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In this paper, we propose a novel method, SeekFun, to predict protein function based on weighted mapping of domains and GO
terms. Firstly, a weightedmapping of domains and GO terms is constructed according to GO annotations and domain composition
of the proteins. The association strength between domain and GO term is weighted by symmetrical conditional probability.
Secondly, the mapping is extended along the true paths of the terms based on GO hierarchy. Finally, the terms associated with
resident domains are transferred to host protein and real annotations of the host protein are determined by association strengths.
Our careful comparisons demonstrate that SeekFun outperforms the concerned methods on most occasions. SeekFun provides a
flexible and effective way for protein function prediction. It benefits from the well-constructed mapping of domains and GO terms,
as well as the reasonable strategy for inferring annotations of protein from those of its domains.

1. Introduction

More and more sequences of proteins are available due to
the advanced sequencing technologies, but the biological
roles and functions of the proteins are hardly known. As
reported by [1], only less than one percent of proteins have
been functionally characterized by experiments. In other
words, protein sequencing is faster than annotating protein.
To fill this gap, a large number of computational methods
have been developed to predict protein functions. These
methods exploit biological information including amino acid
sequence [2–9], genomic context [10–14], protein interaction
networks [15–17], protein structure [18–23], microarray [24],
and literate to predict protein functions [25, 26].However, the
newly sequenced proteins are often poor in other biological
information except the amino acid sequences. Thus, the
development of the sequence-based method is crucial and
useful for directing further experimental work.

In the past few years, several sequence-basedmethods [2–
9] have been proposed to infer protein functions.Thesemeth-
ods annotated the proteinwith the representative annotations
of its homologues. Intuitively, these methods are also called
homology-based methods. Usually, the homology-based
methods include two stages: searching homologues through
BLAST or PSI-BLAST and selecting representative Gene
Ontology (GO) terms from annotations of homologues of
the unannotated protein. More specifically, Goblet [2] deter-
mined the homologues by a predefined threshold of BLAST
e-value and annotated the unannotated protein with the GO
terms of its homologues. GoFigure [3], OntoBlast [4], and
Gotcha [5]weighted theGO terms by the BLAST e-values and
chose GO terms by their weights. PFP [6, 7] made use of both
strongly and weakly similar sequences of the query sequence
to increase the coverage of functional annotation. ESG [8]
exploited cascading homologues of the unannotated protein
iteratively to improve the precision of prediction. ConFunc
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[9] split the homologues into subgroups according to their
annotations and then inferred annotations of the unanno-
tated protein from these subgroups. These methods have a
positive impact on protein function prediction. However, the
homology-based methods may not work when the unanno-
tated protein has low sequence similarity to other annotated
sequences or all of its homologues are not annotated. Fur-
thermore, it is also reported that transferring annotations
among homologues may easily produce erroneous results
[27].

As is known, domain is the conserved sequence and
structure in the evolution of proteins, which plays as
the stable and independent functional block of proteins
[28]. Besides the detailed sequence, domain also carries
some important structural information, that is, active site,
which is tightly relevant to biological function [21]. Thus,
a domain may be a suitable clue to discover the function
of proteins. Statistics on UniProt database (released in May,
2013) show that more than sixty percent of proteins have
domains. Moreover, domain databases and tools for effi-
cient domain recognition have been developed including
Pfam [29], SCOP [30], RPS-BLAST [31], and HMMER
[32]. These databases and tools accelerate the analysis of
domains in protein. In general, it seemed that inferring
functions from resident domains of the protein is feasible and
reasonable.

2. Related Works

So far, many efforts have been made for discovering func-
tional signals carried by domains. Schug et al. [33] generated
rules for function-domain associations based on the intersec-
tion of functions assigned to gene products which contain
domains at varying levels of sequence similarity. Hayete and
Bienkowska [34] designed an automated predictor based on
decision tree to assign functions for domains. Mulder et al.
[35] mapped GO terms to the domain if all proteins with
the given domain do not exist in the set of proteins without
the given GO term. Song et al. [36] transferred functions
based on alignment of domain content. In analogy with [35],
Forslund and Sonnhammer [37] assignedGO term to domain
set if and only if all proteins containing the domain set also
are annotated with the given GO term. Rentzsch and Orengo
[38] transferred annotations in single profile-based sequence
cluster.Thesemethods are easily understood and realized, but
they are readilymisled intomaking an error-prone prediction
by spurious and missing annotations of proteins. Even a
single protein missing a valid GO term is enough to mislead
the functional inferring about its domains.

In addition, Zhao et al. [39] utilized the protein-domain
features, domain-domain interaction, and domain coexisting
features to predict domain function.Their work extended the
coverage of domain annotation effectively and provided solid
foundation for predicting protein function. However, their
work mainly paid attention to domain function rather than
how the annotation of domain affects protein function. In our
work, we focus on how to predict protein function based on
domain annotation.

