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Abstract

Mortalin is an essential component of the molecular machinery that imports nuclear-encoded proteins into mitochondria,
assists in their folding, and protects against damage upon accumulation of dysfunctional, unfolded proteins in aging
mitochondria. Mortalin dysfunction associated with Parkinson’s disease (PD) increases the vulnerability of cultured cells to
proteolytic stress and leads to changes in mitochondrial function and morphology. To date, Drosophila melanogaster has
been successfully used to investigate pathogenesis following the loss of several other PD-associated genes. We generated
the first loss-of-Hsc70-5/mortalin-function Drosophila model. The reduction of Mortalin expression recapitulates some of the
defects observed in the existing Drosophila PD-models, which include reduced ATP levels, abnormal wing posture,
shortened life span, and reduced spontaneous locomotor and climbing ability. Dopaminergic neurons seem to be more
sensitive to the loss of mortalin than other neuronal sub-types and non-neuronal tissues. The loss of synaptic mitochondria
is an early pathological change that might cause later degenerative events. It precedes both behavioral abnormalities and
structural changes at the neuromuscular junction (NMJ) of mortalin-knockdown larvae that exhibit increased mitochondrial
fragmentation. Autophagy is concomitantly up-regulated, suggesting that mitochondria are degraded via mitophagy. Ex
vivo data from human fibroblasts identifies increased mitophagy as an early pathological change that precedes apoptosis.
Given the specificity of the observed defects, we are confident that the loss-of-mortalin model presented in this study will
be useful for further dissection of the complex network of pathways that underlie the development of mitochondrial
parkinsonism.
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Introduction

Parkinson’s disease (PD) is a common movement disorder

characterized by a progressive degeneration of dopaminergic (DA)

neurons in the substantia nigra (SNc) [1–3]. Different genetic and

environmental factors contribute to disease etiology. Mitochon-

drial dysfunction plays a profound role in the PD progression [4–

6] and several genes associated with familial PD, such as parkin,

PTEN-induced putative kinase 1 (PINK1) and DJ-1 have been

proposed to regulate distinct features of mitochondrial function

[5].

The ATPase domain-containing protein Mortalin is part of the

molecular machinery that imports nuclear-encoded proteins into

mitochondria, sorts them, and assists in their folding (for review,

see [7,8]). Mortalin function is regarded as critical for mitochon-

drial biogenesis; deletion of the yeast mortalin homolog SSC1 is

lethal [9], and knockdown of mortalin in immortalized human cells

leads to growth arrest [10]. In contrast, overexpression of the

mitochondrial chaperone Mortalin is sufficient to extend the life

span of both Caenorhabditis elegans [11] and cultured human

fibroblasts [12].

Mortalin acts as a buffer to prevent damage upon accumulation

of dysfunctional, unfolded proteins in aging mitochondria. Unlike

other heat shock proteins, Mortalin expression is not induced by

heat shock; rather it is promoted by cellular stress, such as glucose

deprivation, oxidative injury, radiation, and cytotoxins (for review,

see [7,8]).

Loss of Mortalin function is associated with PD. Decreased

levels of Mortalin have been reported in advanced PD cases [13]

and in the 6-hydroxydopamine rat PD model [14]. Mortalin

variants were identified in Spanish [15] and German patients with

PD [16]. In vitro studies revealed that PD-related Mortalin variants

are associated with mitochondrial impairments, including mor-

phological changes of mitochondria, increased reactive oxygen

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e83714



species production, and reduced mitochondrial membrane poten-

tial [16]. Importantly, these defects were exacerbated when the

cells were challenged with proteolytic oxidative stress [16] and

could be partially rescued by parkin overexpression [17].

Drosophila melanogaster has been successfully used to uncover

molecular pathways underlying pathobiology caused by the loss of

several PD-associated genes, including pink1, parkin, and DJ-1 [18–

22]. To generate a fly model for mortalin-associated PD, we used a

targeted knockdown of Hsc70-5, the Drosophila homolog of human

mortalin. We found that pan-neuronal silencing of Drosophila mortalin

by RNA interference (RNAi) resulted in reduced fly viability,

locomotion impairment, body posture defects, and reduced ATP

levels. These phenotypes are highly reminiscent of defects

described for other Drosophila models of PD-associated mitochon-

drial dysfunction [21,23,24]. In our in vivo model, loss of

mitochondria precedes behavioral abnormalities and structural

changes at the neuromuscular junction (NMJ) of Drosophila larvae.

Mitochondrial fragmentation and degradation are very early

defects that might be up-stream of later pathological events. This

order of pathological events in the mortalin Drosophila model was

then confirmed in a human ex vivo model. Our results suggest that

mitophagy might be used as a biomarker for monitoring the

predisposition to mitochondrial Parkinsonism.

Materials and Methods

Drosophila Strains and Culture Conditions
All flies were raised on standard corn meal/agar medium.

Transgenic fly stocks were obtained from the Indiana University

Stock Center (Bloomington, IN, USA), unless otherwise noted.

Transgenic RNAi stocks were obtained from the VDRC stock

center: wGD30033, khcGD44337, mortGD47745, and mortKK106236 [25].

Eye Phenotype Scoring
To examine the external Drosophila eye phenotype, adult flies

were raised at 29uC under 12-h day/night cycles. For analysis, we

used frozen flies that were not stored longer than 6 d at 220uC to

avoid changes in the hue of the eye. Before taking images, flies

were thawed and dried at room temperature for 10–15 min.

