B cells that are resistant to apoptosis 
(291). VDAC1-based peptides (Antp-LP4 and N-terminal-Antp) 
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selectively killed PBMCs obtained from CLL patients but not 
from healthy donors (70). The ability of the peptides to induce 
cell death was well correlated with the amount of the cancer cells. 
The mode of action of the peptides on CLL involves inhibition of 
energy production and apoptosis induction.

In sub-cutaneous and intracranial xenograft mouse models 
of GBM, the VDAC1-based peptides, N-Ter and Tf-D-LP4, were 
found to disrupt cell metabolism and energy homeostasis to 
inhibit tumor growth, invasion, stemness, and induce apoptosis 
(71). Peptide-treated tumors downregulated metabolism-related 
enzymes and transporters, and elevated the levels of apoptotic 
proteins, such as p53, Cyto c, and caspases. In agreement with 
the results obtained with cells in culture, the peptides acts by 
impairing energy and metabolism, interfering with the actions 
of anti-apoptotic proteins, and inducing cell death (71). VDAC1-
based peptides, thus, offer an affordable and innovative new 
conceptual therapeutic paradigm that can potentially overcome 
chemoresistant, invasive, GBM cancer stem cells, and reduce 
relapse rates.

To summarize, VDAC1-based peptides act relatively fast and 
at low concentrations to induce cell death in a variety of cancer 
cell lines, irrespective of the origin of the cancer or carried muta-
tions. This is very important in view of tumor heterogeneity, 
metastatic transformation, and modifications acquired during 
tumor development.

vDAC iNvOLveMeNT iN DiSeASeS 
OTHeR THAN CANCeR

Neurodegenerative Diseases, 
Mitochondria, Apoptosis, and vDAC
Impaired mitochondrial function has been reported for most neu-
rodegenerative diseases, such as Parkinson’s disease, Huntington’s 
disease, ALS, and AD (292). Recent studies have shown that 
such disorders share characteristics of mitochondria-mediated 
apoptotic death (293).

Mitochondrial dysfunction is an early event in AD patho-
genesis, as reflected by reduced metabolism, disruption of 
Ca2+-homeostasis, increased free radical production, and lipid 
peroxidation (294–296). Aβ also affects mitochondrial respira-
tion (297) and activates Cyto c release, resulting in apoptosis 
(298). Importantly, Aβ does not cause toxicity in cells depleted 
of mitochondria (299). High-levels of VDAC1 were demon-
strated in the dystrophic neurites of Aβ deposits in AD post-
mortem brains and amyloid precursor protein transgenic mice  
(300). VDAC1 was shown to participate in Aβ-induced toxicity (45, 
301, 302) where Aβ–VDAC1 interactions are toxic to AD-affected 
neurons (303) and VDAC1 interactions with Aβ and phosphoryl-
ated Tau lead to mitochondrial dysfunction (302). Recently (45),  
we demonstrated that Aβ interacts directly with VDAC1, specifi-
cally with the N-terminal region. Moreover, VDAC1 is required 
for Aβ entry into the cell, as well as Aβ-mediated apoptosis, since 
Aβ cell penetration and toxicity were prevented in cells depleted 
of VDAC1 using siRNA. Finally, an increase in nitrated VDAC1 in 
AD was reported, reflecting oxidative damage to VDAC (304), and 
possibly affecting cell energy and metabolite homeostasis (305).  

The involvement of plasmalemmal VDAC in AD was also pro-
posed (301, 306).

These findings point to VDAC1 as a potential target for novel 
therapeutic strategies for AD.

Cardiovascular Diseases, Mitochondria, 
Apoptosis, and vDAC
The loss of cardiac myocytes plays a critical role in the pathogen-
esis of cardiovascular disorders. Activation of the mitochondrial 
pathway of apoptotic cell death has been implicated in ischemia/
reperfusion injury involving the release of Cyto c from mito-
chondria, followed by activation of caspase-9 in the myocardium 
(307). VDAC1 levels were increased in cardiomyoblast H9c2 
cells that were differentiated in the presence of all-trans retinoic 
acid (308). The increased susceptibility of differentiated cells to 
mitochondrial-mediated cell death may be related to the increase 
in VDAC1 levels.

Type 2 Diabetes (T2D) and vDAC1
In T2D, beta cell decompensation develops when insulin secre-
tion fails to balance insulin resistance. Hyperglycemia was found 
to increase VDAC1 expression in pancreatic β-cells (309) and in 
the kidney (310). VDAC1 levels were also increased in mouse 
coronary vascular endothelial cells isolated from diabetic mice. 
This was associated with increased mitochondrial Ca2+ concen-
tration, mitochondrial O2

− production, and PTP opening activity 
(311). Finally, since glucose-stimulated insulin secretion depends 
on the generation of ATP and other metabolites in the mitochon-
dria (312) and since VDAC1 regulates energy and metabolism, it 
follows that VDAC1 is required for insulin secretion.

PeRSPeCTiveS

In this review, we highlighted the cancer–mitochondria– 
metabolism–apoptosis-VDAC1 axis. As Otto Warburg noted 
almost a century ago, cancer cells frequently share bioenerget-
ics abnormalities, regardless of their cellular or tissue origin. 
Furthermore, the view of cancer as primarily a metabolic disease 
can impact any approach to cancer management and prevention. 
As a mitochondrial gatekeeper and overexpressed in cancer 
VDAC1 is a very attractive emerging anti-cancer drug target.

Another hallmark of cancer cells is their ability to avoid 
apoptosis by activating anti-apoptotic mechanisms associated 
with drug resistance, including overexpression of anti-apoptotic 
proteins that interacts with VDAC1. As such, interfering with 
this association would allow for activation of the mitochondrial 
pathway of apoptosis and allow for apoptosis induction by anti-
cancer drugs.

Most importantly, VDAC1, in the OMM, serves as a hub pro-
tein, with its interactome, including over 150 proteins involved in 
metabolism, apoptosis, signal transduction, and anti-oxidation, 
as well as DNA- and RNA-associated proteins, that together medi-
ate and/or regulate metabolic, apoptotic, and other processes in 
normal and diseased cells. Thus, VDAC1 can be considered as a 
key protein not only in metabolism and apoptosis regulation but 
also as a link between the energy, redox, and signaling pathways 
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in mitochondria and other cell compartments. Thus, targeting 
these VDAC1–protein interactions may interfere with a variety 
of processes, such as cellular energy homeostasis, apoptosis, and 
other activities and signaling pathways in cancer.

Finally, VDAC1 silencing in tumors leads to reprogramed 
metabolism and results in alterations in the transcription factors 
that regulate signaling pathways associated with cancer hallmarks 
affecting angiogenesis, EMT, invasiveness, stemness, and induced 
differentiation. This suggests that VDAC1 plays a key role in can-
cer cell fate by controlling the cross-talk between metabolism and 
oncogenic signaling networks, most likely affecting the interplay 
between metabolism and epigenetics. VDAC1 overexpression 
is, moreover, a signature of most cancers and can serve as a 
prognostic biomarker to predict clinical outcome in diversified 
human cancers. Thus, a comprehensive understanding of the 
exact molecular basis of the complex signaling networks activated 

by VDAC1 over- or downregulation in the tumor that forms a 
pro- or anti-tumorigenic milieu is required.
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