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Abstract Peripheral neural sensory mechanisms play a crucial role in metabolic regulation but less

is known about the mechanisms underlying vagal sensing itself. Recently, we identified an enrichment

of liver X receptor alpha and beta (LXRα/β) in the nodose ganglia of the vagus nerve. In this study, we

show mice lacking LXRα/β in peripheral sensory neurons have increased energy expenditure and

weight loss when fed a Western diet (WD). Our findings suggest that the ability to metabolize and

sense cholesterol and/or fatty acids in peripheral neurons is an important requirement for

physiological adaptations to WDs.

DOI: 10.7554/eLife.06667.001

Introduction
Vagal afferent neurons innervate the gastrointestinal (GI) tract, pancreas, liver, and portal vein

and link peripheral levels of GI nutrients as well as circulating and stored fuels (Berthoud, 2008).

Peripheral sensory mechanisms play a crucial role in the regulation of satiation (Schwartz, 2004;

Bello and Moran, 2007; Grill, 2010), but mechanisms underlying vagal sensing itself are still

unknown. Recently, we identified an enrichment of ‘lipid sensing’ nuclear receptors (NRs),

including liver X receptor alpha and beta (LXRα/β) in the nodose ganglia (NG) of the vagus nerve

(Liu et al., 2014). Notably, these neurons and their processes reside outside the blood–brain

barrier, enabling the potential for direct sensing of molecules released by adipose tissue or liver.

LXRs are oxysterol-sensitive NRs that direct cholesterol uptake, transport, and excretion in various

tissues. LXRα and LXRβ are encoded by the Nr1h3 and Nr1h2 genes, respectively (NR subfamily 1,

group H, member 3 and 2). LXRs regulate target genes encoding for ATP-binding cassette

proteins, and apolipoproteins (Repa et al., 2000a; Venkateswaran et al., 2000; Chawla et al.,

2001; Bradley et al., 2007; Hong et al., 2012). Ligand activation of LXRs also stimulates de novo

lipogenesis of triglycerides in liver via sterol regulatory element-binding protein 1c (Repa et al.,

2000b; Zhang et al., 2012). Hepatic LXRα/β regulate whole lipid and glucose homeostasis, and

LXRα/β in macrophages regulate inflammation (Chawla et al., 2001; Rong et al., 2013;

A-Gonzalez et al., 2013; Zelcer and Tontonoz, 2006). In the central nervous system, they

regulate local inflammation, differentiation, and neuron survival by orchestrating cholesterol

uptake and efflux (Wang et al., 2002).
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Further studies in LXR null mice revealed the rather surprising finding that these mice were

resistant to obesity when challenged with a diet containing both high fat and cholesterol (Kalaany

et al., 2005). This study showed that the LXR−/− response was due to abnormal energy dissipation

resulting in part from ectopic expression of uncoupling proteins in white adipose. Here, we show that

Western diet (WD)-fed mice that lack LXRα/β in sensory neurons of the NG have altered neuronal

cholesterol content and increased white adipose tissue browning, leading to changes in energy

expenditure and body weight. This unexpected function of LXRs in vagal sensory neurons provides

a plausible mechanism that may in part explain the role LXRs on metabolism in response to a diet

containing fat and cholesterol.

Results

The absence of LXRs in NAV1.8 expressing neurons disrupts Abca1
regulation and increases NG neuronal cholesterol content
We first assessed the effects on LXR-target gene expression following pharmacological administration

of LXR agonists. Canonical LXR target genes, including ATP binding cassette protein A1 (Abca1) and

SREBP-1c (Srebf1), were up-regulated in the NG of mice treated with LXR agonists (Figure 1A). These

results agree with reports of expression of Abca1 in the central nervous system (CNS) and its up-

regulation in cultured neurons and sciatic nerves following LXR agonist treatment (Fukumoto et al.,

2002; Cermenati et al., 2010). Previous data have also shown SREBP-1c to be expressed in Schwann

cells and CNS neurons, and LXR agonist stimulated Srebp1f expression has also been reported in

various tissues (Cermenati et al., 2010). Carbohydrate-responsive element-binding protein (Chrebp)

expression remained unchanged in response to LXR agonist (Figure 1A).

