
RESEARCH ARTICLE

Trait-based plant ecology a flawed tool in

climate studies? The leaf traits of wild olive

that pattern with climate are not those

routinely measured

Jalal Kassout1,2,3, Jean-Frederic Terral2,3, John G. Hodgson4,5, Mohammed AterID
1,2*
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Essaâdi, Tétouan, Morocco, 2 Associated International Laboratory EVOLEA, INEE-CNRS- CNRST,

Montpellier, France, 3 Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Equipe Dynamique de la
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Abstract

Climate-related studies have generally focussed upon physiologically well-defined ‘mecha-

nistic’ traits rather than ‘functional’ ones relating indirectly to resource capture. Neverthe-

less, field responses to climate are likely to typically include both ‘mechanistic’ specialization

to climatic extremes and ‘functional’ strategies that optimize resource acquisition during less

climatically-severe periods. Here, this hypothesis was tested. Seventeen traits (six ‘func-

tional’, six ‘mechanistic’ and five ‘intermediate’) were measured from 19 populations of ole-

aster (wild olive) along a climatic gradient in Morocco. Principal components analysis of the

trait dataset identified size and the ‘worldwide leaf economics spectrum’ as PCA axes 1 and

2. However, contrary to our prediction, these axes, and commonly-measured ‘functional’

traits, were little correlated with climate. Instead, PCA 3, perhaps relating to water-use and

succulence, together stomatal density, specific leaf water content and leaf shape, patterned

with altitude, aridity, rainfall and temperature. We concluded that, at least for slow-growing

species, such as oleaster, ‘mechanistic’ traits are key to identifying mechanisms of climatic

restriction. Meaningful collaboration between ‘mechanistic’ and ‘functional’ disciplines pro-

vides the best way of improving our understanding of the global impacts of climate change

on species distribution and performance.

Introduction

There is a long tradition of studying characteristics of the plant phenotype (traits) that deter-

mine how plants respond to environmental factors [1,2]. The measurement of functional

(adaptive) traits along environmental gradients has led to the identification of recurrent syn-

dromes of co-occurring plant functional traits or ‘plant functional types’ particularly in
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relation to resource capture and allocation. These ‘plant functional types’, are a consequence of

trade-offs, where traits that facilitate the exploitation of one environment simultaneously

reduce fitness in another and, for many, their functional significance is underpinned by eco-

logical theory. In this context, arguably the most fundamental and over-arching set of ecologi-

cal rules relating plant performance to the environment is provided by CSR strategy theory

[3,4]. CSR strategy theory defines two groups of environmental factors that vitally impact

upon plant performance. The first, stress (S), includes factors that restrict plant production,

particularly mineral nutrients. Other stress factors include suboptimal temperatures and a

shortage of light or water. The second group, disturbance (R), results in the destruction of

already-produced plant biomass, promoting ruderal growth. Disturbance may result both

from the impacts of land use and from extreme climatic events. Where, stress and disturbance

are both low, the distribution of species is determined by a third factor, between-plant compe-

tition (C). Nevertheless, to date, the use of functional traits has concentrated upon just two

areas within strategy theory. The first is the ‘worldwide leaf economics spectrum’, a major fac-

tor within stress sensu Grime [3]. This separates species of fertile habitats from those of unpro-

ductive ones [5,6]. It is defined both within the classical definition of relative growth rate by

Evans [7] and by a fundamental trade-off in leaves between the rapid acquisition of nutrients

and the conservation of resources within well-protected tissues [8–11]. The second much-

studied topic within strategy theory is plant size. The expression of size is a complex function

of the qualitative and temporal opportunities for growth controlled by environmental factors

and by interactions with other plants (i.e. combinations of competition, disturbance and stress;

Grime [1]). As a consequence of this choice of traits, global meta-analysis within mainstream

trait-based plant ecology [12,13] simply identify the ‘worldwide leaf economics spectrum’ and

plant size as the two key axes of specialization. Nevertheless, studies of this type, often called

‘trait-based plant ecology’, have been advanced as a key discipline for understanding and

advising upon global processes of ecosystem change [6]. A great strength of trait-based plant

ecology is that the attributes routinely targeted can be both of ecological significance and easily

measured. Numerous species, or even whole floras can be easily categorized with respect to

many contrasted ecological dimensions. Moreover, the approach has already been used to

compile large and varied trait databases [14]. Encouragingly for the future, many additional

traits are available for study [2] and their use may further broaden the scope and utility of

trait-based plant ecology.

Intraspecific variation in trait expression–small changes with large

impacts?

To date trait-based plant ecology has primarily focused upon interspecific comparisons [5,15].

In contrast, intraspecific traits, while often equally ecologically significant, have remained

comparatively neglected [16–19]. This is unfortunate. As in interspecific comparisons, intra-

specific traits frequently pattern instructively along environmental gradients [20,21]. More-

over, intraspecific differences may equal or even exceed those from interspecific studies

[22,23]. They are also potentially relevant to climate studies (e.g. tolerance of water stress [24])

as well as, to more general investigations of species coexistence and distribution [25]. These

similarities with studies of interspecific traits do not, however, by themselves make a strong

case for more intraspecific investigations. However, additionally, and importantly, not all spe-

cies have the same ecological impact. Amongst, those of greatest ecological significance are

canopy dominants, sometimes called ‘ecosystem engineers’ [26,27]. These species monopolize

primary resources and, as a result, have a major impact on the ecological functioning of the

whole community [26,27]. In order to accommodate these and similar species, we, like Fajardo
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and Piper [21], Bolnick et al. [17], Albert et al. [28], Laforest-Lapointe et al. [29], Moran et al.

[30], Shipley et al. [31], believe that change is needed. An intraspecific dimension should be

routinely factored into global models.

Studying climate–a methodological dilemma

Despite its long-appreciated importance [32], our capacity to predict the potential impacts of

climate change upon the world’s flora remains constrained by problems of ecological complex-

ity [33–35]. Moreover, within the context of climate studies the ’functional trait’ approach

described above has so far failed to identify and quantify mechanisms of climatic restriction.

The most highly-cited paper [36] simply asks the important but preliminary question ‘Which

is the better predictor of plant traits, temperature or precipitation?’ More recently, global cor-

relations between traits and climatic variables have also been used to predict possible impacts

of climate change on biomass yield [37]. In contrast, an alternative overtly ecophysiological

approach has greatly increased our understanding of the impacts of climate on plant perfor-

mance and survival. Through experimentation, syndromes of ‘mechanistic’ traits conferring

tolerance of defined climatic factors have been identified with their function directly inter-

preted in terms of physics and chemistry. For example, thermal response time of the leaf to

changes in surface energy fluxes has been recognized as a major component of physiological

tolerance to drought [38,39]. Thermal response time is critical to leaf carbon economics and is

defined by leaf traits such as dry matter mass, water mass, specific heat capacity, surface area,

width, shape and stomatal density [39]. Similarly, the characteristics of the plant’s hydraulic

system additionally regulate response to climate [40,41]. Here, key traits include leaf water

potential at turgor-loss point, plant hydraulic conductance or xylem vulnerability [42–44] and,

more generally, root architecture [45,46]. Furthermore, encouragingly, Brodribb [47] outlines

how simple ‘mechanistic’ traits identified in ecophysiological studies define hydraulic physiol-

ogy and may be used to explain and predict climatic restriction due to drought.

The contrast between the relatively climatically ineffectual ‘functional’ traits and the more

ecophysiologically insightful ‘mechanistic’ traits has catalysed a debate as to how best to

advance our understanding of plant-climate interactions [47]. Provocatively, Brodribb writes:

‘By ‘mechanistic’ traits, I mean traits whose function can be clearly physiologically defined, as

opposed to the more abstract ‘functional’ traits, such as leaf mass per area (LMA, also known

as specific leaf area (SLA)), that have been used to great effect in explaining plant economics

over the last 15 years [5]’. Brodribb’s subdivision has been re-enforced by Volaire [48]. Volaire

separates ‘mechanistic’ traits as physiological strategies relating to one dominant environmen-

tal factor and studied explicitly over short timescales from ‘functional’ traits with ecological

strategies relating to multi- environmental factors and studied implicitly over long timescales.