Images were obtained with a DCM510 (ScopeTek, Hangzhou,

P.R. China) camera mounted on a Zeiss Stemi 2000 stereomicro-

scope (Carl Zeiss, Oberkochen, Germany).

Immunocytochemistry and Microscopy
The size-matched mid-L3 larvae were dissected and stained

essentially as previously described [26–28]. Larvae carrying native

GFP or mRFP constructs were fixed for 3 min (4% paraformal-

dehyde in phosphate-buffered saline) instead of 10 min. The goat

a-horseradish peroxidase (HRP)-Cy3 antibody was obtained from

Dianova (Hamburg, Germany).

The larval filets were imaged with a Zeiss LSM 710 Confocal

Microscope using a 636Plan-Apochromat 1.4 N.A. oil objective.

The voxel dimensions (x/y/z) were 10061006500 nm. The

pinhole size was 1 Airy Disc. The images were processed

essentially as previously described [29]. In brief, images were

scaled by a factor of 2 before Gaussian blur filtering was applied

(pixel radius = 2). Gamma values were not adjusted unless

otherwise indicated. For quantitative comparisons of intensities,

common settings were chosen to avoid oversaturation in any of the

genotypes. Image processing was performed using Image J

Software Version 1.43e (National Institutes of Health, Bethesda,

MD, USA).

Quantification of Mitochondria and Autophagosomes
We used the circularity, the inverse of the form factor, to assess

the shape of mitochondria. The circularity of an object approaches

1 the more circular it is. It approaches 0 the more branched or

complex the object is. Circularity was measured using ImageJ.

Mitochondria with circularity .0.8 were defined as ‘‘round.’’

Images were thresholded to allow for semi-automated segmenta-

tion, counting, and classification of mitochondria using ImageJ

Version 1.43e.

ATG8-mRFP, a widely used marker for autophagosomes [30],

was used to quantify autophagosome abundance and size at the

Drosophila NMJ. In the absence of autophagy, ATG8-mRFP is

diffusely distributed in the cytoplasm. Autophagy induction leads

to the recruitment of ATG8-mRFP into different sized puncta.

While large ATG8-mRFP positive puncta generally represent

autolysosomes, small puncta frequently did not overlap with

lysotracker labeling, suggesting that they represent early autopha-

gosomal structures [30]. We used a threshold to differentiate

autophagosomes (Figure S1, arrowheads) from the diffuse cyto-

plasmic ATG-mRFP signal (Figure S1, arrows). The signal

intensity observed in autophagosomes is generally 1.5–3-fold

higher than the background. To improve visualization, we either

used the false color look-up table ‘‘Green-Fire-Blue’’ (compare

Figures S1A and B) or displayed autophagosomes after elimination

of the cytosolic background by adjustment of brightness and

contrast followed by an adjustment of Gamma values to 0.75

(compare Figures S1A and C).

Behavioral Analysis
The walking behavior of 1-day-old female flies was assessed as

previously described [31]. Flies were assayed three times in

15615-cm petri plates. Each trial lasted 30 s. Individual trials were

spaced at least 30 s apart. Walking ability was assessed by

recording the number of crossings of 161-cm square grid lines

marked on the bottom of the plate. At least 25 flies from each

genotype were individually tested. Flies were raised and assayed at

18uC.
Climbing assays were conducted as previously described [32].

On the 6th day after egg laying (AEL), larvae were transferred

from 18uC to 25uC to induce expression of the UAS-constructs.

Motor function of 4-day-old male flies was monitored by analyzing

their ability to climb 6 cm within 14 s. A successful trial was scored

as 1, and a non-successful trial was counted as 0. Each fly was

assessed three times to calculate the average climbing score. At

least 40 flies per genotype were analyzed.

The righting assay was preformed essentially as previously

described [33]. Size-matched mid L3 larvae were collected from

food and adapted to experimental conditions as previously

described [28]. Next, larvae were placed upside down on the

agar plate to measure the total time required to reposition the

body posture to the ventral side down and for initiating the first

contraction wave. At least 20 larvae of the same sex were analyzed

per genotype. Each larva was assayed three times. The average

righting time per larva was used for further analysis. N represents

the number of larvae analyzed.

Longevity Assay
Flies were maintained at 18uC in single-sex groups of no more

than 15 flies per group. No anesthesia was used in the longevity

experiments.

Mortalin Knockdown Affects Mitochondria
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Figure 1. Hsc70-5 (CG8542, mortalin) is a Drosophila homolog of the PD-associated gene mortalin. (A) The genomic organization of Hsc70-5
(CG8542, mortalin) located on the second chromosome at cytological position 50E6. Genes and transcripts are displayed in blue and gray/yellow,
respectively. Coding exons are depicted as yellow boxes, the 59-UTR and 39-UTR are shown as a gray box and a gray triangle, respectively. The exact
sequence location (2R:10,140,103…10,143,697 [2]) is given at the top of the panel. mortalin expression was repressed using two UAS-RNAi stocks
named mortGD47745 (mortGD) and mortKK106236 (mortKK). In mortGD (purple arrow) and mortKK (cyan arrow), 303-bp and 415-bp-long hairpin RNAs

Mortalin Knockdown Affects Mitochondria
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Statistical Analysis
Statistical significance was assessed as previously described [32].