These results suggest that Abca1 and Srepb1f are targets of LXR in the NG. To confirm these

findings, we established NG organotypic cultures from mice lacking LXRα and LXRβ in vagal sensory

neurons expressing the sodium ion channel NAV1.8 encoded by the Scn10a gene. The resulting

LXRsNav mice were generated by breeding double floxed Nr1h3 and Nr1h2 mice (LXRsfl/fl mice) with

the Nav1.8::Cre mice, which selectively expresses Cre-recombinase in peripheral sensory neurons

eLife digest The vagus nerves run from the brainstem to the heart and the digestive system and

help to control several processes including digestion and heart rate. Because of their role in

regulating food intake, these nerves are attractive targets for scientists hoping to develop

treatments for obesity.

There are two types of fat tissue found in mammals: white fat, which is used as an energy store

and makes up most of the extra fat seen in obese individuals; and brown fat, which can generate

body heat. The vagus nerves monitor fat and cholesterol levels in the body via receptor proteins that

respond to messages sent from the fat tissues and the liver. Previous research unexpectedly found

that mice genetically engineered to lack these receptor proteins—called LXRα and LXRβ—do not

become obese even when fed a high-fat, high-cholesterol diet that would make normal mice gain

excessive weight.

Mansuy-Aubert et al. have now investigated in more detail why mice without these receptor

proteins are resistant to obesity. When fed a high-fat, high-cholesterol diet, mice that lacked the

LXRα and LXRβ receptors in sensory neurons had higher cholesterol levels in their nerve cells than

normal mice on the same diet. Mice lacking these receptors also burned more energy and gained less

weight than normal mice.

Next, Mansuy-Aubert et al. examined fat tissue from both types of mice. This revealed that the

heat-generating brown fat was more active in mice lacking the LXRα and LXRβ receptors. Some of the

white fat in these mice had also become more like brown fat, allowing the mice to burn more energy

and so gain less weight.

In many Western countries, many people also eat a diet that is high in fat and cholesterol. This

raises the possibility that drugs that block the LXRα and LXRβ receptors in sensory neurons in humans

could help to treat or prevent obesity, although further work will be needed to investigate this.

DOI: 10.7554/eLife.06667.002

Mansuy-Aubert et al. eLife 2015;4:e06667. DOI: 10.7554/eLife.06667 2 of 12

Short report Neuroscience

http://dx.doi.org/10.7554/eLife.06667.002
http://dx.doi.org/10.7554/eLife.06667


(Stirling et al., 2005; Gautron et al., 2011). As expected, LXRα/β were deleted in the majority of NG

neurons in LXRsNav mice compared to LXRsfl/fl littermate controls (Figure 1—figure supplement 1).

No difference in LXRs expression was observed in liver, white adipose tissue, brown adipose tissues

(BATs), and muscle (Figure 1—figure supplement 1).

In LXRsfl/fl controls, Abca1 and Srebp1fmRNA levels increased significantly after agonist treatment.

This stimulation was fully (Abca1) or partially (Srebp1f) blunted in NG from LXRsNav littermates

(Figure 1B). Collectively, these results suggest that in the NG, the regulation by LXRs of Abca1 is

restricted to sensory neurons, but that its action on Srebp1f likely occurs in multiple cell types.

Interestingly, cholesterol assays on whole NG taken from WD (42% fat, 0.2% cholesterol)-fed LXRsNav

knockout mice showed a 60% increase in total cholesterol compared to littermate controls (Figure 1C).

An increase of intracellular cholesterol level was also observed in LXRsNav dispersed neurons (Figure 1C).

Collectively, our results suggest that in a WD setting, LXRs regulate NG sensory neuron cholesterol

levels though ABCA1-dependent signaling. A role for ABCA1 in cholesterol, lipid distribution has

previously been extensively observed in the brain (Tam et al., 2006; Yang et al., 2006; Kruit et al., 2010).

