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A B S T R A C T   

Alzheimer’s disease (AD) leads to gradual memory loss including other compromised cognitive abilities. 
Acetylcholinesterase (AChE), an important biochemical enzyme from the cholinesterase (ChE) family, is 
recognized as primary pharmacological target for treating AD. Currently marketed drugs for AD treatment are 
primarily AChE inhibitors and coumarin derivatives comprising a wide variety of pharmacological activities have 
proved their efficacy towards AChE inhibition. Ensaculin (KA-672 HCl), a compound that belong to the coumarin 
family, is a clinical trial candidate for AD treatment. Therefore, a ligand library was prepared with 60 reported 
coumarin derivatives for field-based 3D-QSAR and pharmacophore modelling. The field-based 3D-QSAR model 
obtained at partial least square (PLS) factor 7, was the best validated model that predicted activity closer to 
original activity for each ligand introduced. The contour maps demonstrated spatial distribution of favourable 
and unfavorable steric, hydrophobic, electrostatic and H-bond donor and acceptor contours around coumarin 
nucleus. The best pharmacophore model, ADHRR_1 exhibited five essential pharmacophoric features of four 
different traits for optimum AChE inhibition. Virtual screening through ADHRR_1 accompanied with molecular 
docking and MM/GBSA identified 10 HITs from a 4,00,000 coumarin derivatives from PubChem database. HITs 
comprised docking scores ranging from − 12.096 kcal/mol to − 8.271 kcal/mol and compared with the reference 
drug Donepezil (-8.271 kcal/mol). ADME properties analysis led into detecting two leads (HIT 1 and HIT 2) 
among these 10 HITs. Molecular Dynamics Simulation indicated thermodynamic stability of the complex of lead 
compounds with AChE protein. Finally, thorough survey of the experimental results from 3D-QSAR modelling, 
pharmacophore modelling and molecular docking interactions led us to develop the lead formula I for future 
advancements in treating AD through AChE inhibitors.   

1. Introduction 

Neurodegenerative AD is abstracted as a process that progresses from 
normal cognitive function to mild cognitive impairment (MCI) through 
degeneration of brain-cholinergic neurons followed by dementia due to 
interrupted ACh-mediated neurotransmission (Bartus et al., 1982). It is 
anticipated that 139 million people would suffer from dementia and 
50–60% of these individuals will develop AD by 2050 (Moreira et al., 
2022). Neurodegeneration, declining brain functions, apathy, anxiety, 
depression and memory loss are key signs of AD. Aggression, halluci
nations, and delusions grow more frequently as illness worsens 

(Lyketsos et al., 2011). AChE, an important biochemical enzyme from 
cholinesterase family, is recognized as primary pharmacological target 
for treating AD (Arslan et al., 2020; Cavdar et al., 2019; Poslu et al., 
2023). AChE regulates neuronal signal transmission by controlling ChE 
in CNS (central nervous system). AChE protein comprises unique 
structure consisting of a gorge region linked catalytic active site (CAS) 
and a peripheral anionic site (PAS) (Eckroat et al., 2020). AChE enzyme 
catalyzes acetylcholine (ACh) to hydrolyze into acetate and choline, 
thereby stopping synaptic neuronal transmission (Moreira et al., 2022), 
while AChE inhibitors seize esterase activity and prevent disease pro
gression (Fig. 1). The presynaptic reduction of acetylcholine (ACh) in AD 
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is mostly due to cholinergic neuron loss in specific regions like cortex 
and hippocampus of brain (Asadipour et al., 2013). Randomized clinical 
studies of AChE inhibitors in patients with AD have been demonstrated 
to block neurodegenerative effects in cortex, hippocampus, and basal 
forebrain (Moss, 2020). 

Coumarin derivatives demonstrated a diverse array of pharmaco
logical activities, encompassing anti-microbial, hepato-protective, anti- 
inflammatory, anti-allergic, anti-HIV, anti-oxidant, anti-diabetic, anti
nociceptive, antidepressant, anti-asthmatic, anti-cancer and anti-AD 
properties (George et al., 2022). In context of AD, the 
coumarin-piperazine-benzopyran hybrid molecule, Ensaculin (KA-672 
HCl), has exhibited AChE inhibition during clinical trials (Anand et al., 
2012). Pharmacophore mapping and field-based 3D-QSAR are widely 
utilized tools to accelerate the drug development process (Kapetanovic, 
2008). As per IUPAC, pharmacophore modelling ensures electronic and 
steric attributes required for achieving optimal supramolecular in
teractions with target protein to exert a biological response (Wermuth 
et al., 1998). A pharmacophore model represents a collection of mole
cules and their spatial arrangement by abstracting the essential chemical 
properties crucial for bio-activity (Schaller et al., 2020). To explore the 
required structural conformation and interactions of bioactive ligands 
within receptor proteins, molecular docking techniques are employed 
(Yadav et al., 2020). MM/GBSA, MD Simulations and H-bond analysis 
are the reliable methods to evaluate thermodynamic stability of 
lead-protein complexes while ADMET study could confirm drug-likeness 
of the HITs through pharmacokinetic and toxicity profiling (Das et al., 
2023). 