For the behavioral experiments and NMJ analyses, ‘‘n’’ represents

the number of flies and number of NMJs assayed, respectively. p-

values ,0.05 were considered to be statistically significant. Data

are expressed as means 6 standard error values (*p,0.05,

**p,0.01, ***p,0.001).

ATP Measurements
ATP levels were measured in head homogenates using a

luciferase-based bioluminescence assay. Five heads of female flies

were homogenized in 6 M guanidine-HCl and frozen in liquid

nitrogen. Next, samples were boiled for 3 min, cleared by

centrifugation at 14,000 g for 5 min, and diluted to measure

protein concentration (1:10 diluted samples, Bradford Assay Kit,

Sigma, St. Louis, MO, USA) and ATP level (1:2,000 diluted

samples, ATP Determination Kit Sensitive Assay, Biaffin GmbH

& Co KG, Kassel, Germany). ATP levels were normalized to the

protein concentration.

Ethics Statement and Analysis of Human Cells
We obtained skin biopsies from two offspring of a PD patient,

one carrying the heterozygous A476T mortalin variant and one

representing the wild-type sibling control. The A476T variant

carrier did not show any signs of PD at the time of biopsy. The

participants provided written informed consent to participate in

this study. The study was approved by the ethics committee of the

Medical Faculty, Eberhard Karls University Tübingen, Germany.

No minors/children participants were involved in the study.

Human fibroblasts were cultured, fixed, and analyzed essentially

as previously described [16]. The passage number of fibroblasts

was less than 10 for all experiments. Only fibroblasts with the same

passage number were taken for experiments. For visualization of

lysosomes and mitochondria, cells were incubated for 15 min in

100 nM Lysotracker Red DND-99 (Invitrogen, Carlsbad, CA,

USA) or 100 nM MitoTracker Green FM (Invitrogen), respec-

tively. Secondary antibodies were purchased from Molecular

Probes (Invitrogen) or Zymed (San Francisco, CA, USA). Hoechst

33342 (Molecular Probes) was used to stain nuclei. Images were

analyzed by Zeiss software AxioVision 4.6 and Image J Software

Version 1.41o.

Results

Mortalin is Important for Neuronal Viability
Mortalin is a highly conserved mitochondrial heat shock

protein. We identified Hsc70-5 (CG8542) as the fly ortholog of

human mortalin (Figure 1A) that shares 73% identity and 84%

similarity (Figure 1B). We utilized two transgenic RNAi stocks [25]

targeting mortalin: UAS-mortalin-RNAiGD47745 (mortGD) and UAS-

mortalin-RNAiKK106236 (mortKK) (Figure 1A, purple and cyan arrows)

to examine the physiological consequences of its knockdown in

Drosophila. The functionality of the RNAi constructs was assessed

by ubiquitous (act-5C-GAL4) silencing of mortalin expression.

Consistent with previous reports highlighting the importance of

mortalin for mitochondrial function and cell viability [16,17,34],

ubiquitous inactivation of mortalin expression was lethal at early

larval stages (Figure 1C). Neurons are particularly vulnerable to

mitochondrial impairments. Consistently, pan-neuronal (elav-

GAL4) silencing of mortalin expression (elav.mort) was lethal in

the late larval or early pupal stage, whereas RNAi-mediated

mortalin silencing in muscle (Mhc-GAL4) did not affect viability.

Analysis of Mortalin levels in the ventral nerve cords of the third

instar larvae confirmed that both constructs efficiently suppressed

mortalin expression, with a stronger reduction in protein level due

to elav.mortKK activation (Figure 1D).

Loss of mortalin in DA Neurons is Lethal
Motor symptoms in PD are primarily attributed to the

progressive loss of DA neurons. Non-movement symptoms of

PD, such as anxiety, depression, memory loss, and dementia, are

thought to be caused by degeneration of noradrenergic, seroto-

nergic, and cholinergic neurons [35]. To test the vulnerability of

various neuronal sub-types to Mortalin loss, we employed different

GAL4 drivers to express mortGD and mortKK. RNAi against the white

gene (whiteRNAi) was used as a negative control, and RNAi against

the hereditary spastic paraplegia (HSP)-related gene kinesin heavy

chain (khcRNAi) was used as a specificity control. Gene expression

was silenced in the following neuronal sub-types: (1) photoreceptor

neurons; pigment cells, and neurons of the optic lobe, mushroom

body, medulla cortex, lateral horn, and pars intercerebralis

(GMR-GAL4, ey-GAL4); (2) DA and serotonergic neurons

(Ddc-GAL4, TH-GAL4); (3) sensory neurons (ppk-GAL4); and

(4) glutamatergic and motoneurons (OK6-GAL4, OK371-GAL4,

D42-GAL4, OK319-GAL4). Photoreceptor neuron degeneration

was scored on the basis of structural abnormalities on the external

surface of the eye, such as the formation of black lesions and

changes in eye pigmentation. Strong degeneration following the

expression of toxic proteins using GMR-GAL4 might induce

pupal lethality [36].

GMR.mortKK did not cause any morphological changes of the

external eyes upon fly aging (Figure 1E). Neither ey- nor GMR-

GAL4 induced mortalin silencing that resulted in lethality

(Figure 1F). Knockdown of mortalin in DA neurons using Ddc-

or TH-GAL4, but not in sensory neurons, resulted in lethality

during the larval or pupal stages. These results suggest that

Mortalin might be particularly important in DA neurons.