Figure 1. LXRs signaling regulates cholesterol metabolism in nodose ganglia neurons. (A) Regulation of selected target genes in nodose ganglia (NG)

following liver X receptor (LXR) agonist treatment in vivo (left panel) n = 5–8 per group. **p < 0.005. (B) NG organotypic slices were prepared from LXRsNav

or LXRsfl/fl treated with GW3965 (5 μM) or vehicle for 4 hr. Quantitative PCR (qPCR) data are expressed as average fold-change relative to vehicle ± S.E.M.,

n = 3 independent experiments. # and *indicates p < 0.5, **p < 0.005. (C) Quantification of total cholesterol. Values were expressed as ng of cholesterol

per NG, n = 6. ## and **p < 0.001. (right panel). Neurons isolated from LXRsNav or control mice NG were subjected to Filipin staining (representative

images of staining from 3 individual mice).

DOI: 10.7554/eLife.06667.003

The following figure supplement is available for figure 1:

Figure supplement 1. Ablation of LXR in the NAV1.8 positive neurons.

DOI: 10.7554/eLife.06667.004
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In addition, LXR agonist or ABCA1 over-expression has been shown to alter cholesterol content in

degenerating neurons or cancer cells (Smith and Land, 2012). Our results demonstrate that in sensory

neurons, NG cholesterol metabolism is also regulated via LXR.

Resistance to diet induced obesity in mice lacking LXRα/β in
Nav1.8-expressing neurons
To measure the physiological impact of LXRs loss in peripheral sensory neurons expressing Nav1.8,

LXRsfl/fl, LXRsNav, Nav1.8::Cre were maintained for 16 weeks on a standard rodent chow diet (normal

chow, NC, 4% fat) or WD. All mice had similar body weights at weaning. However, LXRsNav mice

weighed significantly less than controls after 11 weeks of NC (Figure 2A). Similarly, LXRsNav mice fed

WD were resistant to diet-induced obesity. NMR analysis revealed that LXRsfl/fl mice had twofold more

body fat after 10 weeks of WD than LXRsNav mice (Figure 2B). However, the differences in body fat do

not completely reflect the body weight difference, despite no difference in lean mass (Figure 2B).

WD-fed LXRsNav mice had higher energy expenditure than littermate controls (Figure 2C,D). However,

no differences in food intake were noted in metabolic chambers. Furthermore, no important changes

were found in plasma glucose, serum cholesterol, free fatty acids and liver triglycerides or cholesterol

(Figure 2—figure supplement 1A-F). A decrease in adiposity in the setting of nutrient excess is

sometimes due to ectopic lipid deposition in liver. However, histological examination using

Hematoxylin and Eosin staining (H&E staining) showed that when fed WD, both LXRsfl and LXRsNav

mice developed hepatosteatosis and increase in hepatic lipid droplets (Figure 2—figure supplement

1G). Our results suggest that LXRsNav mice have an exacerbated response to the WD with increased

diet-induced thermogenesis. This suggests that LXRs may regulate the whole-body energy

expenditure according to the amount of fat or cholesterol present in the diet.

Figure 2. Ablation of LXRs from NAV1.8 expressing neurons exacerbates high-fat diet induced thermogenesis.

(A) Body weight of LXRsNav mice and littermate controls on chow and Western Diet (WD) as followed over time

(n = 12 per genotype) * for WD, # for normal chow (NC). (B) Adipose tissue as a percentage of total body weight

in mice fed WD for 9 weeks, measured by NMR (n = 6). (C,D) Energy expenditure in weight-matched mice.

(C) Calorimetry trace before and after a switch from NC to WD. (D) Energy expenditure during light and dark

cycles before and after a switch from NC to WD. Error bars show S.E.M. *indicates p < 0.05.

DOI: 10.7554/eLife.06667.005

The following figure supplement is available for figure 2:

Figure supplement 1. Blood chemistry and lipid levels of LXRsNav mice.

DOI: 10.7554/eLife.06667.006
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The loss of LXRα/β in NAV1.8 positive neurons attenuates lipid
accumulation in BAT, promotes browning in subcutaneous fat, and
enhances mitochondrial respiration in skeletal muscle
Expectedly, we found that WD-fed control mice accumulated large lipid droplets in their BAT.