Recently, the probabilistic models have become increas-
ingly popular for their remarkable performance on uncer-
tainty inference. Forslund and Sonnhammer [37] utilized
Näıve Bayesian (NB) model for assigning terms to domain
set. Nevertheless the Näıve Bayesian model required that
domain sets occurrence independently, which does not come
with practice. Thus, Forslund et al. had attempted to reduce
the dependencies between domain subsets using an aver-
aged contribution from each domain subset. However, the
conditional independence assumption may still not hold.
Subsequently, Messih et al. [40] designed two models based
onNB: one isDRDO that an averaged contribution from each
subset which contains the sequential neighboring domains
is used to solve the problem of dependency; the other is
DRDO-NB which took recurrence and order of domains
into consideration. Although computational complexity of
DRDO is lower than that of NB, it may still not satisfy the
conditional independence assumption. Moreover, all of these
methods pruned GO terms of resident domains before they
assigned GO terms to the host protein. Thus, some weak
functional signals which may be amplified by dependencies
between domains are likely to be neglected.

Fang and Gough [41] generalized a dcGO predictor
for inferring GO terms associated with individual domains
and supradomains based on protein-level GO annotation
(GOA) and families of protein. dcGO exploited 𝑃 value to
evaluate the association strength (mentioned as relevance in
the following sections to simplify) between domain and GO
term. Since 𝑃 value only represents the probability of error
involved in null hypothesis, it may not be reasonable for
estimating the relevance between domain and GO term by
𝑃 value. In other words, 𝑃 value can be used to determine
which GO term is related to the given domain from statistical
perspective but it is not enough to measure the degree
of their relatedness. Thus, an appropriate metric is needed
for weighting the relevance between GO term and domain
objectively.

In this paper, we design a method to seek functions
for proteins (SeekFun) effectively. Under this method, a
mapping of GO terms and domains is constructed based
on protein-level GOA and domain compositions of proteins.
The relevance between domain and GO term is measured by
symmetrical conditional probability. Based on the relevance
of resident domains and terms, the relevance between host
protein and GO terms is computed. Finally, the GO terms
with relevance above a predefined threshold are used to
annotate the host protein. The performance of SeekFun is
validated by a series of experiments. The results suggest that
our method is effective and reliable for protein function
prediction.

3. Methods

3.1. Step 1: Construct and Weight Mapping of Domains and
GO Terms. It is assumed that the resident domains may
be associated with GO terms of the host protein. It is a
rough assumption about the relationship between domain
and GO term and may result in a large number of false
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associations. To differentiate the true associations from the
false ones, the relevance between domain and GO term need
be measured. Judged with this, the true associations will
have higher relevance while the false ones will have lower
relevance.

As mentioned earlier, 𝑃 value can be used to determine
whether the domain is related to the GO term or not. When
the 𝑃 value of domain and GO term is larger than the given
significance threshold, it is considered that the domain can
be annotated with the GO term, and vice versa. However,
the larger 𝑃 value does not mean a more tight relationship
between domain and GO term. In simple words, 𝑃 value
may be not suitable for measuring relevance between domain
and GO term. Suppose that V𝑗 represents that the protein
containing domain 𝑑𝑗 and 𝑢𝑖 denotes that the protein plays
the function described by GO term go𝑖. The conditional
probability pr(𝑢𝑖 | V𝑗) means the probability of that the
protein containing 𝑑𝑗 is annotated by go𝑖. The pr(𝑢𝑖 | V𝑗)
can reflect the dependence of go𝑖 on the 𝑑𝑗. Likewise, the
pr(V𝑗 | 𝑢𝑖) represents the probability of that the protein
annotated by go𝑖 containing the domain 𝑑𝑗. The pr(V𝑗 | 𝑢𝑖)

can reflect the dependence of 𝑑𝑗 on the go𝑖. Thus, it can
be inferred that simple conditional probability can reflect
relevance between domain and GO term partly but not
enough. As (1), symmetrical conditional probability may be
appropriate to measure the relevance between GO term go𝑖
and domain 𝑑𝑗, DR(go𝑖, 𝑑𝑗). Consider

DR (go𝑖, 𝑑𝑗) = √pr (𝑢𝑖 | V𝑗) ⋅ pr (V𝑗𝑢𝑖). (1)

Equation (1) means that the relevance between go𝑖 and
𝑑𝑗 is determined jointly by conditional probabilities between
V𝑗 and 𝑢𝑖. The bigger the probabilities are, the stronger the
relevance between them is. Range of the relevance is from
0 to 1. The higher relevance means that the domain is more
probably annotated with the term.

Supposed that #prot(go𝑖) is the number of proteins which
are annotated with the go𝑖, #prot(𝑑𝑗) is the number of pro-
teins which contain 𝑑𝑗, and #prot(go𝑖, 𝑑𝑗) is the number of
proteins which have to do with both go𝑖 and 𝑑𝑗. Accordingly,
(1) can be transformed into (2). Consider

DR (go𝑖, 𝑑𝑗) = √
#prot (go𝑖, 𝑑𝑗)

#prot (𝑑𝑗)
⋅

#prot (go𝑖, 𝑑𝑗)
#prot (go𝑖)

= √
#prot(go𝑖, 𝑑𝑗)

2

#prot (𝑑𝑗) ⋅ #prot (go𝑖)
.

