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EEG emotion recognition based
on cross-frequency granger
causality feature extraction and
fusion in the left and right
hemispheres

Jing Zhang, Xueying Zhang*, Guijun Chen*, Lixia Huang and

Ying Sun

College of Information and Computer, Taiyuan University of Technology, Taiyuan, China

EEG emotion recognition based on Granger causality (GC) brain networks

mainly focus on the EEG signal from the same-frequency bands, however,

there are still some causality relationships between EEG signals in the

cross-frequency bands. Considering the functional asymmetric of the left and

right hemispheres to emotional response, this paper proposes an EEG emotion

recognition scheme based on cross-frequency GC feature extraction and

fusion in the left and right hemispheres. Firstly, we calculate theGC relationship

of EEG signals according to the frequencies and hemispheres, and mainly

focus on the causality of the cross-frequency EEG signals in left and right

hemispheres. Then, to remove the redundant connections of the GC brain

network, an adaptive two-stage decorrelation feature extraction scheme is

proposed under the condition of maintaining the best emotion recognition

performance. Finally, a multi-GC feature fusion scheme is designed to balance

the recognition accuracy and feature number of each GC feature, which

comprehensively considers the influence of the recognition accuracy and

computational complexity. Experimental results on the DEAP emotion dataset

show that the proposed scheme can achieve an average accuracy of 84.91% for

four classifications, which improved the classification accuracy by up to 8.43%

compared with that of the traditional same-frequency band GC features.

KEYWORDS

electroencephalogram, emotion recognition,Granger causality (GC), cross-frequency

analysis, feature extraction, multi-feature fusion

1. Introduction

Electroencephalogram (EEG) is a kind of physiological electrical signal that can

reflect dynamic changes of the central nervous system. In recent years, EEG signals have

been widely used in emotion recognition because of their more objective response to the

emotional state (Alarcao and Fonseca, 2017; Esposito et al., 2020; Rahman et al., 2021;

Wu et al., 2022).
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Modern cognitive neuroscience has indicated that the brain

hemispheres are anatomically and functionally asymmetric

(Dimond et al., 1976; Zheng and Lu, 2015; Li et al., 2018; Cui

et al., 2020). In Zheng and Lu (2015), the cognitive differences

between the left and right hemispheres have been revealed by

analyzing the emotional cognitive characteristics induced by

emotion stimulation, and found that the right hemisphere has

more power in perceiving negative emotion. In Li et al. (2018),

the differential entropy of each pair of EEG channels at the

symmetrical position of the two hemispheres was calculated

and used to obtain the differential asymmetry (DASM) and

rational asymmetry (RASM), which has been proved to be

effective in distinguishing emotional states. In Cui et al. (2020),

a bi-hemisphere domain adversarial neural network model

was designed to effectively improve the performance of EEG

emotion recognition. Therefore, analyzing the EEG signals of the

left and right hemispheres is of great significance for improving

emotional recognition.

EEG brain network is one of the most effective methods

for analyzing EEG signals, where each EEG channel represents

a node and the connections between nodes are defined as

the edges. According to whether the edges may be directed

or not, brain connectivity can be subdivided into functional

connectivity and effective connectivity (Jiang et al., 2004; Li

et al., 2019; Cao et al., 2020, 2022). Functional connectivity is

defined as statistical interdependence among the EEG signals,

while effective connectivity can further measure the causal

relationships of EEG signals. Granger causality (GC) (Granger,

1969) is an effective connection measure and the GC brain

network has been extensively used to explore the causality

of EEG signals in recent years (Dimitriadis et al., 2016;

Tian et al., 2017; Jiang et al., 2019; Gao et al., 2020; Li T.

et al., 2020; Chen et al., 2021). Generally, the EEG signal is

usually decomposed into four bands: θ , α, β , and γ bands

to define the change in brain state. In Gao et al. (2020), the

GC brain network was constructed for β-band EEG signals

to analyze the difference between calm and stress emotion

states. In Dimitriadis et al. (2016), by calculating the cross-

frequency causal interaction between the EEG signals of θ∼α

bands under a mental arithmetic task, the mechanism of

human brain processing was deeply analyzed. However, the

causal analysis in the current studies either within the same-

frequency bands (e.g., β band) or via specific cross-frequency

interactions (e.g., θ∼α) (Yeh et al., 2016), and the effect of

the cross-frequency causal interaction between EEG signals

for on the emotion recognition is not completely analyzed.