2. Materials and method 

2.1. Computer and software information 

The research work including protein preparation, ligand prepara
tion, field-based 3D-QSAR, ADME calculation and pharmacophore 
modelling was carried out using Maestro 12.9 software of Schrodinger 
LLC (NY-USA). Pharmacophore modelling and virtual screening data
base preparation were carried out using the PHASE module. The virtual 
screening workflow (VSW) was used for virtual screening (Venkatesan 
et al., 2018). For molecular modelling and docking research, a HP 
Proliant ML 150-Gen 9 with an Intel Xeon v4 E5-2620 v4 @2.10 GHz, 32 
logical processors, 16 cores, 64 GB RAM, and Ubuntu 20.04.2 LTS 
operating system (OS). Schrodinger LLC (NY-USA) and ChemDraw 
Professional softwares were employed for drawing compounds for 
ligand library. 

2.2. Protein preparation 

Protein preparation in computational biology is the transformation 
of macromolecular structures into more suitable form for molecular 
docking. It is important to carry out procedures, such as optimization, H- 
bond (Hydrogen bond) addition, removal of atomic clashes and water 
molecules from protein crystal structures prior to docking. 3D crystal 
structure of human AChE protein (4M0E) in complex with dihydrotan
shinone I was obtained from Protein Data Bank (https://www.rcsb. 
org/). 4M0E comprised good values for standardizing parameters 
including Resolution = 2.00 Å, Free R-value = 0.196 and Observed R- 
value = 0.162 (Jana et al., 2023). Maestro’s protein preparation wizard 
(Schrodinger, LLC, New York, NY, USA) was utilized to prepare protein. 
This tool cleaned up the protein, corrected bond orders and charges, 
added missing hydrogens and took out the water molecules. Finally, 
OPLS4 force field reduced and optimized the protein structure. 

2.3. Ligand preparation 

Total 60 molecules comprising good AChE inhibitory activity (IC50 
range: 0.059–83.76 μM) were collected from literature survey (Table S1) 
for preparing ligand library for 3D-QSAR and pharmacophore modelling 
(Asadipour et al., 2013; Mishra et al., 2024). The Epik tool of LigPrep 
module of Maestro 12.9 was utilized for ligand preparation and only one 
conformer per ligand with least energy state were generated using force 
field, OPLS4. Which was followed by pH neutralization and desalting 
(Das et al., 2023; Madhavi Sastry et al., 2013). IC50 values in micromolar 
concentration were added into dataset and converted into pIC50 using 
the following formula (Kuchana et al., 2022):  

pIC50 = 6-log10 (IC50)                                                                             

2.4. Field-based 3D-QSAR modeling 

Field-based algorithm was utilized to generate 3D-QSAR models 
from prepared library of 60 ligands. Models were generated through 
random distribution of ligands into test set (30%) and training set 
(70%). Partial Least Square (PLS) factors were utilized to linearly fit 5 
Gaussian parameters (Steric, Electrostatic, Hydrophobic, H-bond 
acceptor and H-bond donor). Linear regression statistics used these 5 
parameters at highest number of PLS factors. Analysis of scores for cross- 
regression coefficient (Q2), standard deviation (SD), regression coeffi
cient (R2), root-mean-squared error (RMSE), R2 cross validation (R2 CV) 
and Pearson-r led us the best QSAR model. The best obtained model was 
examined through visual representation of 5 distinct coloured contour 
maps to demonstrate desired spatial arrangements of functional 
moieties. 

Fig. 1. Mechanism of action of AChE inhibition in AD.  
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2.5. Pharmacophore modelling 

Pharmacophore modelling was conducted employing Phase mod
ulev4.6 in Maestro 12.9 of Schrödinger (Das et al., 2023). All 60 pre
pared coumarin derivatives were incorporated to “Develop 
Pharmacophore Hypothesis” panel of PHASE tool of Maestro. Pharma
cophore hypothesis models were generated considering six pharmaco
phoric features including H-bond acceptor (A), H-bond donor (D), 
aromatic ring (R), hydrophobic (H) positively charged group (P) and 
negatively charged group (N). Best hypothesis model was sorted out 
through study of survival score, fitness score and molecular alignment 
with pharmacophore models. The best performing model was secured 
assigning active with pIC50 ≥ 6.5 and inactive with pIC50 ≤ 4.5. All 
pharmacophore hypotheses were validated through enrichment calcu
lation through screening of active molecules reported in literatures 
against 1000 decoys (Avg. M.W. = 400 kDa) obtained from Schrödinger 
database (http://www.schrodinger.com/glidedecoyset) and enrichment 
calculation was carried out. Enrichment factor (EF) was used to describe 
number of known inhibitors recovered during screening (Devi et al., 
2015). Standard enrichment calculation parameters including EF 1% 
(enrichment in the top 1% of the decoys), Phase Hypo Score, and 
BEDROC160.9 score was analyzed to validate the best pharmacophore 
model. 