(2)

3.2. Step 2: Transfer GO Terms of Resident Domains to the
Host Protein. As is known, GO terms are organized as a
directed acyclic graph andmay be related to each other.Thus,
predicting functions of proteins should take the relationship
between GO terms into consideration. GO has a rule called
“true path rule”, which defines the terms along the pathway
from a given term to the root term that must annotate
the protein if the protein is annotated with the given term.

And a path upward from the given term to the root term
in GO hierarchy is regarded as a true path of the term.
Considering the true path rule, the mapping of GO terms
and domains is extended along true paths of the GO terms
in our method. Traditionally, if a domain is associated with
a GO term, it is also associated with all ancestral terms of
the GO term with equal relevance. However, it is reported
that the semantics of GO terms has differences even if they
are parent-child relationship.Thus, the relevance between the
domain and each ancestor of the GO term may be different
and the semantic differences between GO terms should be
considered.

In fact, the organization of GO terms can be regarded as
a split-flow semantic system (SFSS). In SFSS, the root term
is the source of semantics which can describe the general
functions while others represent semantic branches of the
root term and illustrate specific functions. So the terms along
the true path of the given term have different capabilities to
describe the functions. Generally, for a given function, the
ancestral term is more likely to describe the given function
than its descendants because the semantics of its ancestors is
more general and hasmore power to describe function. It can
be explained by semantic coverage of GO term, which can be
roughly estimated by the number of its descendants [42].

Based on these analyses, we proposed a novel strategy,
namely RSC, to measure the relevance between domain and
ancestral term based on semantic coverage. That is, given a
term go𝑖 which is related to the domain 𝑑𝑗 with relevance
DR(go𝑖, 𝑑𝑗), the relevance between the domain 𝑑𝑗 and the
ancestral term go𝑘 of term go𝑖, can be calculated by (3). In
(3), 𝐷(⋅) represent the descendant set of the given term and
Anc(go𝑖) consists of the ancestors of the term go𝑖. Naturally,
along the true path, the termwhich is nearer to root has bigger
relevance value with the given domain than others and it is
more probably to annotate the host protein

DR (go𝑘, 𝑑𝑗) =

𝐷 (go𝑘)


𝐷 (go𝑖)


⋅ DR (go𝑖, 𝑑𝑗) , go𝑘 ∈ Anc (go𝑖) .

(3)

It is supposed that protein is associated with all GO terms
which are related to the resident domains of the protein. The
relevance between protein and GO term can be derived from
the relevance of the term and resident domains of the protein.
For example, if a protein 𝑃 contains a set of domain 𝐷 =

{𝑑1, 𝑑2, . . . , 𝑑𝑛} andDR(go𝑖, 𝑑𝑗) denote the relevance between
go𝑖 and 𝑑𝑗, then the relevance between 𝑃 and go𝑖, PR(go𝑖, 𝑃),
can be computed by (4). Consider

PR (goi, 𝑃) = max
𝑑𝑗∈𝐷,1≤𝑗≤𝑛

DR (go𝑖, 𝑑𝑗) . (4)

After the extension, each protein is associated with a
group ofGO termswith strong orweak relevance. To facilitate
comparison, the relevance of proteins and terms need be
normalized. Each of GO categories should be analyzed,
respectively, as they have different biological meanings. For
each protein, the relevance between the protein 𝑃 and the
root 𝑟 of subontology (GO: 00003674 for molecular function,
GO: 00008150 for biological process, and GO: 00005575 for
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Table 1: The details of experimental datasets.

Uniref50 SwissProt TrEMBL
Number of annotated proteins 20693 17176 19526
Number of proteins with domains 11673 15810 13588
Number of involved domains 4998 4430 3642
Number of involved GOs 4812 7572 3992

cellular component), PR(𝑟, 𝑃), is used as baseline because the
real annotations of proteins must be split from the root in
the GO hierarchy. The normalized relevance of go𝑖 and 𝑃,
NPR(go𝑖, 𝑃), can be measured by (5). The relevance has been
standardized to scale from 0 to 1.The higher relevance means
that the protein is more probably annotated with the term.
Consider

NPR (go𝑖, 𝑃) =
PR (go𝑖, 𝑃)
PR (𝑟, 𝑃)

. (5)

Through the above steps, the relevance of proteins and
GO terms has been measured already. To select real annota-
tions from candidate annotations, a threshold 𝑡 of relevance
need be defined. If the relevance between protein and term
is above the predefined threshold t and the term is assigned
to the protein, and vice versa. In our study, the threshold t
is about 0.6∼0.7 as the proposed model performs well on the
given datasets.

4. Results and Discussion

4.1. Experimental Datasets. Three up-to-date protein subsets
of UniProt, Uniref50, SwissProt, and TrEMBL, are selected to
evaluate SeekFun.Theproteinswhich are only annotatedwith
GO term inferred from electronic annotations are excluded
from the experimental datasets. The SwissPfam database
is used to determine the detailed domain composition of
proteins. All the datasets are downloaded on May 20, 2013.
The details of the experimental datasets are listed in Table 1.