In essence, there is a causal relationship between EEG signals

both in same-frequency and cross-frequency bands. Thus, it is

necessary to carry out causality analysis among the EEG signal

with different frequency bands and different hemispheres for

emotion recognition.

On the other hand, it is a key issue to extract effective

features from the GC brain network. The existing researches

always selects the empirical threshold to directly converted the

GC adjacency matrix into a binary data, that is, the GC values

below the threshold are set to 0, and the GC values above the

threshold value are set to 1. Then, the binary matrix is converted

to network attributes as brain cognitive features based on the

graph theory (De Vico Fallani et al., 2017; Hu et al., 2019;

Covantes-Osuna et al., 2021; Li et al., 2022). In this way, the weak

connections with lower GC values may be lost for the values

below the threshold are set to 0. Otherwise, De Vico Fallani

et al. (2012) have pointed out that the brain network exhibits

a natural high redundant connection in all frequency bands,

but the threshold method cannot effectively remove these

redundant connections. Instead of the threshold method, this

paper proposed an adaptive two-stage decorrelation (ATD)

feature extraction method to improve the performance of

emotion recognition, in which the redundant GC connections

are adaptively removed under the goal of maintaining the

optimal emotion recognition performance.

As is well-known from previous studies, a single type of GC

feature can only show a part of causality information. In order to

describe the causal interaction during emotion response more

accurately, it is necessary to integrate the same-frequency GC

features and cross-frequency GC features. Previous works on

feature fusion aim to directly combine different types of feature

vectors by concatenation, parallel or weighted fusion to improve

the recognition accuracy (Yang et al., 2019; Bota et al., 2020; Cai

et al., 2020; Li Y. et al., 2020; Yilmaz and Kose, 2021; An et al.,

2022). However, existing feature fusionmethods do not consider

the increase in computational cost caused by the increase in

feature numbers. Based on this, this paper designs a new multi-

GC feature fusion scheme, which can effectively improve the

performance of the EEG emotion recognition without increasing

the number of features.

As mentioned above, this paper mainly studies the EEG

emotion recognition based on cross-frequency GC feature

extraction and fusion in the left and right hemispheres. Our

contributions mainly focus on the following aspects: Firstly,

the EEG electrode channels are divided into the left and

right hemispheres according to their spatial position, and the

EEG signals are decomposed into θ , α, β , and γ bands. The

corresponding GC adjacency matrices are then constructed to

analyze the causality of the EEG signals. Secondly, based on

the characteristics of GC adjacency matrix, an ATD method

is further proposed to remove the redundant connections in

the GC brain network and extract the causal features for

emotion recognition. Finally, a new weighted feature fusion

scheme is designed that takes into account the emotion

recognition accuracy and the feature number of each single

GC feature, which can effectively improve the performance

of the EEG emotion recognition system without increasing

the computational cost. Experimental results of arousal-valence

classification on the DEAP emotion dataset (Koelstra et al.,

2011) show that the proposed scheme can achieve an average
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recognition improvement of 8.43% than that of the same-

frequency GC features.

The remaining parts are organized as follows. Section 2

reviews the DEAP emotion dataset and GC theory. Section

3 describes the proposed EEG emotion recognition method,

including the frequency-hemisphere GC measure for the EEG

signal, the ATD feature extraction method, and the proposed

multi-feature fusion scheme. Section 4 presents the experimental

results and discussions. Finally, some conclusions are presented

in Section 5.

2. Related works

2.1. DEAP emotion dataset

The DEAP dataset (Koelstra et al., 2011) is a multimodal

dataset for analyzing human affective states, which consists of

EEG signals and peripheral physiological signals of 32 subjects.