2.6. Dataset preparation and virtual screening 

400,000 exclusive structural records of coumarin derivatives in the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov) were used in 
this investigation. LigPrep and Epik tools of maestro were used to create 
a database that expanded each molecule’s tautomeric conformations 
and protonation states at pH 7. Electrostatic interactions were screened 
by dielectric solvation technique based on distance. Structures with high 
energy were excluded by fixing relative energy-difference maximum at 
10.0 kcal/mol. Indexing of the database was done through Phase and 
pharmacophoric sites were constructed for screening (Saxena et al., 
2018). The most validated and trustworthy pharmacophore model was 
used to perform virtual screening in a hierarchal approach via Phase 
database screening as well as High Throughput Virtual Screening 
(HTVS). 

2.7. Molecular docking 

The molecular docking study of screened molecules was conducted 
using Maestro 12.5 software. Grid-based Ligand Docking with Ener
getics (GLIDE) tool explored protein-ligand interaction energies (kcal/ 
mol) and calculated flexibility of the ligands. Ligands under consider
ation had been docked via Standard Precession (SP) and Extra Preces
sion (XP) molecular docking. The key metrics including hydrophobic, pi- 
pi stacking and H-bonding interactions were analyzed to identify HIT 
molecules. 

2.8. ADME calculations 

Bioavailability prediction is one of the vital stages in drug discovery 
and development, since it prevents many medications from succeeding 
in preliminary phases of clinical trials because of their poor pharma
cokinetic features (Storelli et al., 2022). The ADME properties including 
Absorption, Distribution, Metabolism, and Excretion of 10 identified 
HITs were evaluated through QikProp tool of Maestro 12.9 for deter
mination of pharmacokinetic properties like hydrophobicity, water 
solubility, human oral absorption, blood brain barrier permeability and 
gastrointestinal permeability ( Turner et al., 2007). 

2.9. Binding free energy calculation 

Free binding energies for all HITs were determined to hypothesize 

thermodynamic stability of the ligands within target protein by Prime 
MMGBSA technique. Binding energy of docked complexes were mini
mized and binding free energy was estimated considering water as sol
vent via OPLS force field (Suryadevara et al., 2016). Free energy of 
binding (GBinding) was calculated using Equation (1).  

ΔGBinding = ΔE + ΔGSolv + ΔGSA                                       Equation 1 

Where, ΔE = EComplex – (EProtein + ELigand); ΔGSolv = ΔGSolvComplex – 
(ΔGSolvProtein + ΔGSolvLig);  

ΔGSA = ΔGSA Complex – (ΔGSA Protein + ΔGSA Ligand)                             

[Terms: Solv = solvation energy; SA = surface area associated en
ergy; E = energy minimized states of the protein-ligand complex] 

2.10. Molecular Dynamics stimulation 

MD simulation study was performed for 100ns for the most effica
cious compounds HIT 1 and HIT 2 for analysis of protein-ligand binding 
interactions through GROMACS 2021.6 software (Saini et al., 2023). 
Complex topology of TIP3P model was generated using 
CHARMM36-Mar2019 force field. A solvate water box was used with 
minimum 1.5 nm distance from protein surface. Counter ions like Na+

and Cl− were added for neutralizing the protein-ligand complexes. The 
complex systems undergone energy minimization through steepest 
descent algorithm, NVT equilibration (500 ps at 310K) using 
Nose-Hoover thermostat with Coupling constant of 0.1 ps and NPT 
equilibration (500 ps at 1 bar pressure) with the use of 
Parrinello-Rahman algorithm (Evans et al., 1985; Parrinello et al., 
1981). Production run of 100 ns was conducted and time step of 2 fs was 
fixed. LINear Constraint Solver (LINCS) algorithm calculated bond 
length constrains (Hess et al., 1997). In addition, Particle mesh Ewald 
(PME) strategy with grid spacing of 0.16 nm, cut-off radius of 1.2 nm 
and van der Waals cut-off distance of 1 nm were employed. The MD 
trajectory was evaluated through GROMACS analysing parameters such 
as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation 
(RMSF) and Radius of Gyration (rGy) (Kumar et al., 2022). 

3. Results and discussion 

3.1. Field-based 3D-QSAR modelling 

The 3D-QSAR models generation based on Gaussian field is a 
modified version of CoMFA and CoMSIA in computer aided drug 
designing. Gaussian field-based 3D-QSAR was responsible for predicting 
AChE inhibitory activity and providing three-dimensional information 
about essential spatial features of precisely aligned 60 coumarin ligands 
from ligand library (Fig. 2). 