4.2. Evaluation Metrics. Consistent with Critical Assessment
of Functional Annotations (CAFA) experiments [42], the
precision, recall, and f -measure are utilized to judge the
performance of methods in our experiments. Given a target
protein 𝑥 and𝐾(𝑥)which is a set of known (true) annotations
of 𝑥, the precision of the method at threshold 𝑡 ∈ [0, 1], pr(𝑡),
can be calculated as

pr (𝑡) = 1

𝑚 (𝑡)
∑

𝑥∈𝑆

𝐾 (𝑥) ∩ 𝑃𝑡 (𝑥)


𝑃𝑡 (𝑥)


. (6)

In (6), 𝑃𝑡(𝑥) is the set of predictive annotations whose
relevance with 𝑥 is above t. S is the target set for testing.𝑚(𝑡)

is the number of proteins which at least has one predictive
GO term under given 𝑡. Similarly, the recall of method at
threshold 𝑡, rc(𝑡), can be computed by

rc (𝑡) = 1

|S|
∑

𝑥∈𝑆

𝐾 (𝑥) ∩ 𝑃𝑡 (𝑥)


|𝐾 (𝑥)|
. (7)

The f -measure (the harmonic mean of precision and
recall) gives an intuitive number for comparisons of the
concerned methods. For each method, the maximal value
of f -measure on the overall threshold of relevance, 𝐹max, is
calculated as

𝐹max = max
𝑡

{
2 ⋅ pr (𝑡) ⋅ rc (𝑡)
pr (𝑡) + rc (𝑡)

} . (8)

Considering the relationships between GO terms, the
comparisons are guided by the true path rule. That is, the
𝐾(𝑥) and 𝑃(𝑥) are extended by adding all ancestors of their
members to them before comparing.

4.3. Comparisons of Relevance Computed by Different Strate-
gies. To illustrate the rationality of weighting strategies, the
relevance weighted by symmetrical conditional probability
(𝑅SCP) is compared with those measured by 𝑃 value (𝑅PV)
and traditional conditional probability (𝑅dSCP). In fact, it
is hard to evaluate the relevance between domain and GO
term for lacking of the gold standard. To determine appro-
priate strategies for weighting relevance, some properties
of relevance are analysed. A little random noise may make
a difference between observed and real datasets and the
relevance should be robust on these similar datasets. To
simulate similar datasets, a series of subsets of Uniref50,
SwissProt, and TrEMBL is constructed by taking nine of their
ten equal-size partitions randomly at a time.The calculations
of relevance by different strategies are performed on these
subdatasets. The varied distributions of relevance on the
different datasets may be good evidence for which strategy
is more proper for weighting relevance.

The distributions of relevance derived from different
strategies are displayed in Figure 1. In order to facilitate
comparison, without loss of meanings, the logarithmic trans-
formation andZ-score transformation are performed on𝑅PV,
which are represented by log𝑅PV in Figure 1. Observed the
figure, it can be found that 𝑅dSCP is the most changeful while
the distribution curves of both 𝑅SCP and log𝑅PV have similar
trends. All of those suggest that, as for robustness on tiny
different datasets, the 𝑅SCP and 𝑅PV are more proper than
𝑅dSCP. What is more, the curves of 𝑅SCP and 𝑅PV appear to
have obviousmonotonicity that is beneficial for assigningGO
terms to the domain.

Meanwhile, the curves of 𝑅PV are steeper than those
of 𝑅SCP on each dataset, which imply that the resolution
of 𝑅SCP is lower than 𝑅PV. In this paper, the resolution
describes how sensitive the relevance is to distinguish true
positive association between domain and GO term from
other negative ones. The resolution of relevance is inversely
proportional to the average density of relevance in their
range, which is just indicated by the steepness of the curves
in the figures. In simple words, the larger the average density
of relevance in their range is, the harder the true association
between domain and GO term is determined.

On the other hand, the relevance derived from two sig-
nificantly different datasets may vary more dramatically than
those from the similar datasets. Statistically, the SwissProt
and TrEMBL have no intersection while they have 5031 and
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Figure 1: Compare distributions of relevance on similar datasets. 𝑅dSCP, 𝑅SCP, and log𝑅PV represent the relevance computed by conditional
probability, symmetrical conditional probability, and 𝑃 value, respectively. 𝑆𝑖 is constructed by taking nine of ten equal-size partitions of
SwissProt at a time, 𝑖 = 1, 2 ⋅ ⋅ ⋅ 10. Likewise, 𝑈𝑗 and 𝑇𝑘 denote the constructed subsets of Uniref50 and TrEMBL separately, 𝑗, 𝑘 = 1, 2 ⋅ ⋅ ⋅ 10.
The curves display the distributions of relevance on similar subsets of the experimental datasets.
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Table 2: Compare the impact of 𝑅SCP on protein function prediction.