During the experiment, all subjects watched 40 excerpts of one-

minute music videos. At the end of each trial, participants

performed a self-assessment of their levels of arousal, valence,

linking, and dominance using SAM mannequins on a discrete

9-point scale. The arousal scale ranged from calm to excited,

the valence scale ranged from unhappy to happy, the linking

scale measured the personal preferences of the participants for

a given media, and the dominance scale ranged from submissive

to dominant. The EEG signals were recorded from 32 channels

according to the international 10–20 system, at a sampling rate

of 512 Hz, while peripheral physiological signals including skin

temperature, blood volume pressure, an electromyogram, and

galvanic skin response, were recorded from another 8 channels.

In this paper, only the EEG signal is used to investigate

EEG emotion recognition research. According to the 1 9 self-

assessment scores of participants, we select the median score 5 as

the threshold, with higher than 5 representing high class and less

than or equal to 5 representing low class. The valence-arousal

(VA) space is divided into four parts, i.e., low arousal-low valence

(LALV), high arousal-low valence (HALV), low arousal-high

valence (LAHV), and high arousal-high valence (HAHV).

2.2. Preprocessing and frequency band
division of EEG signal

The original raw EEG data is first carried out in the following

4 preprocessing steps: (1) down-sampling to 128 Hz, (2) removal

of the EOG artifacts, (3) bandpass filtering of the raw data

between 4 and 45 Hz, and (4) averaging of the data to a common

reference. Then, the Short-time Fourier Transform (STFT) is

then used to extract the θ (4∼8 Hz), α (8∼12 Hz), β (12∼30

Hz) and γ (30∼45 Hz) bands. To observe the waveform of EEG

signal decomposed into four frequency bands more intuitively,

Figure 1 shows the frequency band division of a 3s EEG signal

in the DEAP dataset. Figure 1A shows the original EEG signal,

Figure 1B is the corresponding power spectral density of the

EEG signal, and Figure 1C presents the four-band EEG signals

extracted by STFT.

2.3. Overview of GC analysis

Granger causality is one of the most popular approaches

for quantifying causal relationships between time series data,

which introduced first in econometrics by Granger (1969). GC

analysis is widely used in emotion recognition because of its

strong interpretability. It is based on two major principles: (i)

the cause happens prior to the effect, and (ii) the cause makes

notable changes in the effect. Generally speaking, a time series

X is said to “Granger cause" another time series Y , denoted

by X → Y . More specifically, granger causality occurs if and

only if the prediction values of Y based on the past values of

X and Y are better than predictions based on the past values

of Y alone. For two time series X and Y , a univariate and a

bivariate vector autoregressive (VAR) model are performed to

the predicted current values by the following regressions:

X(t) =

L
∑

i=1

a1iX(t − i)+ εX (1)

Y(t) =

L
∑

i=1

b1iY(t − i)+ εY (2)

X(t) =

L
∑

i=1

a2iX(t − i)+

L
∑

i=1

b2iY(t − i)+ ηYX (3)

Y(t) =

L
∑

i=1

c2iX(t − i)+

L
∑

i=1

d2iY(t − i)+ ηXY (4)

where a1i, b1i, a2i, b2i, c2i, and d2i(i = 1, 2, . . . , L) are the

constant coefficients, and L is the order of the model, both

of them can be obtained through the Bayesian information

criterion. εX and εY represent the error of the univariate

model, ηYX and ηXY represent the error of the bivariate

model, respectively.

The mathematical definition of GC is the logarithm of the

two ratios of the error variances: the variance of the errors from

the univariate VAR model and bivariate VAR model.

FX→Y = ln(
σεY

σηXY

) (5)

FY→X = ln(
σεX

σηYX

) (6)

where the σεX , σεY , σηXY , and σηYX represent the variances of the

error in Equations (1)–(4), respectively. When σεX is large than
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FIGURE 1

The frequency band division of a 3s EEG signal. (A) The original EEG signal; (B) The power spectral density of the EEG signal; (C) The EEG signals

of the θ , α, β, and γ frequency bands extracted by STFT method.

FIGURE 2

The framework of the proposed emotion recognition method.

σηYX , means that Y is the “Granger Cause" to X. Similarly, when

σεY is large than σηXY , means that X is the “Granger Cause" to Y .