However, a direct comparison of phenotypes was complicated

by variations in knockdown efficiency among different GAL4

drivers: for instance mortalin silencing in motoneurons driven by

OK6-, OK371-, and D42-GAL4, but not by OK319-GAL4,

resulted in lethality. A similar lethality pattern among different

directed against gene fragments located to two partially overlapping domains in the fifth exon of mortalin were expressed. These double-stranded
RNAs are processed into short siRNAs that are predicted to induce mortalin mRNA degradation. (B) Drosophila Mortalin (black box) has a high
sequence similarity with human Mortalin. The 686-amino acid-long Drosophila Mortalin protein shares overall 73% identity and 84% similarity with
the 679-amino acid-long human Mortalin. The percent homology, color coded in the bottom panel, between human and Drosophila mortalin is the
highest in the central domain of the protein. (C) The ubiquitous and pan-neuronal knockdown of mortalin resulted in larval and pupal lethality, while
mortalin knockdown in muscle did not impair viability. (D) The protein level of Mortalin in the ventral nerve cord (VNC) of mid third instar larvae was
measured by western blot upon pan-neuronal expression (elav-GAL4, 29uC) of mortGD and mortKK (E) Eye-specific knockdown of mortalin did not
cause visible defects in the external adult eye of the young and ageing flies. All the flies carrying the induced RNAi constructs were raised at 29uC.
Scale bar: 0.1 mm (F) Mortalin deficiency in DA neurons is lethal, whereas GMR- and ey- driven expression of mortalinRNAi does not affect viability.
Knockdown of mortalin in DA neurons using Ddc- or TH-GAL4 resulted in lethality during larval or pupal stages; no effect was seen following
knockdown in sensory neurons. mortalin knockdown led to lethality with most GAL4 drivers that induce expression in motoneurons (OK6-, OK371-,
D42-GAL4).
doi:10.1371/journal.pone.0083714.g001
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motoneuron drivers was observed upon inactivation of the HSP-

related gene khc; however the silencing of khc expression in DA

neurons did not affect viability (Figure 1F).

To systematically assess whether DA neurons are particularly

vulnerable to the loss of mortalin, 14 housekeeping genes were

screened for defects following GMR- and TH-GAL4 induced

knockdown (Figure 2A). All the RNAi-constructs had previously

been validated for efficacy using mef2-GAL4 [37]. All the selected

genes have human orthologs and cover a broad range of molecular

functions, such as metabolism, cytoskeleton organization, signal-

ing, translation, and transcription. Eight of the examined RNAi

lines induced lethality upon expression under both TH- and

GMR-GAL4 drivers. Only one of three RNAi constructs that

induced eye degeneration caused lethality upon expression in DA

neurons (Figure 2B). If the effects of mortalin knockdown were

simply due to the higher efficacy of TH-GAL4 compared with

GMR-GAL4, then one could find a gene whose silencing in the

eyes and DA neurons would be reminiscent of the lethality pattern

induced by mortalin inactivation. However, none of the three genes

that failed to produce a clear phenotype in the eye upon GMR-

induced silencing were able to cause lethality following knock

down in DA neurons (Figure 2B). We thus concluded that the

vulnerability of DA neurons to the loss of mortalin is unlikely to be

an artifact.

Our next step was to investigate the cellular basis of the

increased susceptibility of DA neurons to mortalin silencing. DA

neurons might be particularly vulnerable to loss of mitochondrial

function in general or susceptible to specific mitochondrial

dysfunction caused by the loss of mortalin. To differentiate between

these two possibilities, we selected a set of genes known to be

important for mitochondrial function [38]. Using RNAi, the genes

were inactivated in the eyes and TH-positive neurons [25]. We

found that 3 of 10 RNAi constructs expressed under GMR-GAL4

caused pronounced degeneration in the eye, while none of the

investigated RNAi constructs induced lethality upon TH-specific

expression (Figure S2A,B).

We thus concluded that DA neurons are particularly susceptible

to specific mitochondrial dysfunction caused by the loss of mortalin.

Loss of mortalin Function Affects Body Posture and
Locomotion
PD is a movement disorder characterized by muscular rigidity,

tremor at rest, and postural instability [3]. Drosophila PD models

exhibit locomotor and body posture dysfunctions that include

abnormal wing posture, rigidity, and defects in flight and climbing

abilities [19,21,23].

To test whether chronic reduction of mortalin expression caused

similar symptoms in adult flies, we pan-neuronally expressed

mortGD and mortKK at 18uC, a temperature at which the UAS/

GAL4 system is less active. Under these experimental conditions,

control flies have a mean life span of more than 50 days, the

median life span of flies expressing elav.mortGD was reduced to 2

days, and no flies expressing elav.mortKK emerged. Ten days after

emergence, most elav.mortGD flies had died, while essentially all

controls were still alive (elav.mortGD: 86% mortality, n = 50;

control: 1% mortality, n = 100) (Figure 3A). Reduced longevity

and locomotion defects are common features reported in Drosophila

models of neurodegenerative diseases. Pan-neuronal knockdown of

mortalin strongly affected the body posture and locomotion of

elav.mortGD flies.