However, this debate ignores a key point. ‘Mechanistic’ studies are time-consuming and most

include few species. They provide precision in measurement but the general significance of

each mechanism at a global scale is more difficult to study because inevitably datasets are

small. In contrast, as outlined above, the ‘functional trait’ approach can quickly generate large

datasets for whole floras with each species defined in many contrasted ecological dimensions.

As in other comparative approaches the ‘functional trait’ approach has a strong potential for

generality. ‘The collection and comparison of standardized information . . .. . . follows closely

the philosophies prevailing in the physical sciences. Perhaps the most obvious of these is the

role played by the Periodic Table of the Elements in classifying, analysing, and even predicting,

the structure and properties of chemical elements and compounds’ [49]. Why has the ‘func-

tional trait’ approach had so little impact on understanding the role of climate on plant distri-

bution? The failure appears to stem from the consistent use of a restricted and ‘climatically
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inappropriate’ set of traits. Traits linked to ‘mechanistic’ climate-related studies are conspicu-

ously absent from ‘functional’ analyses both in studies describing general global patterns of

specialization [12,13] and in those with a more climatic focus [36,37]. A plethora of potentially

important climate-related traits still require further investigation. With interdisciplinary col-

laboration, the ‘functional trait’ approach has the potential to add important elements of gen-

erality and utility to the current pioneering ‘mechanistic’ studies . . .. provided, of course, that

suitable, easily- and rapidly-measurable traits can be borrowed from the existing raft of ‘mech-

anistic’ studies.

Objectives

Our trait-based study will focus upon climate and, in particular, oleaster, or wild olive, growing

along a climatic gradient in Mediterranean Morocco. Both species and region are of climatic

relevance and interest. Climate change is predicted to increase the geographical range of the

olive [50]. Equally, the Mediterranean region is both a biodiversity hotspot [51] and under

severe threat from climate change [52,53]. Specifically, variation in trait expression will be

explored between and within nineteen populations of oleaster from climatically-contrasted

habitats. The traits to be measured fall into two groups. The first group comprises ‘functional

traits’, attributes that identify the ‘worldwide leaf economics spectrum’ and plant size. These

traits are essentially those routinely measured in ‘functional’ studies. The second group

includes ‘mechanistic’ traits linked to climate by physiological studies but not currently used

in most ‘functional trait’ studies. Of necessity, we will concentrate attention on ‘mechanistic’

traits that may be measured rapidly. We shall assess both individually and in combination,

which traits pattern more exactly with climatic variables, (a) ‘functional’ or (b) ‘ecophysiologi-

cal’ traits. In this context, we suggest that field responses to climate has two components (Fig

1). First, ‘functional’ strategies relating to the ‘leaf economics spectrum’ may be expected to

optimize resource acquisition and growth during less climatically-severe periods. Secondly,

‘mechanistic’ strategies involving ‘ecophysiological traits’ linked to climate by physiological

studies will confer tolerance of climatic extremes. Since oleaster is both slow-growing and

long-lived tree, survival of climatic extremes will be key. Accordingly, our specific hypothesis

is that, for oleaster, ‘ecophysiological traits’ little-used in trait-based plant ecology will pattern

with climatic variables more effectively than commonly-used ‘functional traits’. More gener-

ally, we suspect that ‘functional’ trait-based plant ecology will have little impact on climate

change research until it routinely includes a ‘mechanistic’ dimension to its trait measurements

and analyses.

Materials and methods

Study species

Oleaster (Olea europaea subsp. europaea var. sylvestris (Miller) Lehr) is the wild progenitor of

the Mediterranean cultivated olive (Olea europaea L. subsp. europaea var. europaea) (Besnard

et al. [54] for review). It is an evergreen, sclerophyllous, long-lived wind-pollinated tree [55–

59]. Oleaster is a characteristic component of the natural Mediterranean vegetation [60,61]

and its presence may be traced back to at least the last glaciation period [61–63]. It is consid-

ered a bio-indicator of the Mediterranean climate [61,64–67] and arguably the most emblem-

atic and iconic tree of the Mediterranean Basin [54]. In Morocco climax vegetation with

oleaster extends over several Mediterranean bioclimates from humid to arid along a north-

south latitudinal gradient and oleaster appears eliminated mainly by the cold (maximum

altitude between 1000 and 1600 m) and extreme aridity [55]. Because of its importance, (a)

in climate studies, as a bio-indicator, and (b) in studies of ecosystem function, as a major
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component of the vegetation, oleaster is an ideal species for studying traits along a climatic

gradient.

Study areas

The field context was provided by a 600 km latitudinal transect of Morocco that includes a

wide range of habitats and vegetation types across three bioclimatic zones (humid, subhumid

and semi-arid) within Morocco (Fig 2) [68–73]. We chose nineteen representative woodland

and scrub sites each with contrasted climatic, geographical and phytoecological characteristics

(Table 1). The climate of each site was defined using five variables: mean annual temperature

(MAT,˚C), minimum temperature of the coldest month (MTCM, ˚C), and the mean annual

precipitation (MAP, mm), all extracted from the Worldclim database, at a resolution of 30

arc’s (~1 km2) [74] plus the mean annual evapotranspiration (PET, mm/year) and the global

Fig 1. Predicted broad trends between plant traits and response to climate. ‘Mechanistic’, relating particularly to specializations for surviving harsh climates, and

‘functional’ traits sensu Broderibb [47], that may optimize growth during other periods, are coloured blue and red respectively. ● identifies the putative position of

Olea designated with a orange color.

https://doi.org/10.1371/journal.pone.0219908.g001
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aridity index (AI, unitless, calculated as MAP/PET) from, respectively, the PET database and

the CGIAR Global Aridity database [75,76]. The range of climate associated with our sites

(Table 1) is greater than changes to climatic variables predicted by Gibelin and Déqué [77] and

Polade et al. [78] making our study area more relevant to climate change research.

Field sampling

Sampling in the field requires no authorization; the study sites are located in natural public

areas outside protected natural areas. The species studied (Olea europaea subsp. europea sylves-
tris (Miller) Lehr) is not a rare or protected species.

At each site, ten healthy oleaster trees were randomly selected from within of a 200m2 area

during the spring (April to May) of 2016. The diameter at breast height (DBH) and the vegeta-

tive height (H) of each tree were recorded as proscribed by Bonham [81]. Subsequently, rela-

tive chlorophyll content (CHL, SPAD units) was measured using a SPAD 502 plus chlorophyll

meter and following the protocols of Cornelissen et al. [82], thirty healthy, mature leaves were

collected at random from the south (sun-exposed) side of the upper canopy and returned to

the laboratory on the day of sampling in a cool, hydrated condition.

Fig 2. The geographical locations of sampling sites across Morocco with contours for Aridity index generated with Open Quantum GIS V. 2.12.3-Lyon software

[79]. Site numbers accord with Table 1.

https://doi.org/10.1371/journal.pone.0219908.g002
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Leaf traits

Seventeen plant traits were measured (Table 2). Six were ‘functional’ traits, relating to size or

to the ‘leaf economics spectrum’, of the type more traditionally used in trait-based ecological

studies. We are trialing a further six ‘mechanistic’ traits identified from the physiological litera-

ture as of possible relevance in climate studies. Additionally, five ‘intermediate’ traits were

included. These were potentially relevant to both resource capture and to climate. Traits were

further categorized into four inexact groupings relating to what was being measured: (1)

‘ecophysiological’, both function and measurement relating to one component of leaf form

and function (e.g. stomatal density (DS)); (2) ‘morphological size and shape’, both function

and measurement relating to the whole leaf (e.g. leaf area (LA)), (3) ‘structural allocation’,

function estimated from interacting properties of the whole leaf (e.g. specific leaf area (SLA))

and (4) whole plant (e.g. plant height, m; H). Group 1 is analogous to ‘mechanistic’ in so far as

Table 1. Climatic, geographic and phytoecological characteristics of sites sampled.