3. The proposed EEG emotion
recognition scheme

Figure 2 shows the framework of the proposed EEG emotion

recognition method. The preprocessing and hemispheres

division module is first used to divide the original EEG signal

into the left and right hemispheres according to their positions,

and STFT is then used to extract the θ (4∼8 Hz), α (8∼12 Hz), β

(12∼30 Hz) and γ (30∼45 Hz) bands. Hemispheres-frequency

GC analysis module is then used to analyze the GC relationship

of the EEG signals with different frequencies in the left and

right hemispheres, and corresponding GC value is calculated

to construct the adjacency matrix. After this, the ATD feature

extraction and fusion module is adopted to adaptively remove

the redundant connections in the GC brain network and extract

the optimized GC features (GC+ATD), and design a multi-

feature fusion scheme to integrate different GC+ATD features.

Finally, the support vector machine (SVM) (Chang and Lin,

2011) classifier is used to obtain the emotion recognition results.

3.1. The proposed GC measures of left
and right hemispheres

3.1.1. The classification of
hemispheres-frequency GC measures

Figure 3A shows the spatial distribution of the 32 EEG

electrodes in the international 10–20 system. Taking the middle

four EEG electrodes as the axis, the human brain is divided
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FIGURE 3

(A) 32 electrode positions in the international 10–20 system; (B) The 36 pairs GC combinations.

into left and right hemispheres, with 14 EEG electrodes in

each hemisphere. After the removal of four central electrodes

(Fz, Cz, Pz, and Pz), the remaining electrodes are symmetrical

and divided into 14 pairs of left and right combinations: Fp1-

Fp2, AF3-AF4, F7-F8, F3-F4, FC5-FC6, FC1-FC6, T7-T8, C3-

C4, CP5-CP6, CP1-CP2, P7-P8, P3-P4, PO3-PO4, and O1-O2.

Finally, the hemispheres causality and frequencies causality of

EEG signals is combined and resulting in 36 combinations as

shown in Figure 3B.

As shown in Figure 3B, the GC combinations can be

furtherly divided into four categories according to whether the

hemispheres and frequencies are the same: (1) same-hemisphere

and same-frequency (SS), which reflects the GC of EEG signals

with the same hemispheres and same frequency domain; (2)

cross-hemisphere and same-frequency (CS), which reflects the

GC of the same-frequency EEG signals between the left and

right hemispheres; (3) same-hemisphere and cross-frequency

(SC), which reflects the GC of cross-frequency EEG signals with

the same hemisphere; (4) cross-hemisphere and cross-frequency

(CC), which reflects the GC of cross-frequency EEG signals

between the left and right hemispheres.

To analyze the above measures more specifically, the

proposed GC adjacency matrices between the θ band and the

θ∼α band of an EEG signal are shown in Figure 4, where L

and R represent the left and right hemispheres, and θ and α

represent the frequency band. For example, L(θ) represents the

θ-frequency EEG signals in the left hemisphere. Since there

are 14 EEG electrodes in each hemisphere, the size of the

corresponding GC matrix is 28*28. Among them, SS and CS

belong to the same-frequency GC measures, which have been

widely explored in the existing research. On the contrary, SC

and CC belong to the cross-frequency GC measures, which are

rarely involved in emotion recognition, especially CC measure.

Therefore, we mainly focus on the analysis of the CC measure

in this subsection, and the other three measures can be analyzed

to CC.

As shown in Figure 3B, the CC measures are pairwise

symmetric and can be combined into six groups: θ∼α, θ∼β ,

θ∼γ , α∼β , α∼γ and β∼γ . In the following, we will take the

CC(θ∼α) as an example to analyze the GC relationship of EEG

signals. As shown in Figure 4D, the lower-left and the upper-

right of the CC(θ∼α) matrix are the values of L(α)∼R(θ) and

L(θ)∼R(α), while the rest values (including the lower-right and

the upper-left) of the same hemisphere are set to 0. After the

removal of four central electrode nodes from the 32 electrode

nodes, both of left and right hemispheres have 14 electrode

nodes, and the number of effective GC values in the CC(θ∼α)

is 14*14*2=392. Similarly, the number of GC values in SS, CS

and SC can be obtained, as shown in Table 1.