Climbing assays are commonly used to test locomotion,

however the impaired body posture and overall weakness of the

elav.mortGD flies required us to assess locomotor deficits using a

less challenging assay that quantifies voluntary locomotion on a

horizontal surface. Walking assays revealed a substantial impair-

ment of motor capacities in 1-day-old mortalin knockdown flies

(elav.mortGD: walking score 160.08; control: walking score:

0.2560.05; n= 25 each; p,0.001) (Figure 3B). This locomotor

disability worsened upon aging, suggesting rapid progressive

Figure 2. Analysis of the effects of housekeeping gene
knockdown in Drosophila eye. (A) The eye-specific knockdown of
Drosophila housekeeping genes resulted in diverse phenotypes.
Examination of eyes revealed the effect of GMR-GAL4 driven RNAi
silencing at 29uC. (B) GMR.mortKK did not cause degeneration in the
external eyes of adult flies compared to the GMR-GAL4 (control), which
displayed minor basal toxicity compared to uninduced flies (mortKK).
The eye-specific inactivation of some Drosophila housekeeping genes
induced strong degeneration. The arrowheads point to the black
lesions indicative of necrosis. Scale bar: 0.1 mm.
doi:10.1371/journal.pone.0083714.g002
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degeneration (compare 5-day-old flies, Movies S1, S2). We found

that 5-day-old flies generally neither moved nor climbed.

Body posture defects observed upon mortalin knockdown

included abnormal wing posture: one or both wings were down-

turned or held erect (Figure 3C). The abnormally down-turned

posture of one wing (Figure 3C) is the most commonly observed

phenotype in 1-day-old female flies. To bypass the early lethality of

elav.mortKK we suppressed mortalin expression pan-neuronally

starting 6 days AEL by using the GAL4/GAL80 system. Analysis

of 4-day-old elav,tub-GAL80.mortKK flies confirmed the locomo-

tion (Figure 3D) and body posture (Figure 3E) defects observed in

elav.mortGD flies. Of note, the wing posture defects that developed

upon mortalin knockdown were reminiscent of those in pink1

mutant flies [39] and flies expressing dOTC that serve as a model

for PD-related intra-mitochondrial protein misfolding [24]. We

thus sought to investigate whether mortalin loss induces mitochon-

drial dysfunction by measuring total ATP levels in the heads of 4-

day-old flies following conditional, pan-neuronal mortalin knock-

down. Expression of elav,tub-GAL80.mortKK resulted in a 50%

decrease in cellular ATP levels (Figure 3F). Given that mitochon-

dria are the major source of ATP, our results suggest that loss of

mortalin impairs mitochondrial ATP production.

Loss of Mitochondria is an Early Pathological
Manifestation in a Presymptomatic Loss of mortalin
Function Model
Next, we sought to investigate the order of pathological changes

during development. The differentiation between primary causes,

secondary consequences, and compensatory adaptations becomes

increasingly difficult as degenerative processes progress. The most

common larval behavioral abnormalities caused by neurodegen-

erative processes include general larval locomotion impairment,

sluggishness, or selective impairment of the posterior segments.

For example, Parkin-deficient larvae are characterized by brady-

kinesia-like impairment in larval locomotion [40], and the

expression of HSP-related mutations in khc leads to dystonic

posterior paralysis (tail-flip phenotype) [32]. We thus analyzed

crawling larvae with the aim of isolating mortalinRNAi larvae that do

not yet display any impairment in locomotion or body posture.

Strong pan-neuronal expression of mortKK but not mortGD

impaired larval locomotion and dynamic control of body-posture

and position (Figure 4A) as determined by the righting assay [33].

elav.mortGD larvae displayed no abnormal body-posture at rest or

during locomotion (Figure 4B, Movies S3, S4). Consistently,

structural analyses of NMJs and synaptic boutons (Figure 4C)

revealed no changes in NMJ size or bouton number or shape

(Figure 4D–G). We thus concluded that elav.mortGD larvae might

be considered as presymptomatic.

Despite the absence of obvious changes in NMJ morphology, we

detected significant reductions in mitochondria number, density,

and size at the NMJs of elav.mortGD larvae (Figure 5A–D). We

observed a significant increase in the percentage of round

mitochondria (Figure 5E). Small round mitochondria are more

easily engulfed by an autophagic membrane than large branched

networks. We thus hypothesized that the loss of mortalin might

induce mitophagy. To assess autophagy in vivo, we induced pan-

neuronal (elav-GAL4) expression of the autophagy marker ATG8-

mRFP, either in combination with mortalin or control RNAi [30].