PLS linear regression analysis was utilized to generate QSAR models 
and best model was achieved at PLS factor 7 with a SD of 0.2754, R^2 of 
0.9644, R^2 CV of 0.1945, R^2 Scramble of 0.8208, Stability of 0.25, F 
value of 104.6, P value of 6.86E-18, RMSE of 0.87, Q^2 of 0.595 and 
Pearson-r of 0.854. pIC50 values of ligands were dependent variable 
against 5 independent Gaussian parameters for the chosen 3D-QSAR 
model (Table 1). Values of SD and RMSE closer to 0 indicated negli
gible error probability at PLS7. R2 value nearer to 1 reflected excellent 
correlation between predicted activity and original activity for training 
set while Q2 showed good correlation within test set. Low value of 
probability of errors (P) and high value for variance ratio (F) signified 
great predictivity of the selected model. External validation of the best 
model was confirmed by Pearson-r value exhibiting correlation between 
observed activity and predicted activity within test set. Pearson-r value 
close to +1 established strong positive linear correlation (Marondedze 
et al., 2020). 

For further validation of selected 3D-QSAR model, two scatter plots 
were produced for exhibiting graphical representation of predicted 
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activity vs experimental activity for training and test sets. Scatter plots 
denoted all the molecules in both data sets lies close to the linear 
regression line confirming reliability of the model at PLS 7 (Fig. 3). 

3.2. Contour map analysis 

The PHASE module of Maestro facilitated five distinct contour plots 
visualization and demonstrated percentage Gaussian field contributions 
for steric (38.1%), electrostatic (10.3%), hydrophobic (27.8%), H-Bond 

Donor (6.9%) and H-Bond acceptor (16.9%) contours. The different 
coloured contours estimated desired spatial characteristics around 
aligned coumarin scaffold to exert AChE inhibitory activity to treat AD 
while red coloured regions indicated unfavorable contours for each 
Gaussian field (Fig. 4). Green coloured contours representing steric 
contributions suggested bulky substitutions are preferred at C-3, C-6 and 
C-8 positions of coumarin scaffold for better activity. Blue electrostatic 
contours indicated favourable electropositive regions over C-4, C-5, C-6 
and C-7 on the coumarin plane and nearby regions of C-3 while red 
coloured sites near C-3, C-6 and C-8 outside coumarin plane favoured 
electronegative attachments. The favourable spot for H-Bond donor 
groups was found at C-4 presented in magenta and double bonded ox
ygen at C-2 and its nearby yellow-green coloured positions indicated 
beneficial as H-Bond acceptor region. Cyan coloured favourable hy
drophobic contours were found to be distributed throughout the plot 
outside coumarin plane and mainly preferred at C-3, C-6 and C-8 posi
tions while those are not desired at C-7. The numbering system of 
coumarin represented in Fig. 11was utilized for explaining the contour 
maps (see Fig. 12). 

3.3. Pharmacophore modelling 

The pharmacophore modelling benefits from ligand-based as well as 
structure-based screening techniques to quickly screen millions of 
chemical entities and considered as a trustworthy lead hopping method 
that can extract a wider range of actives than conventional structure- 
based pharmacophore method (Jana et al., 2019). Coumarin based 
AChE inhibitors have shown significant promise against AD (Onder 
et al., 2022). In the current study, sixty distinct compounds with 
coumarin Scaffold, were chosen from literatures within the range of 
pIC50 values of 4.5–6.5. Total ten hypotheses were produced assigning 
actives with pIC50 values ≥ 6.5 and inactive molecule pIC50 values ≤ 4.5 

Fig. 2. Aligned ligands for QSAR modelling.  

Table 1 
Field-based 3D-QSAR modelling parameters.  

PLS Factors SD R^2 R^2 CV R^2 Scramble Stability F P RMSE Q^2 Pearson-r 

1 1.0614 0.3544 0.077 0.3319 0.916 18.1 0.000162 1.14 0.3085 0.6008 
2 0.6996 0.728 0.0323 0.4992 0.408 42.8 9.00E-10 1.02 0.4493 0.6985 
3 0.6001 0.8061 0.1582 0.5823 0.438 43 3.72E-11 0.89 0.5776 0.8026 
4 0.5148 0.8619 0.1649 0.6536 0.399 46.8 1.77E-12 0.8 0.6573 0.8579 
5 0.4504 0.8978 0.1417 0.716 0.32 51 1.75E-13 0.75 0.6979 0.8963 
6 0.3792 0.9301 0.1289 0.778 0.267 62.1 7.00E-15 0.8 0.6602 0.9024 
7 0.2754 0.9644 0.1945 0.8208 0.25 104.6 6.86E-18 0.87 0.595 0.854  

Fig. 3. Scatter plot of experimental activity versus predicted activity at PLS factor 7 - (a) Training set (b) Test set.  
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within ligand library and pharmacophore models with distinct phar
macophoric fingerprints (ADHRR, AHHRR, AHRRR, AARRR, DHRR and 
HRRR) were generated (Table 2). 