Notably, this accumulation was considerably attenuated in LXRsNav mice (Figure 3A). To evaluate

the BAT activity, markers for mitochondrial metabolism and thermogenesis regulation in adipose

tissue were assessed by Western blot or real-time PCR. Uncoupling protein 1 (Ucp1) and

peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α) were higher in

LXRsNav mice BAT (Figure 3B,C). A more striking threefold UCP1 increase was observed in LXRsNav

mice subcutaneous fat as assessed by immunohistochemistry (IHC) and whole fat pad Western

blot (Figure 3D,E). These results suggest LXRs in sensory neurons may be important for BAT

Figure 3. Adipose tissue and muscle reprogramming in LXRsNav mice vs control mice. (A) Immunohistochemistry for UCP1 in BAT. (B) UCP1 Western blot

on whole BAT pads (upper panel, n = 4) UCP1 molecular weight (MW) is 33 kDa, Actin served as the loading control, MW 42 kDa, the graph represents

blot quantification. (C) mRNA levels in the BAT of LXR ablated mice vs control mice (lower panel, n = 4). *indicates p < 0.05. (D) UCP1 staining and (E)

Western-blot analysis of UCP1 protein levels in whole, individual dorsal subcutaneous fat pads. Actin served as the loading control. The signal is quantified

in the graph below (n = 4) Scale bar = 100 μm. (F,G) Oxygen-consumption rates were determined using the XF24 Extracellular Flux Analyzer following the

manufacturers’ protocols (n = 3). *indicates p < 0.01.

DOI: 10.7554/eLife.06667.007

The following figure supplement is available for figure 3:

Figure supplement 1. Electron-flow experiments.

DOI: 10.7554/eLife.06667.008
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activity regulation and subcutaneous white fat conversion to a ‘beige’ phenotype in response

to WD.

To establish whether sensory neuron-specific deletion of LXRs alters skeletal muscle mitochondrial

respiration, we examined mitochondrial electron transport chain activity by performing mitochondrial

electron-flow (EF) and electron-coupling (EC) experiments to assess oxygen-consumption rates

(OCRs). During EF analyses, we observed that skeletal muscle mitochondria derived from LXRsNav mice

exhibit markedly higher OCRs in response to the substrates pyruvate, malate, succinate, and

ascorbate (Figure 3F,G), when compared from control mice skeletal muscle mitochondria.

Furthermore, EC experiments to gage mitochondrial coupling and integrity revealed no defects in

skeletal muscle mitochondrial function in either genotype (Figure 3—figure supplement 1). Taken

together, these data indicate that deletion of LXR specifically in peripheral sensory neurons enhances

skeletal muscle mitochondrial oxidative respiration.

The loss of LXRα/β in NAV1.8 expressing neurons modifies NG gene
expression
To gain more insights into the signaling downstream of LXR in NG sensory neurons, we surveyed genes

important for vagal neuronal function, including: cholecystokinin A and B receptor (Cckar and Cckbr),

which regulate vagal nerve activity and feeding; neuregulin 1 (Nrg1), involved in axon/Schwann cell

communication and sensory nerve structure (Gambarotta et al., 2013; Stassart et al., 2013); and α, β,
and γ synuclein (Syna, Synb, Syng), which are involved in intraneuronal trafficking/cell–cell

communication and known to be LXR targets in the brain (Golovko et al., 2009). Nrg1 and Syng

were decreased twofold in both chow and WD-fed LXRsNav mice, interestingly Syna was only

significantly up-regulated in control mice in response to WD (Figure 4A). Interestingly, in recent

reports, γ synuclein has been linked to metabolism (Oort et al., 2008; Golovko et al., 2009;Millership

et al., 2012). γ synuclein is a protein that modulates synaptic trafficking in neurons but also lipid

droplets generating intracellular fatty acids. Notably, the γ synuclein whole body knockout is protected

against diet-induced obesity (Oort et al., 2008; Millership et al., 2012).