Site names Latitude

(˚)

Longitude

(˚)

Altitude

(m)

MAT

(˚C)

MTCM

(˚C)

MAP

(mm/

year)

AI Vegetation series (types) Phytoecological associations

(A) Humid climate

1. Tlat Taghramt

Med

-5.458 35.807 364 16.5 5.8 808 0.72 Kermes oak Thermo-

mediterranean serie

Rusco hypophyllii-Quercetum
cocciferae [69]

2. Tlat Taghramt -5.468 35.789 293 16.9 6.3 801 0.71

3. Ksar Sghir -5.515 35.783 255 17.5 7.1 802 0.71

(B) Dry subhumid

climate

4. Bni Harchin -5.620 35.551 150 18.0 7.3 779 0.65 Oleaster and carob Thermo-

mediterranean serie

Tamo communis-Oleetum sylvestris
[69]5. Dar Chaoui -5.730 35.521 64 18.1 7.7 751 0.63

6. Bni Arous -5.718 35.357 90 18.1 6.5 781 0.62

7. Tnin Sidi Yamani -5.958 35.353 126 17.7 6.1 765 0.61

8. Dar Akoubaa -5.310 35.231 322 17.7 5.6 774 0.61

9. Ouezzene -5.533 34.930 137 18.7 5.9 814 0.60

10. Mesmouda -5.734 34.750 196 18.0 5.0 805 0.59

(C) Semi-arid

climate

11. Ras Ejery -5.785 33.667 589 16.3 2.8 621 0.44 Barbary thuya mesophil serie Coronilla viminalis-Tetraclinetum
articulatae [73]12. Bouqachmir -5.906 33.536 582 16.8 3.2 582 0.40

13. Moulay Bouazza -6.436 33.102 680 17.3 2.8 482 0.31 Holm oak Thermo-mediterranean

serie

Smilaci mauritanicae-Quercetum
rotundifoliae [73]

14. Sebt Ait-Rahou -6.280 33.280 745 16.6 2.2 545 0.31 Barbary thuya mesophil serie Coronilla viminalis-Tetraclinetum
articulatae [73]15. Oulad Aissa -6.341 33.158 523 18.1 4.0 472 0.37

16. El Ksiba -6.044 32.575 900 16.6 1.4 721 0.46 Phoenicean juniper and barbary

thuya serie

Querco rotundifoliae-Tetraclinetum
articulatae [80]

17. Bin Ouidane -6.475 32.098 946 17.1 1.8 514 0.32 Polygalo balansae- Tetraclinetum
articulatae [73]

18. Asni -8.041 31.208 953 15.6 0.2 420 0.28 Lavandulo dentatae-Tetraclinetum
articulatae [80]19. Ouirgane -8.092 31.167 919 16.5 1.1 377 0.26

Climatic variables, abstracted from Worldclim database [74] and the CGIAR Global Aridity and PET database [76], are abbreviated as follows: MAT (˚C), mean annual

temperature; MTCM (˚C), mean temperature of the coldest month; MAP (mm), mean annual precipitation; AI: aridity index, calculated as MAP/PET (PET, potential

evapotranspiration) with low values indicate more arid habitat. Vegetation type relates to Benabid and Fennane [71] and phytoecological association to Barbéro et al.

[73], Benabid [69] and Fennane [80].

https://doi.org/10.1371/journal.pone.0219908.t001
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there is a relatively precise and direct connection between how the trait functions and what

was measured. Also groups 3–4 equate to ‘functional’ traits and group 2 may be viewed as

intermediate, with impacts upon both growth and water use efficiency. As a matter of policy,

we have opted to concentrate on traits that may be measured quickly and easily. Such traits

may be more readily incorporated into trait-based ecological studies.

For each leaf trait there were 30 replicate leaves tree-1 x 10 trees site-1 x 19 sites, making a

total of 5700 replicate leaves. Trichomes were removed from the abaxial leaf surface of Olea, a

hypostomatous species and impressions made using clear nail polish [83,84]. Subsequently,

stomatal density (DS, no. of stomata mm-2) was measured from four separate areas of the

abaxial surface of the leaf at 400x magnification (Olympus BX43). Additional laboratory- mea-

sured traits were–group 1: leaf water content (LWC, g; LWM–LDM), specific leaf water con-

tent (SLWC, g cm-2; (LWM–LDM)/LA) [85]), leaf thickness (LT, mm, using a precision

micrometer (Mitutoyo, 0,01-25mm)); group 2: leaf area (LA, cm2), length (LL, cm), width

(LW, cm), length of the broadest leaf (LLmax, cm), two estimates of leaf shape length:width

ratio (LL/LW) and length: longest length ratio (LL/LLmax), [86,87]; group 3: leaf fresh mass

(LWM, mg), leaf dry mass (LDM, mg), specific leaf area (SLA, cm2 g-1; LA/LDM); leaf dry

matter content (LDMC mg g-1, LDM/LWM). In addition, the functional syndrome, CSR-strat-

egy, was calculated from leaf traits by the method of Pierce et al. [4].

Table 2. Leaf traits studied inexactly grouped according to putative function and reasons for their use.

Trait grouping Traits Abbr. Unit Putative functional role References

Ecophysiological

(within leaf)

Relative chlorophyll

contentm
CHL SPAD unit Photosynthetic rate and leaf life span [88]

Stomatal densitym DS no. of stomata abaxial

surface mm-2
Stomatal conductance and water balance [89] [90] [91] [92]

Leaf water contentm LWC g Water balance

Specific leaf water

contentm
SLWC g H2O cm-2 Water balance [85]

Leaf thicknessf,m LT mm Resource acquisition and water balance [93] [94] [95] [96]

Morphological size and

shape

(whole leaf)

Leaf areaf,m LA cm2 Resource capture, growth rate and water balance [93][97] [98] [99]

[12] [13]

Lengthf,m LL cm Light capture, resource capture and growth rate [93] [100] [101] [99]

[87]Widthf,m LW cm

Length at maximum

widthf,m
LLmax cm

Length:width ratiom LL/LW Light capture and thermoregulation [86] [87]

Length:LPL ratiom LL/

LLmax

Light capture and thermoregulation

Structural allocation

(whole leaf)

Leaf fresh massf LWM g Resource acquisition [102] [103]

Leaf dry massf LDM g Resource acquisition

Specific leaf areaf SLA cm2 g-1 Resource capture, water balance and growth rate [102] [104] [105] [9]

[106]

Leaf dry matter contentf LDMC mg g-1 Physical resistance, stress tolerance and growth

rate

[107] [5] [103] [82]

Plant size

(whole plant)

Plant heightf H m Light capture, competition rate, stress tolerance

and growth rate

[107] [5] [108]

Diameter at breast

heightf
DBH cm Resource capture, stress tolerance and growth

rate

[109]

m denotes ‘mechanistic’ traits, whose relevance has been identified directly from physiological studies, and
f ‘functional’ traits relating to size or to the ‘leaf economics spectrum’. Traits that span both groupings are designated as f,m.

https://doi.org/10.1371/journal.pone.0219908.t002
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Data analysis

After checking frequency distributions for normality and variance heterogeneity, it was neces-

sary to log-transform trait values prior to analysis. Subsequently, one-way ANOVA with

Tukey HSD post hoc tests, Pearson correlations and principal component analyses (PCA) were

undertaken for inter-population comparisons of trait values and of coefficient of variation

(CV) estimates using the open source statistical environment R 3.3.3 [110].

Intraspecific variation of the 5700 replicates for each leaf trait was explored across three lev-

els of spatial and organizational scales: 1) ‘regional’, between different sites; 2) ‘population’,

between different trees at same site, and 3) ‘individual’, between leaves on the same tree (Fig

3). Here, the coefficient of variation (CV), calculated by the formula CV (%) = standard devia-

tiontrait/meantrait x 100 [111], evaluates the amplitude of trait variability [112,113]. This is par-

ticularly true where there is a proportionality between the mean and standard deviation of the

distribution [114]. The ‘varcomp’ function in the ‘ape’ package extracted these variance com-

ponents [115] and to quantify the extent and importance of variance across regional,

Fig 3. (A) The hierarchical sampling design (19 sites x 10 trees site-1 x 30 leaves tree-1) and (B) the possible ecological significance of

contrasted patterns of distribution.

https://doi.org/10.1371/journal.pone.0219908.g003
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population and individual scales, a general linear mixed model was fitted using the restricted

maximum likelihood (RMEL) method, a nested ANOVA with random effects [22]. Subse-

quently, the Canberra metric (CM) calculated as: CM = (CVmax−CVmin)/(CVmax + CVmin)

tested for significant differences between the two coefficients of variation [116–118]. When the

value of CM is higher than 0.1, differences are considered significant.