All models were analyzed for their ligand fitness scores and ability to 
distinguish between active and inactive and best pharmacophore model 
was obtained as ADHRR_1 comprised of one H-bond acceptor (A), one H- 
bond donor (D), one hydrophobic (H), and two aromatic rings (R) 
(Fig. 5). The best model was chosen based on survival score (5.464), 
vector score (0.999), volume score (0.848), BEDROC score (0.575) and 
site score (0.886) for virtual screening of coumarin derivatives from 
PubChem database (Table 2). 

Fig. 4. Contour maps - A. Steric; B. Electrostatic; C. Hydrophobic; D. H-bond acceptor; E. H-bond donor.  

Table 2 
Generated pharmacophore models with scoring parameters.  

Sr. 
No. 

Models Survival 
Score 

Vector 
Score 

Volume 
Score 

BEDROC 
Score 

Site 
Score 

1 AARRR_1 5.136 0.905 0.741 0.608 0.730 
2 ADHRR_4 5.180 0.989 0.654 0.602 0.822 
3 ADHRR_1 5.464 0.999 0.848 0.575 0.886 
4 ADHRR_3 5.258 0.967 0.750 0.576 0.773 
5 DHRR_1 5.059 0.992 0.797 0.582 0.822 
6 AHRRR_1 5.532 0.938 0.832 0.560 0.848 
7 ADHRR_5 5.121 1.000 0.697 0.571 0.695 
8 AHHRR_1 5.159 0.937 0.632 0.571 0.705 
9 AHRRR_2 5.270 0.883 0.719 0.560 0.767 
10 HRRR_1 5.217 0.947 0.838 0.560 0.899  

B. Saha et al.                                                                                                                                                                                                                                    



Current Research in Structural Biology 7 (2024) 100124

6

3.4. Pharmacophore model validation 

Best obtained pharmacophore model was verified through enrich
ment calculations before database screening in order to evaluate quality 
of model to differentiate between inactive and active. The best model, 
ADHRR_1, showed high EF1% value (11.92) whereas BEDROC160.9, 
Phase Hypo Score scores were 11.92, 0.64 and 0.90, respectively 
(Table 3) that confirmed high probability of identifying good hits 
through this model during virtual screening. Out of 65 active com
pounds, ADHRR_1 managed to rank 65 out of 65 actives with no 
excluded volume and exhibiting 3 out of 4 pharmacophoric matches. 

In pharmacophore models, a good sensitivity versus specificity per
formance was established by using receiver operating characteristic 
(ROC) curve. The distinguishing ability of chosen model for identifying 
true positives and false positives was determined by ROC plot and per
centage screen plot (Florkowski, 2008) (Fig. 6). 

3.5. Virtual screening 

Virtual screening has become a crucial tool in search of innovative 
drug-like molecules. Large variety of comparable and dissimilar meth
odological approaches are accessible in databases used for lead com
pound screening (Reddy et al., 2007). Present study employs PubChem 

database for assessing chemical structures as it provides thorough 
chemical data that is beneficial for drug discovery (Kim, 2016). A library 
of 4,00,000 molecules downloaded from PubChem database were pre
pared in order to perform virtual screening. PubChem database was 
screened through PHASE tool in maestro using selected pharmacophore 
model, ADHRR_1 to yield 2,49,086 molecules with desired pharmaco
phoric traits including H-bond donor and acceptor, hydrophobic system 
and aromatic ring system. All 2,49,086 molecules were taken for High 
Throughput Virtual Screening (HTVS) to filter out 1,97,527 compounds 
for performing SP molecular docking and ranked according to docking 
scores. Top 1% (1975) of the ranked ligands of glide SP docking were 
chosen for XP molecular docking based on their fitness score (>2.3). XP 
docking scores brought out 245 compounds with molecular docking 
score greater or equal to donepezil (− 8.271 kcal/mol) and were 
considered for MM/GBSA for free energy of binding. Virtual screening 
steps have been depicted in Fig. 7. 

3.5.1. Molecular docking 
Molecular docking stands as a valuable computational tool in the 

realms of drug design, lead optimization, and virtual screening, facili
tating the discovery of novel bioactive molecules through the analysis of 
protein-ligand binding interactions (Guedes et al., 2014). This approach 
provides detailed insights into molecular recognition, proving 

Fig. 5. A. spatial arrangement of pharmacophoric features, B. Distance measured between pharmacophoric features, C. Alignment of actives D. Alignment of in
actives for pharmacophore model ADHRR_1. 