Starvation reduces triglyceride levels in serum, but increases circulating fatty acids, which are

rapidly taken up by the liver. To study the ability of NG to acutely respond to nutrient changes

(including triglycerides and fatty acids), we studied the expression of LXR targets in the NG of fed or

fasted mice. We asked whether fasting-induced increases in fatty acid availability modified NG gene

expression. Abca1, Srepb1f, and Syng mRNA levels were significantly changed in LXRsfl/fl mice fasted

20 hr (Figure 4B). Notably, the fasting-induced increase in Abca1 and Syng was blunted in LXRsNav

mice (Figure 4B). We also exposed NG cultures to serum obtained from mice fed or fasted for 20 hr.

These data suggest that NG neurons may sense circulating secreted starvation cues and respond by

regulating unique LXR-dependent genes. Despite its well-documented role in regulating the

transcription of genes crucial for lipid synthesis and storage upon cholesterol sensing, little is known

about how LXRs function in peripheral neurons and further investigation is necessary to completely

understand the role of these NRs in the NG neurons.

Our study suggests that LXRs in vagal sensory neurons potentially regulate vagal synaptic

transmission to ultimately affect the gating of information to adipose tissues and muscle. Since WAT,

BAT, and muscle receive innervation from sympathetic neurons, we suspect that the increased

sympathetic tone (secondary to altered input from the vagal sensory neuron activity) may underlie the

increased energy expenditure observed in LXRsNav mice.

Interestingly, Kalaany et al., also described LXR null mice as resistant to obesity when challenged

with a Western-style diet containing high fat and cholesterol. This phenotype was surprisingly

independent of SREBP-1c and due to a net increase in the energy utilization in white adipose and

muscle (Kalaany et al., 2005). Our study of LXR function in NG neurons is consistent with this previous

report and provides a partial explanation of how LXRs can affect the whole body thermogenesis via

sensory neurons.

Diano et al., (2011), previously showed induction of LXRs in the hypothalamus in response to high-

fat feeding. This finding suggests that LXRs may also regulate energy homeostasis beyond the nodose

nucleus neurons.

Based on the aforementioned findings, we postulate that the LXR pathway may mediate certain

aspects of lipid sensing in peripheral sensory neurons. Our findings also suggest that the ability to

metabolize and sense cholesterol and/or fatty acids in peripheral neurons may be an important
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requirement for physiological adaptations to high-fat/high-cholesterol (Western) diets, such including

thermogenesis leading to changes in key metabolic processes.

Materials and methods

Animals
All ‘Materials and methods’ were approved by the Institutional Animal Care and Use Committee at UT

Southwestern Medical Center. All mice were housed in a temperature-controlled room with a 12-hr

light/dark cycle in the animal facility of University of Texas Southwestern Medical Center.

Mice were fed with either NC (#2916, Harlan-Teklad, Madison, WI; 4.25% kcal from fat) or WD

(#88137, Harlan Teklad, cholesterol (0.2% total cholesterol), fat (42% kcal from fat), high in

saturated fatty acids (>60% of total fatty acids)). LXRsfl/fl mice (floxed Nr1h3 and Nr1h2 genes) on

a mixed C57BL6 and 129SV background were bred and kept as a mixed background in a closed

colony in UTSW germ-free facility. LXRsfl/fl mice were then backcrossed to C57BL/6J mice for

six generations prior to experiments. Transgenic mice (C57/BL6 background) carrying Cre

recombinase driven by a Scn10a promoter (called Nav1.8::Cre mice) were bred with back-

crossed LXRsfl/fl mice. LXRsfl/fl mice were bred with LXRsfl/fl Nav+/− to generate cohorts of

littermate LXRsNav and LXRsfl that were used and compared in at least three cohorts for each

experiment.

We have generated cohort of Nav1.8-Cre/ tdTomato reporter mice to examine the hypothalamus.

Our current findings show that tdTomato Nav1.8 expression is absent from the entire hypothalamus

(Data not shown).