We first investigated a potential generalized increase of autophagy

in the ventral nerve cord of presymptomatic larvae. Pan-neuronal

knockdown of mortalin did not cause any obvious increase in

ATG8-mRFP levels in the central nervous system (CNS) of the

affected larvae (Figure 6A). However, at NMJs (Figure 6B,C), the

site at which marked changes in mitochondrial size, shape, and

density were detected, we observed significant differences in

autophagy. While almost no ATG8 puncta were present at control

NMJs, many puncta were detected upon mortalin knockdown

(Figure 6D). These puncta were larger than those present at

control NMJs (Figure 6E). This increase in autophagy might

suggest that mitochondria are degraded via mitophagy. Conse-

quently, the autophagy marker ATG8-mRFP should co-localize

with mitochondria. Consistently, 25% of all mitochondria were

Figure 3. Pan-neuronal knockdown of mortalin caused behav-
ioral defects and reduced adult Drosophila lifespan. (A) Kaplan-
Meier survival curve recorded at 18uC. Lifespan reduction was detected
upon pan-neuronal (elav-GAL4) mortalin knockdown. Female flies were
examined. Statistical significance of the data was determined by a series
of Mantel-Cox tests. (B) Walking tests showed that pan-neuronal
mortalin silencing resulted in reduced locomotor function. All the flies
were raised at 18uC. Statistical significance was determined using an
unpaired, two-tailed Student’s t-test. (C) Characteristic wing posture
phenotype caused by the weak pan-neuronal expression of mortalinR-
NAi. The top image displays the normal wings of control (elav.whiteRNAi)
flies; the bottom picture shows the abnormal wing posture of
elav.mortGD-expressing flies. All the flies were raised at 18uC. Scale
bar: 0.25 mm (D) Climbing tests were used to assess locomotor
behavior. Statistical significance was determined by using a Kruskal-
Wallis H-test followed by a Dunn’s test for comparisons among multiple
groups. (E) The characteristic wing posture phenotype caused by the
pan-neuronal expression of mortalin RNAi. Pan-neuronal mortalin
silencing in mortKK resulted in an increased wing phenotype
percentage. (F) ATP level was measured in the heads of 4-day old
female flies. Statistical significance was determined using a Kruskal-
Wallis H-test followed by a Dunn’s test for comparisons between
multiple groups.
doi:10.1371/journal.pone.0083714.g003
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associated with autophagosomes in elav.mortGD larvae compared

to less than 5% in controls (Figure 7A,B). A quantification of

autophagosomes revealed that the organelles preferentially co-

localize with mitochondria (Figure 7B), either by being directly

adjacent (Figure 7A) or overlapping with mitochondria (Figure 7A).

This preferential association with mitochondria was most

pronounced for medium- and large-sized autophagosomes

(Figure 7B), suggesting that these autophagosomes contribute the

most to the phagocytosis of mitochondria. Small autophagosomes

were generally not associated with mitochondria (Figure 7A,

arrow; 7B). Thus, mitophagy induced by the loss of mortalin

function might be one of the earliest cellular hallmarks of mortalin

dysfunction-associated PD.

To test this hypothesis in human cells, we examined fibroblasts

derived from a carrier of the A476T mortalin variant who did not

show any signs of PD at the time of the biopsy. Previous reports

using these fibroblasts revealed alterations in mitochondrial

morphology compared to a healthy sibling control [16]. The

impairments were reminiscent of the defects observed in the

presymptomatic larvae, suggesting that these human cells are a

good model for monitoring changes caused by the chronic

reduction of Mortalin function at the early stages of PD.

Figure 4. Quantification of synaptic terminals in mortalin
knockdown larvae. (A) Larvae locomotor behavior and body posture
control were assessed with the righting assay in 4-day old mid-L3 stage
larvae. The average righting time is determined for larvae placed upside
down on agar plate. Pan-neuronal mortalin silencing impaired
locomotor function of elav.mortKK but not elav.mortGD larvae.
Statistical significance was determined using a Kruskal-Wallis H-test
followed by Dunn’s test for comparisons between multiple groups. (B)
Analysis of larval crawling did not reveal any body-posture defect of 4-
day old mid-L3 stage elav.mortGD larvae at rest or during locomotion.
Scale bar:,0.25 mm (C–G) Confocal images of NMJ 4 at Segment A5 of
the mid third instar larvae raised at 29uC. Visualization of neuronal
membranes marked with HRP-Cy3 allowed assessment of NMJ
morphology. Pan-neuronal expression of mortGD did not affect (D)
muscle length, (E) NMJ size, or the number (F) or size (G) of synaptic
boutons. Scale bar: 5 mm. Statistical significance was determined using
an unpaired, two-tailed Student’s t-test.
doi:10.1371/journal.pone.0083714.g004

Figure 5. Quantification of mitochondria in Drosophila larvae
upon silencing of mortalin expression. (A) Confocal images of
synaptic boutons in control (elav.whiteRNAi) and elav.mortGD larvae.
The membrane marker HRP-Cy3 is shown in green, and native
fluorescence of mito-GFP is shown in magenta. Scale bar: 5 mm.
mortalin silencing significantly reduced (B) the number of mitochondria
per NMJ, (C) the area fraction of the NMJ positive for mitochondria.
Furthermore, the average size (D) of mitochondria was reduced, while
the fraction of circular mitochondria (E) was increased. Statistical
significance was determined using an unpaired, two-tailed Student’s t-
test.
doi:10.1371/journal.pone.0083714.g005
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Figure 6. Pan-neuronal knockdown of mortalin induced au-
tophagy at the larval NMJ. (A) Drosophila VNCs of control
(elav.whiteRNAi) and elav.mortGD larvae labeled with the autophago-
somal ATG8-mRFP marker. No obvious change in the ATG8-mRFP signal
was detected upon mortalin knockdown. Gamma values were adjusted
to 0.75 Scale bar: 50 mm. (B) Autophagosomes were detected as the
strong accumulation of ATG8-mRFP signal at the Drosophila NMJ. The
false color look-up table ‘‘Green-Fire-Blue’’ allows the separation of
autophagosomes from the diffuse ATG8-mRFP signal. Scale bar: 10 mm.
(C) Confocal images of synaptic boutons at NMJ 4 in control
(elav.whiteRNAi) and elav.mortGD larvae. Neuronal membranes and
autophagosomes are shown in green and magenta, respectively. Scale
bar: 5 mm. (D, E) Statistical analysis revealed increases in ATG8-mRFP
puncta abundance (D) and size (E). Statistical significance was
determined by using an unpaired, two-tailed Student’s t-test.
doi:10.1371/journal.pone.0083714.g006