Table 3 
Enrichment results of the pharmacophore models.  

Models EF1% BEDROC160.9 Scores Phase Hypo Scores Total Actives Ranked Actives Matches Excluded Volumes 

AARRR_1 2.98 0.19 0.92 65 65 3 of 4 No 
ADHRR_4 8.94 0.58 0.91 65 64 3 of 4 No 
ADHRR_1 11.92 0.64 0.90 65 65 3 of 4 No 
ADHRR_3 4.47 0.29 0.89 65 65 3 of 4 No 
DHRR_1 7.45 0.41 0.89 65 52 3 of 4 No 
AHRRR_1 4.47 0.34 0.89 65 62 3 of 4 No 
ADHRR_5 13.41 0.86 0.88 65 65 3 of 4 No 
AHHRR_1 4.47 0.21 0.88 65 65 3 of 4 No 
AHRRR_2 2.98 0.15 0.88 65 64 3 of 4 No 
HRRR_1 5.96 0.44 0.87 65 49 3 of 4 No  
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instrumental in the fields of drug discovery and medicinal chemistry 
(Jakhar et al., 2020). Glide dock SP and XP were performed to rank and 
sort out coumarin derivatives having dock scores (range: − 8.271 to 
− 13.01 kcal/mol) higher than or equals to Donepezil (− 8.271 kcal/
mol). HIT molecules exerted several interactions (Table S2) with amino 
acid residues of AChE including pi-pi interactions with TRP 286 and TRP 
284, hydrophobic interactions with TYR 41, PHE 338, TYR 337, ILE 451, 
PHE 297, TYR 72 and formed H-bonds with SER 203, PHE 295, ARG 
296, TYR 124, HIP447, SER 203 and GLU202. Detailed 2D and 3D 
binding interactions of HIT1, possessing highest docking score and 
reference compound donepezil have been depicted in Fig. 8. Further
more, Fig. 9 showed binding poses of all identified HIT molecules 
following MM/GBSA, within AChE protein cavity. 

3.6. MM/GBSA calculations 

Binding free energy of for small molecules to biological macromol
ecules was determined through molecular mechanics energies in com
bination with generalized born surface area continuum solvation (MM/ 
GBSA) methods (Genheden et al., 2015). All 245 molecules refined 
through XP docking, were exposed to MM/GBSA for assessing thermo
dynamic compatibility within the protein cavity of 4M0E through 
calculating free energies of binding (Table S3). Relative binding affinity, 
total binding energy and energies of van der Waals (VdW) interactions 
towards AChE binding were determined by MM-GBSA technique (Dur
rant et al., 2011). All 245 molecules had binding energies within a 

diverse range from − 72.26 to − 28.96 kcal/mol while score of reference 
drug, donepezil elicited as − 35.56 kcal/mol (Table 4). A thorough 
analysis of thermodynamic stability results of MM/GBSA study and 
binding affinity data from molecular docking led into identification of 
10 HIT molecules namely - HIT1, HIT2, HIT3, HIT4, HIT5, HIT6, HIT7, 
HIT8, HIT9 and HIT10 having PubChem IDs of 134139986, 134155007, 
156011162, 156013172, 26795926, 19185913, 134152051, 
100794119, 122280404, 2984957 (Fig. 10). MMGBSA dG Bind scores of 
all HITs were identified within the range of − 70.94 to − 55.33 kcal/mol 
while their docking scores lies between − 12.096 kcal/mol and 8.271 
kcal/mol. 

3.7. ADMET 

ADMET property of all 10 HITs were estimated for determining the 
pharmacokinetic characteristics using QikProp module of Schrödinger 
10.7 as QikProp provides a range for contrasting a specific molecule 
characteristics of almost 95 percent of recognized medications and 
examined parameters according to “Lipinski’s rule of five” (CAL, 2004; 
Lipinski et al., 1997). All identified HITs showed drug-like ADMET 
characteristics and showed favourable toxicological profile (Table 5) 
(Verma et al., 2018). All HITs having molecular weight within 307.348 
Da and 482.440 Da, exhibited significantly high percentage of Human 
Oral Absorption (HOA) while HIT1, HIT2, HIT5 and HIT8 were high
lighted with 100% HOA. Hydrogen bond acceptors (HBA) ranged from 4 
to 8. The analogues’ high HBA count provided significant contribution 

Fig. 6. A. ROC plot; B. Percentage of screen plot for ADHRR_1 pharmacophore model.  

Fig. 7. Virtual Screening workflow.  
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towards improved affinity and interactions for AChE. Caco cell perme
ability (QPPCaco) of the top HITs is within an acceptable range (>70), 
estimated efficient absorption and dispersion of HITs. Finally, analysis 
all pharmacokinetic parameters including Polar surface area, H-bond 
acceptor and donor, water solubility, lipophilicity and permeability 
through blood brain barrier (BBB), two (HIT1 and HIT2) of the 10 HITs 
were identified as leads and considered for MD simulations study to 
analyze stability of protein-ligand complexes. 