Figure 4. NG gene expression in LXRsNav mice vs control mice. (A) Gene expression in NG from LXRsNav and control

mice fed with NC or WD. (B) Gene expression in NG from LXRsNav and control mice fasted 20 hr or fed. All genes

show a significant difference between both genotypes. *indicates p < 0.05 (n = 6–10).

DOI: 10.7554/eLife.06667.009

Mansuy-Aubert et al. eLife 2015;4:e06667. DOI: 10.7554/eLife.06667 7 of 12

Short report Neuroscience

http://dx.doi.org/10.7554/eLife.06667.009
http://dx.doi.org/10.7554/eLife.06667


Body weight and composition
Body weight was monitored weekly from weaning (at 4 weeks of age) to 28 weeks of age. In the WD

studies, mice were maintained on NC until 6 weeks old before being fed WD.

Metabolic cage studies
Food intake, meal patterns, energy expenditure, and physical activity were continuously monitored

using a combined indirect calorimetry system (TSE Systems GmbH, Bad Homburg, Germany).

Experimental animals (11-week-old) were acclimated in the metabolic chambers for 5 days before

data collection. Mice were initially maintained on NC during the acclimation period and the first two

days of data collection and then fed WD for the next three days. O2 consumption and CO2 production

were measured to determine the energy expenditure. In addition, physical activity was measured

using a multi-dimensional infrared light bean system.

In vivo agonist treatment
C57Bl/6 males were treated with vehicle (1% methylcellulose) and LXR agonist (10 milligram/kg body

weight (mpk) GW3965), by oral gavage at 14 hr and 2 hr prior to sacrifice. NG were rapidly dissected

and frozen in liquid nitrogen.

Metabolic cage studies
Metabolic parameters were continuously monitored using a combined indirect calorimetry system

(TSE Systems GmbH) as described in the supplemental methods.

Data analysis
The data were represented as mean ± S.E.M. Statistical analyses were performed using GraphPad

PRISM version 6.0. Single comparisons were made using 1- or 2-tailed t tests, as appropriate, and

multiple comparisons were performed using 1-way analysis of variance (ANOVA) followed by

Dunnett’s post hoc test. For repeated measures, 2-way repeated-measures ANOVA was performed,

with Bonferroni post hoc tests. A p value less than 0.05 was considered significant.

Quantitative PCR
Real-time quantitative PCR (qPCR) gene expression analysis was performed using inventoried

TaqMan Gene Expression Assays (Applied Biosystems). 18 s was used as normalizer. TaqMan

probes used for qPCR include 18 s (ABI, Hs99999901_s1), Adrb3 (ABI, Mm02601819_g1), Cckar

(ABI, Mm00438060_m1), Cckbr (ABI, Mm00432329_m1), Ucp1 (ABI, Mm01244861_m1), Pgc1a

(01016719_m1), Nrg1 (Mm01212130_m1), Syna (Mm01188700_m1), Synb (Mm00504325_m1),

Synb Mm00488345_m1), Abca1 (Mm00442646_m1), Two Sybr green-based primer sets located in

the first exons of the floxed Nr1h3 and Nr1h2 genes were used to specifically detect the truncated

form of LXRα and β.

NG organotypic culture
Mouse pups between 8 and 11 day old were decapitated, and the NG were quickly removed and

cultured in chilled Gey’s Balanced Salt Solution (Invitrogen) enriched with glucose (0.5%) and KCl

(30 mM). The NG were then placed on Millicell-CM filters (Millipore; pore size 0.4 μm) and then

maintained at the air-media interface in minimum essential medium (Invitrogen) supplemented with

heat-inactivated horse serum (25%, Invitrogen), glucose (32 mM), and GlutaMAX (2 mM, Invitrogen).

Cultures were typically maintained for 10 days in standard medium, which was replaced three times

a week. After an overnight incubation in low serum, (1.5%) MEM supplemented with GlutaMAX (2

mM), slices were stimulated with vehicle, 5 μM GW3965 for 4 hr. RNA was harvested using Acturus

PicoPure RNA Extraction kit (Applied Biosystems).