Figure 7. Loss of mortalin function induces mitophagy. (A)
Confocal images of NMJ 4 at Segment A5 of the mid third instar larvae
in control (elav.whiteRNAi) and elav.mortGD larvae. Neuronal mem-
branes (HRP), autophagosomes, and mito-GFP are shown. In elav.-
mortGD larvae, mitochondria frequently co-localized with autophago-
somes. Scale bar: 10 mm, Enlargement: 2 mm (B) The number of
mitochondria and autophagosomes per NMJ is shown. Most autopha-
gosomes in elav.mortGD larvae co-localized with mitochondria, either
by being directly adjacent or overlapping. (C) In human fibroblasts
(n = 56 cells) the mitochondrial-lysosomal colocalization was higher in
cells from a carrier of the loss of mortalin function variant compared
with cells from a healthy sibling control. Colocalization is indicated by a
yellow signal due to overlapping Lysotracker red and Mitotracker green
staining. Scale bar: 10 mm and 2 mm. Statistical analysis revealed a
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Consistently, no differences in basal level of apoptosis were

detected between fibroblasts from the healthy sibling and the

carrier of the A476T mortalin variant (unpublished results). In the

latter cells, however, a strong decrease in mitochondrial mass was

reported, suggesting that mitochondria are degraded via mito-

phagy (unpublished results) or suffer from decreased mitochondrial

biogenesis. Next, we assessed mitophagy in the human ex vivo

model to differentiate between these two possibilities. For this

purpose, we calculated the Pearson coefficient to determine the

correlation of fluorescence signals of lysosomal and mitochondrial

structures. The fibroblasts from a carrier of the A476T mortalin

variant revealed a higher degree of colocalization of mitochondria

with lysosomes compared to the fibroblasts from a healthy sibling

control (Figure 7C), indicating that dysfunctional mitochondria

might be cleared via the autophagic pathway [41].

In summary, the analysis of our presymptomatic in vivo model

and ex vivo data from human fibroblasts both suggest that loss of

mitochondria may represent the earliest pathological change in the

course of disease progression associated with impaired Mortalin

function.

Discussion

Establishment of a Drosophila Model for PD-related
Mortalin Dysfunction
Mortalin is essential for mitochondrial biogenesis, organellar

quality control, and suppression of apoptosis (for review, see

[7,8,34]). Mortalin variants that adversely affect mitochondrial

function have been identified in PD patients, supporting the

importance of Mortalin for mitochondrial function [16]. Pan-

neuronally targeted mortalin knockdown led to a shortened lifespan,

impaired walking and climbing, and abnormal wing posture.

These phenotypes are reminiscent of symptoms observed in

existing Drosophila PD models in which mitochondrial function is

disrupted by either intra-mitochondrial proteolytic stress [24] or

dysfunction of Pink1 or Parkin [21,23].

Due to the similarity of the observed defects, we are confident

that the model for loss-of-mortalin-related PD presented in this

study will be useful for further dissection of the imbalance of

complex molecular networks underlying the development of

mitochondrial parkinsonism. It will be particularly interesting to

use the powerful genetic tools available in Drosophila to validate

known molecular interactions between mortalin and PD-associated

genes, such as PINK1, parkin, and DJ-1 (compare Refs [16,42–44]),

as well as to identify new Mortalin interaction partners.

Vulnerability of DA Neurons to mortalin Loss
mortalin silencing in DA neurons generally affects whole

organism viability more dramatically than mortalin knockdown in

other cell types. Thus, DA neurons might be particularly

vulnerable to the loss of mitochondrial function in general or

susceptible to specific mitochondrial dysfunction caused by the loss

of mortalin. Alternatively, a combination of specific and non-

specific defects might contribute to the observed selective

vulnerability. We favor the latter hypothesis for several reasons.

Firstly, loss of mortalin, a broadly expressed essential gene, is

expected to lead to a general impairment in cell viability. Both

deletion of the yeast homolog SSC1 and strong mortGD knockdown

in Drosophila muscles using mef2-Gal4 are lethal [37,45]. Consis-

tently, mortalin knockdown leads to reductions in cellular ATP

levels.