Uniref50 SwissProt TrEMBL
MF BP CC MF BP CC MF BP CC

Predpfam2go

Precision 0.5568 0.6094 0.5978 0.4861 0.532 0.5557 0.3856 0.3482 0.3954
Recall 0.441 0.2888 0.1747 0.6951 0.4496 0.2255 0.6176 0.6027 0.2255
𝐹max 0.4922 0.3918 0.2704 0.5721 0.4873 0.3208 0.4748 0.4414 0.2872

Predweighted
Precision 0.2979 0.2502 0.1944 0.3514 0.2609 0.2611 0.3472 0.2179 0.2033
Recall 0.7805 0.6959 0.8774 0.5946 0.6523 0.7603 0.7917 0.7011 0.8213
𝐹max 0.4312 0.3681 0.3183 0.4417 0.3727 0.3887 0.4827 0.3325 0.3259

Predcombine

Precision 0.8506 0.8622 0.7503 0.8543 0.8577 0.7662 0.7641 0.7939 0.835
Recall 0.6971 0.5823 0.7655 0.56 0.4093 0.5984 0.7662 0.6371 0.7309
𝐹max 0.7662 0.6951 0.7578 0.6765 0.5542 0.672 0.7651 0.7069 0.7795

The best results are in bold.
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Figure 2: Compare distributions of relevance on significantly different datasets.𝑅dSCP,𝑅SCP, and log𝑅PV represent the relevance computed by
conditional probability, symmetrical conditional probability, and 𝑃 value, respectively. SwissProt, Uniref50, and TrEMBL are the significantly
different datasets.The curves display the distributions of relevance on the experimental datasets.

6929 common proteins with Uniref50, about up to their 30%
and 36% separately. Consequently, the difference between
the curves of relevance on SwissProt and TrEMBL should be
larger than those of others. Observing the distributions of
relevance on these datasets, as displayed by Figure 2, it can
be found that the 𝑅SCP and log𝑅PV vary as expected but the
log𝑅PV still suffers from low resolution. Generally speaking,
it can be concluded that 𝑅SCP is a more suitable measure of
relevance between domain and GO term.

4.4. The Impact of 𝑅SCP on Protein Function Prediction. For
validating its impact on protein function prediction, 𝑅SCP
is tested on experimental datasets: Uniref50, SwissProt, and
TrEMBL, respectively. The comparison is performed on the
three subontologies of GO: molecular function (MF), biolog-
ical process (BP), and cellular component (CC) separately.
The comparison includes two steps: constructing mapping of
domains and GO terms and annotating proteins based on the
mapping.

In our experiment, the mapping of Pfam domains and
GO terms (pfam2go) is downloaded from the GeneOntology
website in May, 2013. Based on this reliable mapping, all

annotations which are associated with the resident domains
are assigned to the host protein. This method is named
Predpfam2go in this paper. Meanwhile, the mapping of Pfam
domains and GO terms which is weighted by 𝑅SCP is also
used for prediction, namely, Predweighted. In the comparisons,
Predpfam2go and Predweighted are validated by performing the
same task in the same framework on the basis of different
mappings of domains and GO terms. To avoid the influence
of domain coverage, the weighted mapping with 𝑅SCP just
includes the domains in pfam2go when it is applied. Here,
to compare the influence of the strategy 𝑅SCP and RSC, the
method which is the combination of them is also used to
perform the same task and marked with Predcombine. Their
performances are illustrated in Table 2.

As displayed in Table 2, Predweighted has higher recall than
Predpfam2go while the latter achieves better precision than
the former. These results suggest that the Predweighted could
improve the specificity of annotations but it is at the cost of
precision.

It also can be found from Table 2 that Predcombine is
superior to others in general. Compared to Predpfam2go,
Predcombine outperforms on both precision and recall. In
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Table 3: Compare the impact of RSC on protein function prediction.

Uniref50 SwissProt TrEMBL
MF BP CC MF BP CC MF BP CC

RPE
Precision 0.2709 0.1582 0.184 0.328 0.2334 0.2866 0.2803 0.1664 0.2131
Recall 0.8255 0.7195 0.901 0.6801 0.5096 0.7807 0.8625 0.7416 0.9
𝐹max 0.4076 0.2575 0.3044 0.4424 0.3195 0.4184 0.4224 0.2709 0.3443

RSC
Precision 0.8782 0.8804 0.768 0.8529 0.8616 0.7751 0.8064 0.8071 0.8163
Recall 0.7876 0.6856 0.8163 0.5953 0.4294 0.6083 0.8229 0.6985 0.7716
𝐹max 0.8304 0.7709 0.7914 0.7012 0.5731 0.6816 0.8146 0.7489 0.7933

The best results are in bold.

Table 4: Compare the performances of the concerned methods.

Uniref50 SwissProt TrEMBL Average
MF BP CC MF BP CC MF BP CC

NB
Precision 0.7778 0.7339 0.7421 0.8362 0.8121 0.8408 0.8977 0.8477 0.8927 0.8201
Recall 0.0428 0.0319 0.0244 0.5012 0.4212 0.3718 0.5086 0.3721 0.4819 0.3062
𝐹max 0.0812 0.0612 0.0473 0.6267 0.5547 0.5156 0.6493 0.5172 0.6259 0.4088

DRDO
Precision 0.7716 0.7151 0.7109 0.8232 0.8004 0.8312 0.8644 0.8073 0.8623 0.7985
Recall 0.1777 0.1385 0.1115 0.5868 0.5023 0.4437 0.5517 0.429 0.5422 0.387
𝐹max 0.2888 0.2321 0.1928 0.6852 0.6173 0.5786 0.6735 0.5603 0.6657 0.4994