Results

Ecological relevance of coefficients of variation (CV) values

Mean and standard deviation for all measured leaf traits differed markedly in their amplitude

of variation. Nevertheless, apart from DS, both were significantly correlated (X v σ calculations

in Tables 3, 4, 5 and 6, S1 Table). Moreover, CV values generally did not vary in the same

direction as the variance ratio, F. Thus, for example, LT had a low CV value (21%) but high F
value and appeared strongly discriminant between populations (Table 3). Also, values for the

Canberra metric (0.19 to 0.69; S1 Table) exceeded the 0.1 threshold for statistical significance.

Our more extreme inter-population differences in CV for each traits may be viewed as both

statistically and potentially ecologically significant.

Variation in trait expression between and within populations

For each trait studied, statistically significant differences were detected between populations

and for all but one of their CV values (Tables 3, 4, 5 and 6). The size of the variance ratio, F,

Table 3. Mean traits ± 95% confidence limits of ‘ecophysiological’ leaf traits.

Population CHLm CV% DSm (n/mm2) CV% LWCm CV% SLWCm (g H2O cm-2) CV% LTf,m (mm) CV%

(A) Humid climate

1. Tla Taghramt Med 72.9 ± 1.1c,d 13.3 505 ± 4f 7.3 0.089 ± 0.003c,d 34.3 0.031 ± 0.001c,d 40.6 0.36 ± 0.01 h,i 11.1

2. Tla Taghramt 58.9 ± 1.3k 20.0 523 ± 5e 9.2 0.090 ± 0.004c,d 36.8 0.025 ± 0.001e,f,g 27.3 0.31 ± 0.01k 15.5

3. Ksar Sghir 70.7 ± 0.5d,e,f 6.1 454 ± 4h 7.7 0.062 ± 0.003g,h 37.3 0.028 ± 0.001c,d,e 34.8 0.44 ± 0.01c 12.4

(B) Dry subhumid climate

4. Bni Harchin 69.9 ± 1.2e,f,g 15.3 276 ± 8m 26.3 0.113 ± 0.005b 39.7 0.037 ± 0.002b 42.0 0.37 ± 0.01 h,i 17.5

5. Dar Chaoui 77.8 ± 2.6a 30.1 417 ± 5j 11.1 0.059 ± 0.003g,h 45.7 0.024 ± 0.001 e,f,g 47.5 0.39 ± 0.01e,f,g 10.5

6.Bni Arous 66.8 ± 1.0h,i 13.4 364 ± 6l 15.7 0.098 ± 0.006c 53.6 0.040 ± 0.002b 44.1 0.38 ± 0.01f,g,h 11.1

7. Tnin Sidi Yamani 61.8 ± 1.0j 14.6 390 ± 8k 17.2 0.115 ± 0.006b 46.8 0.031 ± 0.002c,d 54.6 0.37 ± 0.01 h,i 11.5

8. Dar Akoubaa 76.5 ± 1.1a,b 12.6 359 ± 6l 14.3 0.120 ± 0.005b 37.4 0.031 ± 0.001c 34.2 0.48 ± 0.01b 9.2

9. Ouezzene 67.7 ± 0.8g,h,i 10.6 439 ± 6h,i 12.0 0.058 ± 0.003g,h,i 50.6 0.026 ± 0.001d,e,f,g 42.0 0.40 ± 0.01d,e,f 10.1

10. Mesmouda 65.6 ± 1.1i 14.8 404 ± 5j,k 11.0 0.085 ± 0.005d 47.2 0.030 ± 0.001c,d,e 41.3 0.44 ± 0.00c 8.3

(C) Semi-arid climate

11. Ras Ejery 72.2 ± 0.8c,d,e 9.4 561 ± 7d 10.8 0.063 ± 0.003f,g 40.8 0.021 ± 0.001g 25.3 0.37 ± 0.01h,i 14.4

12. Bouqachmir 76.7 ± 0.7a 8.2 362 ± 5l 12.2 0.081 ± 0.005 d,e 51.8 0.025 ± 0.003 e,f,g 92.1 0.41 ± 0.01d 10.2

13. Moulay Bouazza 77.4 ± 0.9a 10.8 603 ± 6b 13.5 0.388 ± 0.005a 12.4 0.167 ± 0.006a 33.8 0.60 ± 0.019a 27.8

14. Sebt Ait-Rahou 73.8 ± 0.8b,c 9.0 577 ± 7c 10.3 0.083 ± 0.003d,e 37.0 0.023 ± 0.001f,g 27.6 0.38 ± 0.001g,h,i 12.4

15. Oulad Aissa 71.4 ± 0.9c,d,e,f 10.7 603 ± 6b 9.3 0.055 ± 0.002g,h,i 35.0 0.026 ± 0.001 d,e,f,g 26.7 0.34 ± 0.01j 12.3

16. El Ksiba 69.7 ± 0.9e,f,g 11.1 481 ± 9g 15.9 0.052 ± 0.002h,i 35.9 0.022 ± 0.001f,g 35.5 0.40 ± 0.01d,e 11.2

17. Bin Ouidane 62.2 ± 0.7j 10.5 521 ± 6e 10.5 0.049 ± 0.002i 35.0 0.026 ± 0.001c,d,e,f,g 27.7 0.43 ± 0.01c 9.5

18. Asni 68.6 ± 0.8f,g,h 10.1 621 ± 6a 8.9 0.073 ± 0.005e,f 66.5 0.027 ± 0.003c,d,e,f 85.1 0.44 ± 0.00c 8.8

19. Ouirgane 69.8 ± 1.0e,f,g 12.9 438 ± 6i 12.8 0.080 ± 0.004 d,e 38.7 0.021 ± 0.001g 29.8 0.36 ± 0.01i 17.9

Mean 70.0 ± 0.3 15.8 462.3 ± 3 23.6 0.092 ± 0.002 85.4 0.034 ± 0.001 105.51 0.40 ± 0.00 20.9

X v σ (r) 0.300��� 0.088 ns 0.428��� 0.772��� 0.598���

ANOVA F19,5699 91.7 ��� 947.1 ��� 1242.2 ��� 962.4 ��� 328.3 ���

https://doi.org/10.1371/journal.pone.0219908.t003
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differed considerably and traits with the highest value of F in Tables 3, 4, 5 and 6 also exhibited

more of their percentage variance at the highest hierarchical level (i.e. between populations;

Table 7). Thus, with the exception of CHL, ‘ecophysiological’ leaf traits, mostly classified as

‘mechanistic’, had a higher value for the variance ratio than those relating to ‘morphological

size and shape’ and to ‘structural allocation’ (Tables 3, 4 and 5). They also contained 50 to 80

percent of the total variance ‘between populations’ (Table 4). At the opposite end of the spec-

trum were LDMC and SLA, two key ‘functional’ traits in the ‘worldwide leaf economics spec-

trum’ [5], and LL/LLmax. These traits appeared inherently plastic, with 48 to 61 percent

variance between leaves on the same tree. A majority of morphological traits (LA, LL, LLmax,

LL/LW) were intermediate with the percentage variance slightly higher at the ‘population’

level (42–48%). For the remainder, variance in trait expression was distributed relatively evenly

between the three hierarchical levels.

Interrelationships between traits and the identification of syndromes of co-

occurring traits

Correlation matrices for the traits and for their CV values are presented as Table 8 and S2

Table, respectively. Correlations between traits (Table 8) ranged in number (and percentage)

from CHL (0, 0%) to, at the other extreme, DBH (9, 53%), with SLA (6, 35%) and LDMC (7,

41%). The mean number of correlations with other traits ± standard deviation could be

Table 4. Mean traits ± 95% confidence limits of ‘morphological size and shape’ leaf traits.