3.8. Molecular Dynamics 

Molecular dynamics (MD) simulation was performed on two ob
tained leads for 100 ns using GROMACS 2021.6 to explore thermody
namic compatibility of protein-ligand complexes. Root Mean Square 
Deviation (RMSD) plot was found within 0.2–0.28 nm range while 
average RMSD obtained 0.24 nm throughout the trajectory (Fig. 11A). 
Gyration radius (rGy) evaluated compactness of protein around ligand 
and found between 2.30 and 2.33 nm which signified high complex 

stability with negligible variation during trajectory of ~3 nm (Fig. 11B). 
The RMSF studied indicated dynamic protein residues around ligand 
and values depicted within a range of 0.06–0.4 nm indicated no signif
icant fluctuations internally (Fig. 11C). Higher oscillations were 
observed in residues of various regions such as 78–85, 270–275, and 
490–495 along with terminal residues of 4M0E protein, which might be 
due to presence of loops in that region and free end at terminal regions. 
RMSF value for HIT1 and HIT2 was found to vary between 0.06-0.37 nm 
and 0.02–0.15 nm, respectively, signified that atoms of small ligands 
were oscillating during amino acid interactions present inside catalytic 
binding pocket of AChE (Fig. 11D). Furthermore, H-bond profiling and 
hydrogen bond occupancy were assessed for both leads and was 
observed to be 100% (Fig. 11E) indicating 2–4 and 1–3 hydrogen bond 
interactions, respectively for HIT1 and HIT2. Finally, hydrogen bond 
distance distribution was recorded and was found that all H-bonds 
formed within the applied cut-off value of 0.35 nm for both the com
plexes confirmed significant role of H-bonding for stabilization of 
protein-ligand complexes (Fig. 11F). Overall analysis of the trajectory 

Fig. 8. Protein-ligand 2D and 3D interactions of best HIT 1 and Donepezil with 4M0E.  
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confirmed that both complexes were well stabilized thermodynamically 
throughout 100ns within the 4M0E protein. 

4. Development of lead formula 

A combination of multi-stage in silico analysis of derivatives con
taining small molecule explored many vital pharmacophoric as well as 
spatial features around coumarin scaffold to exert good AChE binding 
for AD. Gaussian field-based 3D-QSAR model exposed key spatial ar
rangements of substitutions with distinct physicochemical characteris
tics for betterment of AChE inhibitory activity. The contour plot analysis 
suggested that bulky steric and hydrophobic groups are preferred at C-3, 
C-6 and C-8 positions; electropositive groups are favourable at C-4, C-5, 
C-6, C-7 and nearby regions of C-3; while H-Bond donors are desired at 
C-4 and double bonded oxygen at C-2 is a vital H-Bond acceptor for 

AChE protein binding. The best obtained pharmacophore model, 
ADHRR_1 reflected essentiality of H-Bond donors, H-Bond acceptors, 
aromatic ring and hydrophobic systems in its pharmacophoric finger
prints at precise distance from each other in three-dimensional space. 
Thorough analysis of pharmacophore model dependent virtual 
screening, GLIDE docking and MM/GBSA yielded 10 HITs with high 
dock scores and free energies of AChE binding. Structural exploration of 
protein-ligand binding interactions suggested that coumarin scaffold is 
important for AChE binding through pi-pi interactions with TRP 286 via 
ring A and with TRP 286 and TYR 34 via ring B whereas oxygen of 
carbonyl group formed H-bond with PHE 295. Finally, pharmacokinetic 
parametric analysis led into identification of two best capable leads – 
HIT1 and HIT2. Furthermore, the amide linkage present at C-3 position 
was found responsible for H-bonding interactions with TYR 124 to 
achieve stable conformation within donepezil binding pocket. R1 

Fig. 9. All HITs docked within donezepil binding pocket of 4M0E.  

Table 4 
MM/GBSA results of HITs.  