DRDO-NB
Precision 0.8375 0.6906 0.7439 0.7379 0.7186 0.6766 0.8426 0.8471 0.7512 0.7607
Recall 0.2094 0.232 0.2695 0.2394 0.2272 0.2633 0.157 0.1502 0.1452 0.2104
𝐹max 0.335 0.3474 0.3956 0.3615 0.3452 0.379 0.2647 0.2551 0.2434 0.3252

dcGO
Precision 0.4342 0.3751 0.3014 0.558 0.5253 0.4375 0.3801 0.3473 0.3494 0.412
Recall 0.6127 0.503 0.6127 0.605 0.4303 0.5904 0.6692 0.5137 0.6509 0.5764
𝐹max 0.5083 0.4297 0.4041 0.5805 0.4731 0.5026 0.4848 0.4144 0.4547 0.4725

SeekFun
Precision 0.8782 0.8804 0.7682 0.8529 0.8616 0.7751 0.8064 0.8071 0.8163 0.8274
Recall 0.7876 0.6856 0.8163 0.5953 0.4294 0.6083 0.8229 0.6985 0.7716 0.6906
𝐹max 0.8304 0.7709 0.7914 0.7019 0.5731 0.6816 0.8146 0.7489 0.7933 0.7451

The best results are in bold.

contrast to Predweighted, Predcombine significantly improved the
precision while it does as well as Predweighted on recall.Thus, it
can be concluded that𝑅SCP tend to select specific terms for the
proteins and RSC balances this bias by propagating in the GO
hierarchy. It may be the reason that Predcombine shows higher
performances.

4.5. The Impact of RSC on Protein Function Prediction. In
order to validate the effectiveness of the RSC, it is compared
with traditional strategy which set the relevance of domain
and terms along a true path as equal (RPE).The two strategies
are applied to predict protein functions based on themapping
of domains and GO terms weighted by 𝑅SCP. Their best
performances are listed in Table 3.

As displayed, RPE gives a better recall while RSC has
higher precision and 𝐹max. In general, RSC may be more
beneficial to protein function prediction than RPE. It may
be because the resolution of 𝑅SCP is effectively promoted by
different relevance between protein and each term along a
true path. On the contrary, RPE considered that protein has
equal relatedness to every term along the true path, which
makes it harder to determine the true positive associations
between terms and the host protein. Even if the threshold

of RPE is 1, its precision is still lower than the other one
and recall goes down. It confirms that the differences of
GO terms have significant influence on their relevance with
protein.

4.6. Comparison of the Concerned Methods. To assess the
efficiency of SeekFun, it is compared together with NB,
DRDO, DRDO-NB, and dcGO on the three benchmark
datasets. The performances of concerned methods on differ-
ent dataset are shown in Table 4. To provide a simple number
for comparison between methods, the averages of metrics on
each dataset are also listed.

In terms of precision, SeekFun is superior to others while
NB, DRDO, and DRDO-NB follow in turn. The dcGO is
significantly lower than others. As aforementioned, dcGO
measured relevance between domain andGO termby𝑃 value
while other methods calculated it based on conditional prob-
ability. These results may indicate again that the relevance
estimated by 𝑃 value is not sensitive enough to determine
the true positive associations between domain and GO term.
In other words, 𝑅PV has low resolution for distinguishing
real annotations of protein. By contrast, the conditional
probability is more suitable for estimating relevance.
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As for the recall, SeekFun performs better than others
while dcGO follows. It also can be found that the perfor-
mances of NB, DRDO, and DRDO-NB are not as well as
the other methods. Comparing the details of them, NB,
DRDO, and DRDO-NB infer functions of protein from
annotations of domain combinations, which enhance the
precision of function prediction. However, in the process
of discovering domain combinations, some slightly weak
associations between domain andGO termmay be neglected.
The resident domains of the host protein may interplay
as different combinations to perform different functions.
Nevertheless, these methods judge domain combination if
the members of the domain combination exist in the protein
and the 𝑃 value of their combination is above predefined
threshold. It may miss information covered in the potential
domain combinations and domain themselves. We guess this
may be the reason that these methods show lower recall of
functions.

Overall, SeekFun has better performance than others.
It can attribute to the weighted mapping of domains and
GO terms and the strategy for transferring annotations of
resident domains to the host proteins.The weightedmapping
can reflect the relationship between domain and GO term
properly. The transferring strategy takes both the differences
and connections of terms into consideration, which greatly
promote its capability of distinguishing real associations of
domains and terms from the false ones.

5. Conclusions

In this paper, SeekFun is developed for protein function
prediction. Instead of using amino acid sequence of protein
directly, SeekFun takes the resident domains of proteins and
protein-level GOAas clues to annotate proteins.We tested the
overall performance of SeekFun and the results suggest that
SeekFun is superior to the concerned methods: NB, DRDO,
DRDO-NB, and dcGO on precision and recall generally.