Histology
For IHC, sections were deparaffinized and the wax at the surface was removed with xylenes. After

antigen retrieval and blockage of endogenous peroxidase activity, sections were stained with primary
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antibodies against UCP-1 (Cat# ab10983, Abcam) followed by biotinylated secondary antibodies

(anti-rabbit; Dako, Glostrup, Denmark). Secondary antibodies were detected using a DAB chromogen

A kit (Dako) following the manufacturer’s protocol. The slides were also counterstained with

Hematoxylin. Filipin staining for unesterified cholesterol was performed according to manufacturer’s

instructions (FilipinIII cholesterol detection, Abcam).

Glucose tolerance tests
After measuring the fasting glucose levels, mice were given an i.p. dose of glucose (1.5–2 g/kg body

weight). Blood glucose levels were then monitored using an AlphaTrak glucometer (Abbott

Laboratories, North Chicago, IL) designed for use in rodents.

Cholesterol quantitative measurement
Adult tissue was resuspended in 1× lysis buffer placed on ice 30 min and homogenized in 2 ml tubes,

glass bead-containing tubes. Samples were then directly used to quantify total cholesterol.

The reaction was performed in 96-well plates by adding Amplex Red reagent, horseradish peroxidase,

cholesterol oxidase, and cholesterol esterase (Amplex Red Cholesterol Assay Kit; Life technologies).

The reactions were incubated for 30 min at 37˚C. Results presented here were obtained from

individual mice (n = 6).

Isolation of mitochondria from skeletal muscle tissues
To isolate mitochondria, skeletal muscle tissues were homogenized using a motorized Dounce

homogenizer in ice-cold MSHE buffer (70 mM sucrose, 210 mM mannitol, 5 mM HEPES, 1 mM EDTA)

containing 0.5% FA-free Bovine Serum Albumin (BSA). Homogenates then underwent low

centrifugation (800×g for 10 min) to remove nuclei and cell debris, followed by high centrifugation

(8000×g for 10 min) to obtain the mitochondrial pellet, which was washed once in ice-cold MSHE

buffer and was resuspended in a minimal amount of MSHE buffer prior to determination of protein

concentrations using a BCA assay (Pierce).

Mitochondrial experiments
OCRs were determined using the XF24 Extracellular Flux Analyzer (Seahorse Bioscience, MA)

following the manufacturers’ protocols. For the EF experiments, isolated skeletal muscle mitochondria

were seeded at 10 μg of protein per well in XF24 V7 cell-culture microplates (Seahorse Bioscience),

then pelleted by centrifugation (2000×g for 20 min at 4˚C) in 1× MAS buffer (70 mM sucrose, 220 mM

mannitol, 10 mM KH2PO4, 5 mM MgCl2, 2 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), 1 mM ethylene glycol tetraacetic acid (EGTA) in 0.2% FA-free BSA; pH 7.2) supplemented

with 10 mM pyruvate, 10 mM malate, and 4 μM carbonyl cyanide 4-(trifluoromethoxy)phenyl-

hydrazone (FCCP) (for EF experiments), with a final volume of 500 μl per well. For EC experiments, 1×
MAS buffer was supplemented with 10 mM succinate and 2 μM rotenone. The XF24 plate was then

transferred to a temperature-controlled (37˚C) Seahorse analyzer and subjected to a 10-min

equilibration period and 2 assay cycles to measure the basal rate, comprising a 30-s mix, and a 3-

min measure period each; and compounds were added by automatic pneumatic injection followed by

a single assay cycle after each; comprising a 30-s mix and 3-min measure period. For EF experiments,

OCR measurements were obtained following sequential additions of rotenone (2 μM final

concentration), succinate (10 mM), antimycin A (4 μM), and ascorbate (10 mM) (the latter containing

1 mM N,N,N′,N′-tetramethyl-p-phenylenediamine [TMPD]). For EC experiments, OCR measurements

were obtained post sequential additions of ADP (4 mM), oligomycin (2 μM), FCCP (4 μM), and

antimycin-A (2 μM). OCR measurements were recorded at set interval time-points. All compounds and

materials above were obtained from Sigma–Aldrich.
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