3.1.2. The discussion of CC measure

To further analyze the characteristics of six frequency-

hemispheres combinations in CC causal measurement, the

corresponding the GC adjacencymatrix of CC(θ∼α), CC(θ∼β),

CC(θ∼γ ), CC(α∼β), CC(α∼γ ) and CC(β∼γ ) are presented

in Figures 5A–F, respectively. It can be seen that there is a

significant GC relationship between EEG signals in the adjacent

frequencies, such as CC(θ∼α), CC(α∼β), and CC(β∼γ ), where

CC(β∼γ ) holds the strongest causality. On the contrary, there

is almost no causality between EEG signals in the non-adjacent

frequencies, such as CC(θ∼β), CC(θ∼γ ) and CC(α∼γ ).
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FIGURE 4

The adjacency matrices of four GC measures between the θ band and the θ∼α band. (A) The L(θ )∼L(θ ) and R(θ )∼R(θ ) matrices of SS measures;

(B) The L(θ )∼ R(θ ) matrix of CS measures; (C) The L(θ )∼L(α)and R(θ )∼R(α) matrices of CS measures; (D) The L(θ )∼R(α) and L(α)∼ R(θ ) matrices of

CC measures.

TABLE 1 The GC value numbers of di�erent measures.

GC

measure

Frequency-

hemispheres

combination

The GC value

numbers of

single

combination

The GC value

numbers of all

combinations

SS θ∼θ , α∼α, β∼β ,

γ∼γ

392 1,568

CS θ∼θ , α∼α, β∼β ,

γ∼γ

196 784

SC θ∼α, θ∼β , θ∼γ ,

α∼β , α∼γ , β∼γ

392 2,352

CC θ∼α, θ∼β , θ∼γ ,

α∼β , α∼γ , β∼γ

392 2,352

Therefore, the causal features of the adjacent frequency EEG

signals can be effectively used for improving the emotion

recognition performance, and how to extract the causal features

from the GC adjacency matrix will be discussed in detail in the

following section.

3.1.3. Formula derivation of CC(θ∼α) measure

In order to extract the features of the GC adjacency matrix,

it is necessary to calculate the GC value. In this section, we

will take CC(θ∼α) measure as an example to describe the

detailed calculation process. Let XL(θ)(t) and YR(α)(t) denote

the t-th time-lagged values of L(θ) and R(α), respectively.

Similar to Equations (1)–(4), the univariate GC model and the

bivariate GC model of XL(θ)(t) and YR(α)(t) can be expressed

as follows:

XL(θ)(t) =

L
∑

i=1

a1iXL(θ)(t − i)+ εX (7)

YR(α)(t) =

L
∑

i=1

b1iYR(α)(t − i)+ εY (8)
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FIGURE 5

The GC adjacency matrices of six CC measures. (A–F) Illustrate the GC adjacency matrix of CC(θ∼α), CC(θ∼β), CC (θ∼γ ), CC(α∼β), CC(α∼γ ),

and CC(β∼γ ), respectively.

XL(θ)(t) =

L
∑

i=1

a2iXL(θ)(t − i)+

L
∑

i=1

b2iYR(α)(t − i)+ ηYX

(9)

YR(α)(t) =

L
∑

i=1

c2iXL(θ)(t − i)+

L
∑

i=1

d2iYR(α)(t − i)+ ηXY

(10)

where a1i, b1i, a2i, b2i, c2i, and d2i(i = 1, 2, . . . , L) are the

constant coefficients, and L is the order of the model.