Meanwhile the effects of relevance computed by sym-
metrical conditional probability, (𝑅SCP) and the strategy for
inferring annotations of protein from the annotations of
its resident domains (RSC) are validated, respectively. The
results of these experiments confirmed that both of them
are effective and can promote the performance of protein
function prediction. In the proposed method, 𝑅SCP tend to
discover specific functions of protein but it cannot ensure the
precision and RSC is used to compensate for the lack of 𝑅SCP.
So the combination of them achieves high performances.The
main idea of SeekFun could be used to acquire knowledge
from other functional ontologies based on different domain
resources easily. SeekFun will facilitate the discovery of
protein functions and the insights into the biological roles of
proteins.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

The experiments are conceived and designed by Zhixia Teng
and Maozu Guo. The experiments are performed by Zhixia
Teng and Chunyu Wang. The data are analyzed by Zhixia
Teng, Qiguo Dai, and Jin Li. The paper is prepared by Zhixia
Teng, Maozu Guo, Qiguo Dai, and Xiaoyan Liu.

Acknowledgments

Maozu Guo is supported by Natural Science Founda-
tion of China (61271346) and Specialized Research Fund
for the Doctoral Program of Higher Education of China
(20112302110040). Xiaoyan Liu is supported by Natural Sci-
ence Foundation of China (61172098 and 91335112).

References

[1] D. Barrell, E. Dimmer, R. P. Huntley, D. Binns, C. O’Donovan,
and R. Apweiler, “The GOA database in 2009—an integrated
Gene Ontology Annotation resource,” Nucleic Acids Research,
vol. 37, no. 1, pp. D396–D403, 2009.

[2] S. Hennig, D. Groth, and H. Lehrach, “Automated gene ontol-
ogy annotation for anonymous sequence data,” Nucleic Acids
Research, vol. 31, no. 13, pp. 3712–3715, 2003.

[3] S. Khan, G. Situ, K. Decker, and C. J. Schmidt, “GoFigure:
automated gene ontology annotation,” Bioinformatics, vol. 19,
no. 18, pp. 2484–2485, 2003.

[4] G. Zehetner, “OntoBlast function: from sequence similarities
directly to potential functional annotations by ontology terms,”
Nucleic Acids Research, vol. 31, no. 13, pp. 3799–3803, 2003.

[5] D. M. A. Martin, M. Berriman, and G. J. Barton, “GOtcha:
a new method for prediction of protein function assessed by
the annotation of seven genomes,” BMC Bioinformatics, vol. 5,
article 178, 2004.

[6] T. Hawkins, S. Luban, and D. Kihara, “Enhanced automated
function prediction using distantly related sequences and con-
textual association by PFP,” Protein Science, vol. 15, no. 6, pp.
1550–1556, 2006.

[7] T. Hawkins, M. Chitale, S. Luban, and D. Kihara, “PFP:
automated prediction of gene ontology functional annotations
with confidence scores using protein sequence data,” Proteins:
Structure, Function and Bioinformatics, vol. 74, no. 3, pp. 566–
582, 2009.

[8] M. Chitale, T. Hawkins, C. Park, and D. Kihara, “ESG: extended
similarity group method for automated protein function pre-
diction,” Bioinformatics, vol. 25, no. 14, pp. 1739–1745, 2009.

[9] M. N. Wass and M. J. E. Sternberg, “ConFunc—functional
annotation in the twilight zone,” Bioinformatics, vol. 24, no. 6,
pp. 798–806, 2008.

[10] W. T. Clark and P. Radivojac, “Analysis of protein function and
its prediction from amino acid sequence,” Proteins: Structure,
Function and Bioinformatics, vol. 79, no. 7, pp. 2086–2096, 2011.

[11] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg,
and T. O. Yeates, “Assigning protein functions by comparative
genome analysis: protein phylogenetic profiles,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 96, no. 8, pp. 4285–4288, 1999.

[12] M. Huynen, B. Snel, W. Lathe III, and P. Bork, “Predicting
protein function by genomic context: quantitative evaluation



BioMed Research International 9

and qualitative inferences,” Genome Research, vol. 10, no. 8, pp.
1204–1210, 2000.

[13] F. Enault, K. Suhre, and J.-M. Claverie, “Phydbac “Gene Func-
tion Predictor”: a gene annotation tool based on genomic
context analysis,” BMC Bioinformatics, vol. 6, article 247, 2005.

[14] B. E. Ersgelhardt, M. I. Jordan, K. E. Muratore, and S. E.
Brersfser, “Protein molecular function prediction by Bayesian
phylogenomics,” PLoS Computational Biology, vol. 1, no. 5,
article e45, 2005.

[15] P. Gaudet, M. S. Livstone, S. E. Lewis, and P. D. Thomas,
“Phylogenetic-based propagation of functional annotations
within the Gene Ontology consortium,” Briefings in Bioinfor-
matics, vol. 12, no. 5, pp. 449–462, 2011.

[16] M. Deng, K. Zhang, S. Mehta, T. Chen, and F. Sun, “Prediction
of protein function using protein-protein interaction data,”
Journal of Computational Biology, vol. 10, no. 6, pp. 947–960,
2003.

[17] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani,
“Global protein function prediction from protein-protein inter-
action networks,” Nature Biotechnology, vol. 21, no. 6, pp. 697–
700, 2003.