Although mortalin silencing in DA neurons caused early pupal

lethality, the inactivation of other mitochondrial genes in the same

neurons did not affect viability, suggesting that non-specific

mitochondrial disturbances are not sufficient to adequately

recapitulate the increased susceptibility of DA neurons observed

upon mortalin silencing. Among the more than 150 distinct

mitochondrial syndromes that together affect more than 1 in

5,000 live births, large heterogeneity of tissue- and organ-specific

defects has been reported [46,47]. Mitochondria are remarkably

diverse to meet the specific demands of the specific cellular

environment they face. For example, cardiac mitochondria are

very robust, allowing them to maintain a constant ATP-to-ADP

ratio over a fivefold workload range during exercise [48]. Thus, it

is not surprising that mitochondria from two distinct organs are

morphologically distinct and share ‘‘only’’ 75% common compo-

nents [47,49]. This heterogeneity explains selective pathology

resulting from exposure to distinct mitochondrial toxins. While

abuse of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

causes selective DA degeneration and PD due to complex I

inhibition [50], an epidemic blindness resembling Leber’s hered-

itary optic neuropathy was caused by combined folate deficiency

and the consumption of home-made rum containing methanol

that induced complex IV inhibition [51,52]. It has been proposed

that the lack of redundancy in mitochondrial quality control

systems in DA neurons [53,54] might render DA neurons more

susceptible to mitochondrial dysfunction. Mortalin is of central

importance for intra-mitochondrial quality control, suggesting that

a combination of specific and non-specific disturbances might

affect mitochondrial function in DA neurons, resulting in selective

vulnerability of these cells.

But why are motoneurons also affected in our PD-model?

Consistent with a previous report, the morphology and functional

organization of SNc DA neurons might contribute to the increased

vulnerability of these cells [55]. Although not primarily affected in

PD, Drosophilamotoneurons share the complex morphology of SNc

DA neurons, necessitating complex trafficking and surveillance

systems to supply healthy mitochondria to places of high-energy

demand. Drosophila motoneurons are a simple, accessible, and well-

characterized model system to decipher molecular mechanisms

that underlie the susceptibility of neurons with extended

morphology to impairments in mitochondrial trafficking and

surveillance systems. Future research might additionally include a

more detailed investigation of the less accessible Drosophila DA

neurons.

Reduction of Synaptic Mitochondrial Mass Precedes
Apoptosis and Developing Motor Symptoms
Early pharmacological intervention is important for the success

of any therapeutic approach. We were able to identify reduced

mitochondrial mass as a pivotal cellular defect that precedes

behavioral symptoms. This observation is consistent with previous

studies on fibroblasts of one carrier of the PD-associated A476T

mortalin variant [16]. As such, mitochondrial fragmentation might

be caused by an imbalance between mitochondrial fission and

fusion [6] or by increased mitophagy. Increased mitochondrial

fission ought to increase the number of mitochondria. However,

the opposite was observed: mortalin knockdown reduced the

number of mitochondria at the NMJ. We thus propose that the

accumulation of fragmented mitochondria is suppressed by

increased autophagy [6]. Indeed, silencing of mortalin expression

increased the abundance of autophagosomes and their co-

higher number of mitochondria colocalized with lysosomes in the
mutant compared with control cells. Statistical significance was
determined using an unpaired, two-tailed Student’s t-test.
doi:10.1371/journal.pone.0083714.g007
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localization with mitochondria, suggesting that mitophagy is an

early cellular hallmark of Mortalin associated PD pathology.

Consistently, reduced mitochondrial mass (unpublished results)

and increased co-localization of lysosomal and mitochondrial

structures (Figure 7C) but no increased apoptosis (unpublished

results) were observed in fibroblasts derived from a carrier of the

PD-associated A476T mortalin variant.

Thus, the analysis of presymptomatic Drosophila larvae and the

human ex vivo model both identify mitochondria loss as an early

pathological change that precedes behavioral symptoms and

apoptosis. Future research should address the perspective of

monitoring mitophagy in patient-derived fibroblasts as a biomark-

er for predisposition to mitochondrial Parkinsonism.

Supporting Information

Figure S1 Quantification of autophagosomes in Dro-
sophila mortalin knockdown larvae. Confocal images of

NMJs in control and elav.mortGD larvae. (A) The autophagosomes

marker ATG8-mRFP (red) shows a diffuse staining in the entire

NMJ (arrow). Autophagosomes (arrowheads) are detected by the

strong accumulation of the ATG8-mRFP signal. Scale bar: 5 mm.

(B) The false color look up table ‘‘Green-Fire-Blue’’ allows

separating autophagosomes from background staining. (C) Alter-
natively, autophagosomes can be displayed by defining and

removing the ‘‘non-punctate’’ through an appropriate indirect

thresholding using the adjustment of image brightness and

contrast. The same image adjustments are made for mutant and

control NMJs.

(TIF)

Figure S2 Effects of mitochondrial gene silencing in
Drosophila eyes. The knockdown of Drosophila mitochondria-

related genes may cause degeneration in the external eyes upon

the RNAi expression under GMR-GAL4 but failed to induce

lethality while being driven by TH-GAL4 (CoVIb, sesB, Trxr-1). All

the flies were raised at 29uC. The arrowheads point to the black

lesions. Scale bar indicates 0.1 mm.

(TIF)

Movie S1 Locomotion of whiteRNAi expressing flies. The
locomotion of a 5-day-old elav.whiteRNAi flies (18uC). The flies

move normally.

(MPG)

Movie S2 Locomotion of mortalinRNAi expressing flies.
The locomotion of a 5-day-old elav.mortGD flies (18uC). The flies

are almost completely paralyzed, and they are unable to move or

climb.

(MPG)

Movie S3 Locomotion of whiteRNAi expressing larvae.
The locomotion of a 4-day-old L3 elav.whiteRNAi larva (29uC).
The larva crawls normally.

(MPG)

Movie S4 Locomotion of mortalinRNAi expressing lar-
vae. The locomotion of a 4-day-old L3 elav.mortGD larva (29uC).
The larva crawls normally.

(MPG)
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