Population LAf,m (cm2) CV% LLf,m (cm) CV% LW f,m (cm) CV% LLmax
f,m (cm) CV% LL/LWm CV% LL/LLmax

m CV%

(A) Humid climate

1. Tla Taghramt Med 3.04 ± 0.10d,e 29.5 3.49 ± 0.08h.i 19.9 1.25 ± 0.02b 17.4 2.20 ± 0.07e,f 27.2 2.84 ± 0.07j 20.7 1.65 ± 0.05 e,f,g,h 24.3

2. Tla Taghramt 3.71 ± 0.15b 35.6 3.81 ± 0.09e,f,g 22.0 1.37 ± 0.03a 19.7 2.60 ± 0.08c,d 26.5 2.80 ± 0.05j 17.0 1.51 ± 0.03i 19.8

3. Ksar Sghir 2.27 ± 0.08h,i 31.8 3.10 ± 0.07k 21.1 1.09 ± 0.02d,e 14.0 1.97 ± 0.08 h,i 33.9 2.88 ± 0.07i.j 22.6 1.73 ± 0.08d,e 39.1

(B) Dry subhumid climate

4. Bni Harchin 3.33 ± 0.14c,d 37.8 3.64 ± 0.11g,h 26.4 1.37 ± 0.03a 19.8 2.26 ± 0.08e 31.2 2.68 ± 0.07j 22.8 1.68 ± 0.05e,f,g 26.0

5. Dar Chaoui 2.57 ± 0.09g,h 31.0 3.25 ± 0.08 i,j,k 21.5 1.15 ± 0.02c,d 18.1 1.98 ± 0.05 h,i 22.2 2.90 ± 0.08i,j 23.5 1.66 ± 0.03 e,f.g,h 14.1

6.Bni Arous 2.45 ± 0.11g,h,i 40.9 3.33 ± 0.11i,j,k 29.8 1.08 ± 0.02e 18.4 2.18 ± 0.10e,f,g 40.8 3.10 ± 0.08h,i 24.3 1.64 ± 0.05 e,f,g,h 26.2

7. Tnin Sidi Yamani 3.99 ± 0.15a,b 32.5 4.34 ± 0.08c 16.1 1.35 ± 0.03a 21.0 2.69 ± 0.07b,c 22.7 3.30 ± 0.07g,h 18.2 1.67 ± 0.04e,f,g,h 23.2

8. Dar Akoubaa 4.08 ± 0.19a 42.1 5.38 ± 0.15a 25.1 1.24 ± 0.04b 27.3 3.55 ± 0.13a 33.0 4.47 ± 0.11a 22.0 1.59 ± 0.05g,h,i 25.3

9. Ouezzene 2,29 ± 0.09h,i 33.4 3.38 ± 0.08i,j 20.0 0.98 ± 0.02f,g 17.9 1.99 ± 0.08h,i 34.6 3.49 ± 0.07d,e,f,g 19.0 1.86 ± 0.07b,c 34.5

10. Mesmouda 2.89 ± 0.09e,f 28.6 3.98 ± 0.08d,e 17.5 1.13 ± 0.03d,e 20.8 2.56 ± 0.07c,d 24.2 3.62 ± 0.09c,d,e 22.5 1.61 ± 0.04f,g,h 22.5

(C) Semi-arid climate

11. Ras Ejery 2.98 ± 0.11e,f 32.2 3.89 ± 0.08e,f 17.7 1.15 ± 0.03c,d 19.3 1.90 ± 0.04 i 18.9 3.43 ± 0.07e,f,g 17.3 2.06 ± 0.03a 11.8

12. Bouqachmir 3.38 ± 0.13c 34.8 4.19 ± 0.08c,d 16.8 1.20 ± 0.03b,c 21.0 2.23 ± 0.05e,f 19.7 3.57 ± 0.06d,e,f 14.7 1.90 ± 0.02b 10.9

13. Moulay Bouazza 2.55 ± 0.09g,h 31.5 3.78 ± 0.08e,f,g 19.7 1.01 ± 0.02f 18.2 2.11 ± 0.04e,f,g,h 17.8 3.81 ± 0.09b,c 20.1 1.80 ± 0.02c,d 8.7

14. Sebt Ait-Rahou 3.70 ± 0.14b 33.1 4.26 ± 0.08c 16.7 1.31 ± 0.03a 21.4 2.49 ± 0.05d 19.2 3.33 ± 0.07g 19.6 1.73 ± 0.02d,e 12.0

15. Oulad Aissa 2.19 ± 0.07i,j 29.9 3.26 ± 0.09 i,j,k 24.1 0.99 ± 0.02f,g 16.5 2.01 ± 0.06g,h,i 24.3 3.37 ± 0.11f,g 27.8 1.63 ± 0.02 e,f,g,h 9.2

16. El Ksiba 2.46 ± 0.08g,h,i 28.5 3.66 ± 0.08f,g,h 19.3 1.01 ± 0.02f 16.7 1.96 ± 0.04 h,i 19.0 3,69 ± 0.08b,c,d 20.2 1.88 ± 0.02b,c 10.6

17. Bin Ouidane 1.92 ± 0.07j 33.1 3.19 ± 0.06j,k 17.8 0.94 ± 0.02g 18.9 2.06± 0.03f,g,h,i 12.2 3.56 ± 0.12d,e,f 29.3 1.57 ± 0.03h,i 18.7

18. Asni 2.70 ± 0.12f,g 39.1 4.19 ± 0.15c,d 31.2 0.96 ± 0.02f,g 18.6 2.10 ± 0.08e,f,g,h 31.6 4.33 ± 0.12a 24.5 2.01 ± 0.02a 9.5

19. Ouirgane 3.96 ± 0.16a,b 35.1 4.73 ± 0.12b 22.9 1.24 ± 0.03b 18.8 2.81 ± 0.08b 25.3 3.86 ± 0.10b 21.7 1.70 ± 0.02d,e,f 11.9

Mean 2.92 ± 0.03 41.7 3.39 ± 0.03 26.1 1.14 ± 0.01 14.0 2.27 ± 0.02 32.3 3.39 ± 0.02 26.1 1.73 ± 0.01 22.1

X v σ (r) 0.792��� 0.602��� 0.564��� 0.525��� 0.610��� 0.316���

ANOVA F19,5699 124.1 ��� 143.4 ��� 122.3 ��� 127.8 ��� 128.8 ��� 52.8 ���

https://doi.org/10.1371/journal.pone.0219908.t004
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roughly ordered as: ‘ecophysiological’ [‘mechanistic’] (4.0 ± 3.3, n = 5) < ‘morphological’

[‘intermediate’] (5.7 ± 2.5, n = 6)< ‘structural’ [‘functional’] (7.0 ± 0.8, n = 4) = ‘whole plant’

[‘functional’] (6.5 ± 3.5, n = 2). Fewer statistically significant relationships were detected in the

correlation matrix for CV values and of these, a disproportionately high 40 percent related to

‘structural’ traits including SLA and LDMC (S2 Table).

With regard to estimates of CSR strategy, which is described in the Introduction, popula-

tions were classified variously as stress-tolerant competitors (SC) and as intermediate between

this strategy and stress-tolerators (S/SC), with percentage values ranging from 9–19 for the

competitive (C) dimension, 81–91 for stress-tolerance (S) and consistently zero for ruderality

(R; Table 6). In the PCA analyses of traits (Table 9) axis 1 identified size and was positively cor-

related with plant dimensions (DBH, H) and a plethora of size-related leaf traits (LA, LL,

LLmax, LW, LWC, LWM, LDM). Axis 2 included aspects of the ‘worldwide leaf economics

spectrum’ [5,6] with LT and LDMC (both positively) and SLA (negatively) impacting upon the

expression of the axis. High values on axis 3 was identified by small leaves (LL–), a high water

content (SLWC+), high leaf construction costs (SLA–) and low stomatal density (DS–). We

need to investigate whether trait expression in site 13, a functional outlier, excluded from the

analyses because of its high values for LT (value 125% that of the next highest site average;

Table 3), LWC (>300%) and SLWC (>400%), is influenced by similar factors to those defining

this axis. The PCA analysis for traits plus CV values, included for completeness as S3 Table,

generated broadly similar results.

Table 5. Mean traits ± 95% confidence limits of ‘structural allocation’ leaf traits.