Then, according to Equations (5) and (6), the GC values of

XL(θ)→YR(α) and YR(α)→XL(θ) are

FXL(θ)→YR(α) = ln(
σεY

σηXY

) (11)

FY
R(α)

→XL(θ)
= ln(

σεX

σηYX

) (12)

Since FXL(θ)→YR(α) and FY
R(α)

→XL(θ)
represents

the GC value the upper right and lower left of

the L(θ)∼R(α), respectively. Therefore, these two

feature vectors are directly cascade as the GC

values of L(θ)∼R(α) and take concat to represent

this process:

FL(θ)∼R(α) = concat(FXL(θ)→YR(α) , FYR(α)→XL(θ)
) (13)

According to the Figures 3B, 4D, the CC(L(θ)∼R(α)) and

CC(L(α)∼R(θ)) are symmetric. Therefore, FCC(L(α)∼R(θ)) can

be calculated similarly by Equations (7)–(13). As a result, the GC

values of CC (θ∼α) can be expressed as:

FCC(θ∼α) = concat(FCC(L(θ)∼R(α)), FCC(L(α)∼R(θ))) (14)

3.2. The propose ATD method

Due to redundant connections in the GC brain network,

this section takes CC(θ∼α) as an example for detailed analysis

of the ATD method. We select n-segment EEG signals in the

DEAP dataset to construct the CC(θ∼α) brain networks and

calculate the corresponding adjacencymatrices Ei(i = 1, 2 . . . n),

as shown in Figure 6A. Table 1 shows that the number of GC

values in each CC(θ∼α) matrix is 392, and these 392 GC values

can be calculated according to the calculation procession in

Section 3.1.3. Then, the GC values of the same spatial position in

CC adjacency matrices are constructed as a n-dim feature vector
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FIGURE 6

The correlation analysis of CC(θ∼α) brain network. (A) The CC(θ∼α) adjacency matrices of n-segment EEG signals; (B) 392-dim feature set F0 of

n-segment EEG signals; (C) The correlation coe�cient matrix of 392 features in F0.

FIGURE 7

The framework of the proposed ATD feature extraction method. (A) The original 392 n-dim feature vectors; (B) The emotion recognition

performance of the first-stage decorrelation; (C) Selected m optimal feature vectors by first-stage decorrelation; (D) The correlation coe�cient

matrix of m feature vectors; (E) The emotion recognition performance of the second-stage decorrelation; (F) Selected k optimal feature vectors

by second-stage decorrelation.

and resulting in 392 n-dim feature vectors Ai(i = 1, 2 . . . 392), as

shown in Figure 6B.

Next, we analyze the correlation between two feature vectors

of Ai(i = 1, 2 . . . 392). For any two features Au and Av(u, v =

1, 2, . . . , 392, u 6= v), the correlation coefficient r(Au,Av)

between them can be calculated from Equation (15). The

correlation coefficient matrix RA ∈ R
392×392 of 392 feature

vectors can be obtained and shown in Figure 6C, where the value

is closer to 1 with the greater correlation, and the value is closer

to 0 with the smaller correlation.

r(Au(i),Av(i)) =

n
∑

i=1
(Au(i)− Au)(Av(i)− Av)

√

n
∑

i=1
(Au(i)− Au(i))

2

√

n
∑

i=1
(Av(i)− Av)

2

(15)
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FIGURE 8

The framework of the ATD method. (A) The framework of the first-stage decorrelation; (B) The second-stage decorrelation.

It is obviously that there are many highly correlated

redundant features among the 392 feature vectors, and the

correlation coefficient matrix is symmetric. If these redundant

feature vectors can be removed, the effectiveness of the features

can be improved. In addition, since the GC brain network of

different EEG signals are different, and redundancy connections

in the corresponding brain network are also different. Therefore,

the redundancy method should be able to adapt to the variation

of different EEG signals. In this paper, we propose a new feature

extraction and optimization method of ATDmethod to meet the

requirements, and the framework of the proposed ATD method

is shown in Figure 7.

The first-stage decorrelation of the original 392 n-dim

feature vectors is shown in Figure 8A. Here M is used to

represent the number of the feature vectors and initialized to

392. Corresponding to the above-mentioned symbols, we add

the superscript M to all them, such as RA rewritten as RMA . Also,

due to the symmetry of RMA , this paper only selected the lower

triangular matrix for correlation analysis.