HITs MMGBSA dG 
Bind 

MMGBSA dG Bind 
Coulomb 

MMGBSA dG Bind 
Covalent 

MMGBSA dG Bind Solv 
GB 

MMGBSA dG Bind 
vdW 

Prime MMGBSA ligand 
efficiency 

134139986 − 60.19 − 20.34 − 0.41 56.63 − 49.42 − 1.77 
134155007 − 60.16 − 18.18 2.37 45.86 − 48.53 − 2.149 
156011162 − 68.7 − 31.92 8.49 57.99 − 56.13 − 1.963 
156013172 − 69.63 − 33.16 6.52 55.07 − 51.55 − 2.11 
26795926 − 56.24 − 18.95 3.62 49.85 − 47.09 − 2.25 
19185913 − 70.94 − 7.64 16.94 45.15 − 69.09 − 2.086 
134152051 − 60.66 − 25.21 0.43 55.81 − 46.88 − 1.784 
100794119 − 58.52 − 20.28 3.38 53 − 49.04 − 2.544 
122280404 − 65.67 − 23.46 0.77 47.88 − 52.06 − 2.526 
2984957 − 55.33 − 28 2.43 48.72 − 44.25 − 2.305 
Donepezil − 35.56 − 11.11 − 0.75 57.56 − 37.61 − 1.27  
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attached to amide linked chain could be substituted with phenyl, indole, 
3H-cyclopentapyridazine or imidazole for optimum potentials. At C-7 
position, R2 substitutions are preferable as phenol, chloro-substituted 
phenol, difluoro phenol, ethyl cyclopropane for better fitting into the 
binding pocket. Based on these analytical results a lead formula I was 
developed to provide a coumarin-core framework for generating novel 
leads as AChE inhibitor against AD. 

5. Conclusion 

The current study involved development of optimal 3D-QSAR model 
at PLS factor 7 with predictiveness for AChE inhibition and 

demonstrated desired location of pharmacophoric groups which was 
further corroborated by the best-validated pharmacophore model, 
ADHRR_1, featuring four distinct traits. Utilizing the pharmacophore 
model virtual screening was carried out to concentrate the 400000- 
molecule containing PubChem database. Glide dock SP and XP sorted 
out 245 molecules having better binding affinity compare to reference 
drug donepezil. Extensive investigation of docking scores and MM/ 
GBSA free binding energies led to find out thermodynamically stable 10 
HITs having docking scores between − 8.271 kcal/mol and − 12.096 
kcal/mol. Results of ADME analysis for 10 HITs indicated that HIT1 and 
HIT2 as lead molecules having docking scores of − 12.096 kcal/mol and 
− 11.666 kcal/mol along with MMGBSA dG Bind scores of − 60.19 kcal/ 

Fig. 10. Structure of HIT molecules.  
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mol and − 60.16 kcal/mol, respectively and consisted of 100% HOA. 
Furthermore, MD simulations certified that both lead-complexes were 
thermodynamically stable throughout the 100ns trajectory. Finally, a 
lead formula I was developed from the outcomes of 3D-QSAR, 

pharmacophore modelling and molecular docking interactions to pro
vide insight of crucial structural and binding properties for developing 
novel AChE inhibitors for future advancements in treating AD. 

Table 5 
ADME profiling of HITs.  

HITs 
(Recommended 
range) 

mol MW 
(130.0–725.0) 

PSA 
(above 
100) 

DonorHB 
(0.0–6.0) 

Accept HB 
(2.0–20.0) 

QPlogPo/w 
(− 2.0 to 
6.5) 

QPlogS 
(<5.0) 

QPlogHERG 
(above − 5.0) 

QPlogBB 
(− 3.0 to 
1.2) 

QPPMDCK 
(Great: >500 
nm/s) 

% HOA 
(>80% =
high; <25% 
= poor) 

HIT1 472.927 95.537 1.000 4.750 6.109 − 8.156 − 7.753 − 1.182 591.095 100.00 
HIT2 376.411 97.119 1.000 4.750 4.297 − 6.265 − 6.755 − 1.293 230.009 100.0 
HIT3 482.440 134.634 1.000 8.000 4.124 − 7.074 − 7.311 − 2.173 122.145 87.148 
HIT4 452.506 134.446 1.000 8.000 3.595 − 6.235 − 6.202 − 2.173 49.641 85.152 
HIT5 341.338 83.590 0.000 4.750 3.797 − 5.165 − 6.238 − 0.795 741.259 100.00 
HIT6 455.509 102.102 0.000 6.500 5.206 − 7.277 − 7.246 − 1.304 263.286 93.631 
HIT7 456.472 96.343 1.000 4.750 5.571 − 7.252 − 7.276 − 1.175 440.832 95.996 
HIT8 307.348 74.501 0.000 4.000 3.834 − 5.196 − 6.394 − 0.790 460.209 100.000 
HIT9 351.361 118.754 0.000 6.000 2.782 − 4.787 − 6.041 − 1.427 116.310 85.518 
HIT 10 327.339 98.534 0.000 6.750 2.222 − 3.380 − 5.922 − 1.135 259.930 89.021 

Range of parameters: MW – Molecular weight, QPlogBB – brain/blood partition coefficient; QPlogpo/w - octanol/water partition co-efficient; QPlogS- Solubility; % 
HOA - percentage human oral absorption; PSA - polar surface area; donorHB – H-bond Donors, Accept HB: H-bond Acceptors, QPlog HERG- Predicted IC50 for HERG 
K+ channels blockage, QPPMDCK - MDCK cell permeability. 

Fig. 11. Molecular dynamics stimulation trajectory.  
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