Population LWMf (g) CV% LDMf (g) CV% SLAf (cm2 g-1) CV% LDMCf (g. mg-1) CV%

(A) Humid climate

1. Tla Taghramt Med 0.135 ± 0.004c,d,e 28.5 0.046 ± 0.002f,g,h 33.1 70.0 ± 2.7d 34.0 347.2 ± 9.8g,h 25.0

2. Tla Taghramt 0.130 ± 0.005d,e 34.0 0.041 ± 0.002h,i,j 44.4 96.9 ± 3.7a 33.4 316.8 ± 9.6h,i 26.7

3. Ksar Sghir 0.107 ± 0.004f 32.5 0.046 ± 0.002f,g,h,i 38.6 52.6 ± 2.0h,i,j 32.8 429.8 ± 11.4 b,c 23.3

(B) Dry subhumid climate

4. Bni Harchin 0.164 ± 0.007b 36.6 0.051 ± 0.003d,e,f 53.3 78.6 ± 4.6b,c 52.5 311.0 ± 13.56i 38.6

5. Dar Chaoui 0.102 ± 0.004f 32.2 0.043 ± 0.002g,h,i 34.6 62.7 ± 2.0e,f 27.7 433.9 ± 14.3 b,c 29.0

6.Bni Arous 0.138 ± 0.007c,d 43.2 0.041 ± 0.002 h,i,j 38.3 63.0 ± 2.5e,f 34.1 323.9 ± 13.6h,i 35.9

7. Tnin Sidi Yamani 0.174 ± 0.007b 34.8 0.059 ± 0.003b,c 37.3 72.1 ± 3.6c,d 42.4 364.0 ± 16.7f,g 38.7

8. Dar Akoubaa 0.214 ± 0.008a 34.3 0.096 ± 0.005a 46.6 47.2 ± 3.0j 54.1 441.1 ± 14.1b,c 27.0

9. Ouezzene 0.097 ± 0.004f,g 40.8 0.041 ± 0.002g,h,i,j 38.2 59.3 ± 1.7f,g,h 63.6 429.5 ± 14.5 b,c 28.4

10. Mesmouda 0.147 ± 0.005c 32.8 0.064 ± 0.002b 29.0 47.6 ± 1.9i,j 35.2 456.3 ± 15.8a,b 29.9

(C) Semi-arid climate

11. Ras Ejery 0.104 ± 0.004f 33.4 0.041 ± 0.001g,h,i,j 29.6 74.1 ± 2.3c,d 27.2 409.6 ± 10.1c,d,e 21.8

12. Bouqachmir 0.137 ± 0.005c,d 32.7 0.057 ± 0.002c,d 30.9 60.0 ± 1.7f,g 24.3 425.9 ± 9.1 b,c,e 18.9

13. Moulay Bouazza 0.103 ± 0.004f 31.9 0.040 ± 0.002i,j 40.6 67.7 ± 2.4d,e 37.3 394.0 ± 11.2e,f 25.5

14. Sebt Ait-Rahou 0.139 ± 0.006c,d 36.6 0.055 ± 0.003c,d,e 45.0 72.7 ± 2.4c,d 29.3 396.6 ± 10.6d,e 23.5

15. Oulad Aissa 0.083 ± 0.003h 30.5 0.029 ± 0.001k 38.3 83.1 ± 3.2b 33.7 344.5 ± 10.5g,h 26.5

16. El Ksiba 0.099 ± 0.003f 27.7 0.047 ± 0.002f,g 31.3 54.5 ± 1.9g,h,i 31.0 476.9 ± 11.3a 21.0

17. Bin Ouidane 0.085 ± 0.003g,h 31.4 0.036 ± 0.001j 35.5 54.8 ± 1.5g,h 24.6 430.4 ± 10.0b,c 20.4

18. Asni 0.123 ± 0.006e 45.2 0.050 ± 0.002e,f 35.6 56.8 ± 2.80f,g,h 43.2 438.3 ± 15.8 b,c 31.7

19. Ouirgane 0.144 ± 0.006c 35.3 0.064 ± 0.003b 44.1 70.3 ± 3.7d 46.9 438.3 ± 13.0 b,c 26.2

Mean 0.125 ± 0.001 44.1 0.049 ± 0.001 49.9 65.3 ± 0.7 40.9 406.3 ± 3.1 29.8

X v σ (r) 0.671��� 0.795��� 0.635��� 0.364���

ANOVA F19,5699 154.4 ��� 141.3 ��� 82.9 ��� 63.3 ���

https://doi.org/10.1371/journal.pone.0219908.t005
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Correlates with climate

Each site has its own characteristic climatic regime (Table 1). As a result, for a canopy domi-

nant such as oleaster, traits that pattern most strongly with site are also more likely to pattern

with climate. Consistent with this, the traits that varied most between sites (with the suffix s)

had the greatest percentage of statistically significant correlations with climatic indices (45%;

Table 10A). These traits were classified as ecophysiological/’mechanistic’. In contrast, for traits

where more variance was expressed within the same population (morphological/‘intermedi-

ate’, t) or between leaves on the same tree (leaf/‘functional’, l), the percentage of statistically sig-

nificant correlations was lower (25% and 6% respectively; Table 10A).

The traits most consistently correlated with climate were DS and leaf shape (LL/LW), nega-

tively, and SLWC, positively correlated with mean annual precipitation (MAP), minimum

temperature of the coldest month (MTCM), global aridity index (AI) and Altitude

(Table 10A). The only trait significantly correlated with mean annual temperature (MAT) was

Table 6. Mean traits ± 95% confidence limits whole plant traits (i) and syndromes (ii).

Population (i) Hf CV% DBHf CV% (ii) C% (CSR strategy)

(A) Humid climate

1. Tla Taghramt Med 10.6 ± 1.8a 26.9 175.3 ± 65.7a,b 60.5 15.7 (S)

2. Tla Taghramt 12.5 ± 0.8a 10.8 239.4 ± 31.6a 21.3 19.3 (S/CS)

3. Ksar Sghir 2.6 ± 0.4e,f 27.1 15.3 ± 3.7c 39.5 10.1 (S)

(B) Dry subhumid climate

4. Bni Harchin 5.7 ± 1.8b,c 52.0 170.4 ± 80.4a,b 76.1 18.5 (S/CS)

5. Dar Chaoui 4.0 ± 1.3c,d,e,f 52.6 29.5 ± 9.6c 52.7 11.2 (S)

6. Bni Arous 4.3 ± 1.2b,c,d,e,f 44.6 70.0 ± 39.7 c 91.5 16.5 (S/CS)

7. Tnin Sidi Yamani 5.6 ± 0.4b,c 11.0 62.3 ± 8.4 c 21.8 18.4 (S/CS)

8. Dar Akoubaa 6.7 ± 0.9b 22.7 205.2 ± 69.9a 55.0 13.9 (S)

9. Ouezzene 3.5 ± 0.5c,d,e,f 23.7 24.1 ± 7.6 c 50.9 10.3 (S)

10. Mesmouda 2.9 ± 0.5e,f 25.4 23.0 ± 7.8 c 54.4 11.7 (S)

(C) Semi-arid climate

11. Ras Ejery 4.2 ± 0.7c,d,e,f 25.8 18.8 ± 5.6 c 47.8 13.1 (S)

12. Bouqachmir 3.9 ± 1.2 c,d,e,f 48.3 40.2 ± 11.8 c 47.4 13.4 (S)

13. Moulay Bouazza 4.4 ± 0.6b,c,d,e 23.5 60.2 ± 7.9 c 21.2 12.1 (S)

14. Sebt Ait-Rahou 4.4 ± 0.5 b,c,d,e,f 20.1 73.1 ± 19.9 c 44.0 14.9 (S)

15. Oulad Aissa 5.3 ± 0.5b,c,d 14.5 97.9 ± 14.1b,c 23.3 12.4 (S)

16. El Ksiba 3.8 ± 0.8c,d,e,f 35.0 37.0 ± 11.1 c 48.6 9.7 (S)

17. Bin Ouidane 2.0 ± 0.2f 17.1 17.1 ± 4.4 c 41.8 9.1 (S)

18. Asni 3.0 ± 0.7d,e,f 38.7 42.2 ± 14.5 c 55.2 12.9 (S)

19. Ouirgane 4.2 ± 0.6c,d,e,f 24.2 63.0 ± 9.6 c 24.7 13.8 (S)

Mean 4.9 ± 1.3 59.4 77.1 ± 37.5 108.3

X v σ (r) 0.810��� 0.453 ns

ANOVA F19,190 30.3��� 17.4���

CV identifies coefficient of variation at the intra-population level expressed as a percentage. For CSR strategies, calculated following Pierce et al. [4] values for ruderal

(R) were always 0%. In consequence only data for % competitive (C) are presented. A significant Pearson r correlation between mean (X) and standard deviation (σ)

justifies the use of CV in comparisons of trait variability (see Materials and Methods).