First of all, the maximum value rMmax in the correlation

coefficient matrix RMA and its corresponding two feature vectors

AM
u and AM

v were determined, and randomly select one of

these two vectors as a redundant vector and remove from the

original feature vectors. In this paper, we compared four kinds

of redundant vectors definition methods: (1) the first feature

vector AM
u is selected as redundant vector; (2) the second feature

vector AM
v is selected as redundant vector; (3) randomly selects

one of them as redundant; (4) Calculate the correlation between

the AM
u and AM

v and the remain M-2 feature vectors, and

the highest correlation feature vector is selected as redundant.

The experimental results show that the emotion recognition

performance obtained by the above four methods is almost the

same. Therefore, we adopt the simplest method, that is, the first

feature vector AM
u is deleted as of a redundant feature vector,

and the remainingM− 1 feature vectors are used as the input of

the SVM classifier and obtained the recognition accuracy. Then,

the above process is repeated for the remaining M-1 feature

vectors until the number of remaining features is 1. Figure 7B

shows the relationship of emotion recognition accuracy with the

different number of feature vectors. It can be seen that there

is an optimal number of m(m < 392) to make the emotion

recognition performance reach the highest and retains these m

feature vectors Bi(i = 1, 2, . . . ,m) as optimal feature vectors of

the first-stage decorrelation features, as presented in Figure 7C.

To further explore the correlation of the above m features

vectors, the corresponding correlation matrices RB ∈ R
m∗m

between Bi are calculated according to Equation (15) and shown

in Figure 7D. We can find that there is still a certain correlation

between these feature vectors, and it is necessary to furtherly

remove the correlation between them. As we all know, Principal

components analysis (PCA) (Li et al., 2016) is a statistical

procedure that uses an orthogonal transformation to convert

a set of correlated variables into a set of values of linearly

uncorrelated variables, and the main idea of PCA is to reduce
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the number of variables while preserving asmuch information as

possible. Therefore, we then adopt the PCA method to secondly

remove the correlation of the Bi, and the detailed process is

shown in Figure 8B.

First, m feature vectors Bi(i = 1, 2 . . . ,m) are decentralized,

that is, the mean values ofm feature vectors are subtracted from

each other to ensure that the mean value of each feature vector is

0. Them decentralized feature vectors BM can be represented as:

BM = Bi − Bi(i = 1, 2 . . . ,m) (16)

Then, the correlation matrices S ∈ R
m∗m of m feature

vectors BM is calculated as follows:

S =
1

n− 1
BMBTM (17)

After this, we perform feature decomposition on the

covariance matrix S and obtain m eigenvalues λ1, λ2 . . . , λm

and corresponding eigenvectors ξ1, ξ2, . . . ξm. Taking the first

p eigenvalues and the corresponding eigenvectors to construct

the orthogonal matrix V = (ξ1, ξ2, . . . ξp), where each column

in V corresponds to a principal component. Based on this,

the reconstructed feature vectors B′ with the size of p × n

are obtained, as described in Equation (18), which are input

into the SVM classifier to obtain the corresponding emotion

recognition accuracy.

B′ = VTB (18)

Finally, different values p(p < m) were selected to repeat

the above process, and the performance of the second-stage

decorrelation method with the different number of feature

vectors was obtained and shown in Figure 7E. It can be seen

that there exists an optimal number of feature vectors k(k <

m) to optimize the emotion recognition performance, and the

k feature vectors Ci(i = 1, 2 . . . , k) are retained, as shown

in Figure 7F.

Above all, we can get the GC+ATD features after removing

redundant connections in the GC correlation matrix by ATD

method, which will be used for EEG emotion recognition.

Because the redundant connections in each GC brain network

are always different, the correlation degree of the redundant

connections is also different. Therefore, it is necessary to

adaptively select the optimal m and k in the above ATD process

to ensure the extracted causal features can achieve the best

recognition performance.

3.3. The proposed GC+ATD multi-feature
weighted fusion method

According to whether the frequency domain and

hemispheres domain are used, GC analysis of EEG signals

is divided into four categories, as shown in Table 1. A single type

of GC feature can only show a part of the causality information.

Therefore, it is necessary to integrate four GC+ATD features to

make full use of the causal complementarity among them.