[18] F. Pazos and M. J. E. Sternberg, “Automated prediction of pro-
tein function and detection of functional sites from structure,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 101, no. 41, pp. 14754–14759, 2004.

[19] D. Pal and D. Eisenberg, “Inference of protein function from
protein structure,” Structure, vol. 13, no. 1, pp. 121–130, 2005.

[20] D. Bandyopadhyay, J. Huan, J. Liu et al., “Structure-based
function inference using protein family-specific fingerprints,”
Protein Science, vol. 15, no. 6, pp. 1537–1543, 2006.

[21] Z.-P. Liu, L.-Y. Wu, Y. Wang, L. Chen, and X.-S. Zhang,
“Predicting gene ontology functions from protein’s regional
surface structures,” BMCBioinformatics, vol. 8, article 475, 2007.

[22] J. Skolnick and M. Brylinski, “FINDSITE: a combined
evolution/structure-based approach to protein function
prediction,” Briefings in Bioinformatics, vol. 10, no. 4, pp.
378–391, 2009.

[23] L. Sael, M. Chitale, and D. Kihara, “Structure- and sequence-
based function prediction for non-homologous proteins,” Jour-
nal of Structural and Functional Genomics, vol. 13, no. 2, pp. 111–
123, 2012.

[24] C. Huttenhower, M. Hibbs, C. Myers, and O. G. Troyanskaya,
“A scalable method for integration and functional analysis of
multiplemicroarray datasets,” Bioinformatics, vol. 22, no. 23, pp.
2890–2897, 2006.

[25] S. Brady andH. Shatkay, “EpiLoc: a (working) text-based system
for predicting protein subcellular location,” Pacific Symposium
on Biocomputing, pp. 604–615, 2008.

[26] A. Wong and H. Shatkay, “Protein function prediction using
text-based features extracted from the biomedical literature: the
CAFA challenge,” BMC Bioinformatics, vol. 14, supplement 3,
article S14, 2013.

[27] D. Devos and A. Valencia, “Practical limits of function predic-
tion,” Proteins, vol. 41, no. 1, pp. 98–107, 2000.

[28] M. Bashton and C. Chothia, “The generation of new protein
functions by the combination of domains,” Structure, vol. 15, no.
1, pp. 85–99, 2007.

[29] M. Punta, P. C. Coggill, R. Y. Eberhardt et al., “The Pfam protein
families database,” Nucleic Acids Research, vol. 40, no. 1, pp.
D290–D301, 2012.

[30] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia,
“SCOP: a structural classification of proteins database for the
investigation of sequences and structures,” Journal of Molecular
Biology, vol. 247, no. 4, pp. 536–540, 1995.

[31] S. F. Altschul,W. Gish,W.Miller, E.W.Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal ofMolecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[32] R. D. Finn, J. Clements, and S. R. Eddy, “HMMER web
server: interactive sequence similarity searching,”Nucleic Acids
Research, vol. 39, supplement 2, pp. W29–W37, 2011.

[33] J. Schug, S. Diskin, J. Mazzarelli, B. P. Brunk, and C. J. Stoeckert
Jr., “Predicting gene ontology functions from ProDom and
CDD protein domains,” Genome Research, vol. 12, no. 4, pp.
648–655, 2002.

[34] B. Hayete and J. R. Bienkowska, “Gotrees: predicting go associ-
ations from protein domain composition using decision trees,”
Pacific Symposium on Biocomputing, pp. 127–138, 2005.

[35] N. J. Mulder, R. Apweiler, T. K. Attwood et al., “New develop-
ments in the InterPro database,” Nucleic Acids Research, vol. 35,
supplement 1, pp. D224–D288, 2007.

[36] N. Song, R. D. Sedgewick, and D. Durand, “Domain archi-
tecture comparison for multidomain homology identification,”
Journal of Computational Biology, vol. 14, no. 4, pp. 496–516,
2007.

[37] K. Forslund and E. L. L. Sonnhammer, “Predicting protein
function from domain content,” Bioinformatics, vol. 24, no. 15,
pp. 1681–1687, 2008.

[38] R. Rentzsch and C. A. Orengo, “Protein function prediction
using domain families,” BMC Bioinformatics, vol. 14, supple-
ment 3, article S5, 2013.

[39] X.-M. Zhao, Y. Wang, L. Chen, and K. Aihara, “Protein domain
annotation with integration of heterogeneous information
sources,” Proteins: Structure, Function and Genetics, vol. 72, no.
1, pp. 461–473, 2008.

[40] M. A. Messih, M. Chitale, V. B. Bajic, D. Kihara, and X. Gao,
“Protein domain recurrence and order can enhance prediction
of protein functions,” Bioinformatics, vol. 28, no. 18, pp. i444–
i450, 2012.

[41] H. Fang and J. Gough, “A domain-centric solution to functional
genomics via dcGO Predictor,” BMC Bioinformatics, vol. 14,
supplement 3, article S9, 2013.

[42] Z. Teng, M. Guo, X. Liu, Q. Dai, C.-Y. Wang, and P. Xuan,
“Measuring gene functional similarity based on group-wise
comparison of GO terms,” Bioinformatics, vol. 29, no. 11, pp.
1424–1432, 2013.