Values with the same suffix are not statistically significantly different at P < 0.05 in Tukey HSD post hoc tests with groupings with highest trait values in bold and the

lowest with a grey background. Functional’ and ‘mechanistic’ traits are identified as prefixes using the same notation as in Table 2. The level of significance is expressed

as follow

��� P< 0.001; ns, not statistically significant.

https://doi.org/10.1371/journal.pone.0219908.t006
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DS (Table 10A). Importantly, SLA, a ‘flagship’ trait in both the ‘leaf economics spectrum’ and,

more generally, in trait-based plant ecology, was one of the traits not correlated directly with

any of the climatic variables.

Of the syndromes of traits, PCA axis 3, which explained only 12% of the variation in the

dataset (Table 9), was correlated with all five climatic-related variables (Table 10A). In addi-

tion, PCA axis 2 patterned with MTCM and AI. However, PCA axis 1 and CSR strategies

showed no significant correlations. Moreover, the additional inclusion of CV in PCA analyses

axes reduced rather than enhanced the extent of correlation with climatic variables (S3 Table)

and in separate analyses of CV values only the traits LL/LLmax, LDMC and CHL were fre-

quently correlated with climate (Table 10B).

Discussion

The traits and trait syndromes that pattern with climate± and those that

don’t

A basic premise in much of trait-based ecology is that taxa may be grouped using physiological

and morphological traits into functional types, with taxa in the same functional group display-

ing similar responses to the environment [119,120]. Consistent with this, major PCA analyses

of the world flora have routinely identified two key dimensions of functional specialization,

the ‘worldwide leaf economics spectrum’ and size [12,13]. Here, for populations within a single

species, oleaster, we confirm these generalities. Axes 1 and 2 in our PCA analysis are analogous

with the same two axes recognized in global studies (Tables 3–10). However, these axes did not

consistently pattern with climatic variables. Instead, a further ‘climatic’ PCA axis 3, was identi-

fied defined primarily in terms of ecophysiological/’mechanistic’ leaf traits (Table 10A).

Table 7. Estimated percentage variance across hierarchical levels (site:tree:leaf) patterns differently for contrasted groupings of leaf traits.

Trait % of variance

Sites Tree Leaf Residual

Ecophysiological
mCHLl 17.0 24.6 50.1 8.3
mDSs 74.0 6.6 16.0 3.4
mLWCs 79.9 7.4 10.3 2.5
mSLWCs 75.6 7.3 14.0 3.1
f,mLTs 50.6 16.2 27.9 5.3

Morphological
f,mLAt- f,m 25.0 43.4 26.3 5.3
f,mLLt- f,m 27.6 47.8 20.2 4.4
f,mLWl 25.6 33.6 34.4 6.4
f,mLLmax

t 23.7 43.5 27.3 5.4
mLL/LWt 25.8 42.8 26.2 5.3
mLL/LLmax

l 13.2 16.2 61.0 9.6

Structural
fLWMt 30.6 33.5 30.2 5.8
fLDMt 29.3 36.5 28.6 5.6
fSLAl 19.5 24.2 48.2 8.1
fLDMCl 14.8 29.1 48.0 8.2

Here and in the remaining Tables, the italicized first letter added as a suffix to the trait identifies the hierarchical level with the maximum value for variance and

additionally very high values (> 40%) are in bold. ‘Functional’ and ‘mechanistic’ traits are identified as prefixes using the same notation as in Table 2.

https://doi.org/10.1371/journal.pone.0219908.t007
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Equally, a majority of the statistically significant correlations between individual traits and cli-

mate included ecophysiological/’mechanistic’ leaf traits rather than the more commonly used

structural/‘functional’ ones (Table 10A). However, a precise interpretation in terms of ecologi-

cal processes is not yet feasible. Both the origin and the generality of variability in trait expres-

sion are in need of further study. Oleaster is slow-growing and long-lived [56,59] and will

experience variations in climate during its lifetime. Moreover, it exhibits high levels of genetic

heterozygosity [54,121–127]. Variability in trait expression will have been affected by geno-

type, phenotypic plasticity [16,128] and potentially differences in phenology and in the land-

use and climatic history of the study sites. Furthermore, a different choice of species may have

led to a very different set of results and conclusions: ‘functional’ traits are predicted to pattern

more strongly with climate for fast-growing and short-lived species (Fig 1). Nevertheless, these

equivocations do not alter the basic message of this study. ‘Mechanistic’ traits must be rou-

tinely included in climate-related studies.

A preliminary assessment of the ‘climatic’ PCA 3 axis in oleaster

Oleaster is a thermophilic species with limited resistance to both cold and extreme aridity [55].

Moreover, aridity is generally regarded as the key climatic factor determining species composi-

tion in Mediterranean vegetation. The ‘climatic’ PCA axis 3 was correlated positively with

MAT, MAP, MTCM and AI and negatively with altitude (Table 10A). Thus, high values of

PCA axis 3 equated to high mean annual temperature, high minimum temperature of the cold-

est month, high mean annual precipitation, high aridity and low altitude. In terms of the traits

that define PCA axis 3 (Table 9), these climatic extremes were associated with low stomatal

density (DS–) low leaf water content (SLWC–), small leaves (LL–) and high leaf construction

Table 8. Correlation matrix for trait values (n = 18). Site 13 (Moulay Bouazza) with exceptionally high values for LWC, SLWC and LT has been excluded from this and

subsequent analyses.

Traits CHL DS LWC SLWC LT LA LW LL LLmax LL/LW LL/LLmax LWM LDM SLA LDMC H

Ecophysiological

DS -0.102

LWC -0.056 -0.580

SLWC -0.156 -0.573 0.628

LT 0.262 -0.184 -0.013 0.125

Morphological

LA 0.066 -0.282 0.759 -0.019 -0.170

LW 0.006 -0.383 0.746 0.157 -0.414 0.853

LL 0.189 -0.164 0.589 -0.119 0.263 0.834 0.447

LLmax -0.008 -0.341 0.737 0.164 0.201 0.803 0.555 0.849

LL/LW 0.151 0.169 -0.004 -0.259 0.620 0.159 -0.360 0.669 0.421

LL/LLmax 0.321 0.272 -0.350 -0.387 0.168 -0.161 -0.331 0.049 -0.458 0.319

Structural

LWM 0.089 -0.573 0.944 0.464 0.215 0.815 0.681 0.774 0.866 0.239 -0.286

LDM 0.287 -0.451 0.643 0.117 0.530 0.704 0.409 0.881 0.870 0.568 -0.119 0.859

SLA -0.271 0.233 0.138 -0.095 -0.933 0.287 0.503 -0.127 -0.064 -0.537 -0.183 -0.086 -0.425

LDMC 0.289 0.096 -0.454 -0.543 0.694 -0.164 -0.474 0.244 0.008 0.642 0.399 -0.157 0.341 -0.766

Whole Plant

H -0.166 0.031 0.447 0.141 -0.561 0.467 0.610 0.130 0.339 -0.361 -0.419 0.316 0.039 0.639 -0.626

DBH -0.073 -0.145 0.625 0.340 -0.333 0.521 0.606 0.296 0.543 -0.179 -0.512 0.534 0.271 0.503 -0.618 0.879

Here and in Table 9, values relate to Pearson r and statistically significant values at P < 0.05 are in bold.

https://doi.org/10.1371/journal.pone.0219908.t008
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costs (SLA+). The trends for DS were similar to those recorded elsewhere in relation to climate

[129,130]. Similarly, elongate leaves with a potentially thinner boundary layer [99,131,132]

tended to be associated with harsher climates. PCA axis 3 may identify a water-use/succulence

dimension. Moreover, site 13, excluded for its extremely high values for LT, LWC and SLWC

(Table 3), may perhaps represent an extremely ‘succulent’ outlying population.

Succulence is an ecologically important functional mechanism defined as the ‘storage of uti-

lizable water in living tissues in one or several plant parts in such a way as to allow the plant to

be temporarily independent from external water supply but to retain at least some physiologi-

cal activity’ [133]. However, structural and physiological relationships involving succulence

are complex [133–136]. As a result, whether PCA axis 3 identifies ‘succulence’, and provides a

temporary drought avoidance mechanism, still requires experimental verification. Neverthe-

less, whatever the exact functional origins of climate-related PCA axis 3, its recognition was,

importantly, only made possible through the inclusion of several traits not customarily

included in trait-based ecological studies.

The way forward–an olive branch in the ‘functional’ versus ‘mechanistic’

debate

Our results, and most of the relationships included in our literature review, point to ‘mecha-

nistic’ traits being diagnostically superior to ‘functional’ ones in climate studies. Nevertheless,

we believe it counterproductive to focus entirely on this ‘mechanistic’ superiority. To re-iterate

arguments from the Introduction, ‘mechanistic’ studies are time-consuming with small

Table 9. The traits that define ‘syndromes’: correlations between traits and the three PCA axes identified.

Trait PCA 1 PCA 2 PCA 3

Ecophysiological

CHLl -0.017 0.380 -0.119

DSs -0.488 -0.161 -0.631

LWCs 0.936 0.020 0.231

SLWCs 0.396 -0.160 0.829

LTs -0.104 0.864 0.351

Morphological

LAt 0.877 0.119 -0.387

LWt 0.832 -0.281 -0.167

LLl 0.688 0.579 -0.403

LLmax
t 0.862 0.364 -0.106

LL/LWt 0.026 0.825 -0.289

LL/LLmax
l -0.458 0.328 -0.348

Structural

LWMt 0.928 0.312 0.135

LDMt 0.703 0.700 -0.026

SLAl 0.240 -0.840 -0.414

LDMCl -0.393 0.831 -0.180

Whole Plant

H 0.598 -0.583 -0.244

DBH 0.753 -0.393 -0.075

Eigenvalues 6.66 4.76 2.11

Variance (%) 39.19 28.05 12.46

Eigenvalues and percentage variance explained by each axis are included below the list of traits (Table 9).

https://doi.org/10.1371/journal.pone.0219908.t009
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datasets produced and species chosen primarily for ecological relevance. Without a level of co-

ordination not currently in place between related ‘mechanistic’ investigations, precision of

measurement will be offset by few shared species and no integration of findings (i.e. little gen-

erality). Trait based ecology, and ‘functional’ traits, can potentially provide this missing gener-

ality by producing large ecologically-balanced datasets. However, as in this study, results may

require mechanistic clarification. Importantly, as currently implemented, trait-based ecology

is methodologically flawed. Specialization routinely occurs at the cellular/biochemical level but

may additionally be identified at a higher organizational scale by measuring organs or whole

plants. So far, few suitable methodologies are available for the large-scale measurement of traits

that can only be identified at the lowest, most fundamental cellular/biochemical level. As a

result, the size of plants and their parts, plus SLA and LDMC, which can be measured using

whole leaves, stand imprecisely at the centre of meta-analyses in trait-based ecology [12,13]. In

contrast, some important ecological specializations expressed primarily at the cellular/bio-

chemical level (e.g. aluminium tolerance in acidic soils and restriction by climate [47,137])

Table 10. Correlations between climatic indices and (A) traits and (B) coefficient of variation (CV).

(A) Trait and syndrome values (Pearson r) (B) CV (Spearman r)
MAT MAP MTCM AI Altitude MAT MAP MTCM AI Altitude

TRAITS

Ecophysiological: n = 18 n = 18

CHLl -0.058 -0.116 -0.007 -0.112 0.031 0.401 0.346 0.513 0.489 -0.575

DSs -0.549 -0.534 -0.569 -0.495 0.586 0.337 -0.013 0.137 -0.019 -0.321

LWCs 0.130 0.346 0.387 0.385 -0.432 0.193 0.053 0.108 -0.126 -0.331

SLWCs 0.463 0.500 0.581 0.541 -0.595 0.211 0.183 0.240 0.148 -0.379

LTs 0.017 0.031 -0.149 -0.087 0.117 -0.190 -0.148 0.143 0.101 0.015

Morphological: n = 18

LAt -0.230 0.003 0.019 0.036 -0.053 0.003 -0.127 0.049 -0.077 -0.003

LLt -0.049 0.282 0.367 0.354 -0.333 0.177 -0.049 0.176 0.135 -0.069

LWl -0.311 -0.225 -0.305 -0.260 0.221 -0.120 -0.106 -0.092 -0.170 0.013

LLmax
t 0.033 0.069 0.068 0.079 -0.092 0.355 0.503 0.453 0.438 -0.434

LL/LWt -0.306 -0.480 -0.647 -0.581 0.535 0.299 -0.228 0.022 -0.113 0.036

LL/LLmax
l -0.463 -0.298 -0.483 -0.391 0.373 0.485 0.804 0.711 0.701 -0.672

Structural: n = 18

LWMt 0.055 0.263 0.244 0.266 -0.293 0.055 -0.015 0.024 -0.184 -0.139

LDMt -0.047 0.093 -0.018 0.036 -0.033 0.202 -0.022 0.265 0.129 -0.112

SLAl -0.065 -0.081 0.152 0.070 -0.104 0.277 0.298 0.152 0.126 -0.276

LDMCl -0.206 -0.226 -0.477 -0.382 0.428 0.480 0.290 0.476 0.290 -0.620

Whole plant: n = 18

H -0.103 0.350 0.358 0.492 -0.274 -0.013 0.067 0.199 0.178 -0.156

DBH 0.007 0.289 0.350 0.420 -0.248 0.114 0.321 0.168 0.239 -0.216

‘SYNDROMES’

C strategy

C% 0.003 0.243 0.372 0.351 -0.380

PCA axis1 -0.033 0.158 0.292 0.304 -0.294 0.349 0.240 0.432 0.250 -0.503

axis 2 -0.267 -0.240 -0.521 -0.483 0.401 -0.114 -0.018 -0.170 -0.127 0.036

axis 3 0.687 0.552 0.645 0.523 -0.647 -0.279 -0.236 -0.075 -0.128 0.053

As in Table 1, climatic indices are abbreviated as follows: mean annual temperature, MAT, ˚C; mean temperature of coldest month, MTCM, ˚C; mean annual

precipitation, MAP, mm; aridity index, AI (MAP/PET where PET identifies potential evapotranspiration, mm).

https://doi.org/10.1371/journal.pone.0219908.t010
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remain outside the scope of these meta-analyses. Moreover, this study only partly redresses

this ‘climatic imbalance’. Many addition simply-measured ‘mechanistic’ traits will be required

to routinely add a comprehensive climatic dimension to trait-based studies.

Volaire [48] identified ‘functional’ traits as dealing with ecological strategies relating to

multi-environmental factors and studied implicitly over long timescales. This is true but,

equally, it is the product of methodological constraints rather than an ideological choice. Both

the ‘mechanistic’ and ‘functional’ trait approaches have strengths, and weaknesses, but similar

goals. In our search to understand and quantify impacts of changing climate on global vegeta-

tion composition and ecosystem function, the challenge will be to combine the strengths of

both approaches–and to use both types of traits. ‘Mechanistic’ and ‘functional’ traits both con-

tribute to our proposed plant-climate model (Fig 1) and each may be expected to add more

generally to our understanding of climate-related processes.
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69. Benabid A. Etude phytoécologique des peuplements forestiers et préforestiers du Rif centro-occiden-
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80. Fennane M. Phytosociologie des tétraclinaies marocaines. Bull l’Institut Sci Rabat. 1988; 12: 99–148.

81. Bonham CD. Measurements for Terrestrial Vegetation Measurements. 2013. https://doi.org/10.1002/

9781118534540

82. Cornelissen JHC, Lavorel S, Garnier E, Dı́az S, Buchmann N, Gurvich DE, et al. A handbook of proto-

cols for standardised and easy measurements of plant functional traits worldwide. Aust. J. Bot. 2003;

51: 335–380. https://doi.org/10.1071/BT02124

83. ZgallaïH, Steppe K, Lemeur R. Étude des caractères morphologiques des plantes de tomate sou-

mises à un déficit hydrique en milieu hydroponique. Sci Chang planétaires / Sécheresse. 2007; 18:
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