Most of the existing research on feature fusion method

is commonly used in series, or in parallel or weighted

superpositions. Generally speaking, if the number of features

is large and the structure is different, the fusion algorithm

is complex and the computational complexity is higher. In

addition, the four GC+ATD features in this paper have

structural similarities. Therefore, considering the computational

complexity and performance, a new multi-feature weighted

fusion scheme is proposed to balance the recognition rate

and feature numbers, which designing the weight function

for each GC+ATD feature by comprehensively considering the

recognition rate and the feature number of each single feature.

Let Ti and Tfinal represent the i-th GC+ATD feature and the

final fusion feature, respectively. The problem of the proposed

feature fusion scheme can be expressed as:

Tfinal =

4
∑

i=1

wiTi (19)

where wi is the weight of Ti, it can be calculated as follows.

Let Ri is the recognition accuracy ofTi.Ni andNall represent

the feature number of Ti and Tfinal, respectively. To ensure

the features Ti with better recognition performance and smaller

feature numbers have a higher importance in Tfinal, the weight

coefficients wi are designed as follows.

wi = piRi + qi(1−
Fi

Fall
)(i = 1, 2, 3, 4) (20)

where pi and qi represent the importance of recognition

accuracy and feature number of the Ti, and pi + qi = 1.

In summary, to maximize the emotion recognition accuracy

RTfinal of the fusion GC features Tfinal, the problem of the above

multi-feature fusion scheme can be expressed as follows:

argmax
pi∈[0,1]

RTfinal

s.t. Tfinal =

4
∑

i=1

wiTi

wi = piRi + (1− pi)(1−
Fi

Tall
)

(21)

Since the objective function in Equation (21) is not convex,

and there is only one unknown parameter pi, we use an
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FIGURE 9

The e�ect of the time window size on the EEG emotion

recognition.

exhaustive search to find the optimal pi with the search range of

[0, 1] and search step of 0.05. The final four optimal wi are used

for multi-GC feature fusion. It can be seen from Equation (21)

that the higher the recognition accuracy and the less the number

of one feature, the final weight w will be larger, which means

the higher the importance in the final decision fusion method

will be.

4. Experimental results and
discussion

4.1. Experimental Settings

In this paper, we conducted three groups of experiments

to evaluate the performance of the proposed scheme. In the

first group, the proposed four kinds of GC measures are

evaluated. Next, we test the performance of the ATD+GC feature

extraction scheme. Third, we give some experimental results

to discuss the performance of the proposed multi-GC feature

fusion scheme. All the experiments are carried out in the same

environment, parameter settings, and evaluation indexes. The

hardware environment is a Dell XPS 8930 desktop computer

with the CPU is Intel Core i7-8700K@3.70GHz and 16GB

memory, and the software environment is MATLAB2019b.

Since the main study of this paper is on the effectiveness of

feature extraction rather than the recognition model, and we

adopt the most widely used SVM classifier for all the emotion

recognition processes.

All the experimental results in this paper were tested on

the DEAP dataset. After the preprocessing in Section 2.2, we

segmented each trial EEG signals of each subject. To further

validate the effectiveness of our method, we investigated the

effect of the time window size on the EEG emotion recognition,

where the EEG signals are segmented into 1, 2, 3, 4, 5, and

6 s. As seen from the results in Figure 9, the GC features of

different frequency bands both showed sensitivity to the time

window size and the time window size of 3 s shows the best

recognition performance. Otherwise, the study in Li et al. (2017)

and Tao et al. (2020) also analyzed the emotion classification

with DEAP EEG signals from the perspective of time window

size and obtained the highest accuracy of 3s signal segments,

which is similar to the results we obtained.

Therefore, we segmented each 1-min trial into 39 segments

with a window length of 3s and an overlap time of 1.5 s,

and the 40 trial EEG signals of each subject are divided into

1560 EEG samples. Finally, the training data and test data are

divided by 8:2, and the average recognition accuracy by 5-

fold cross-validation of 32 subjects is calculated to evaluate the

performance of the proposed scheme.

4.2. The emotion recognition
performance of the proposed GC
measures

This section mainly tests the performance of the proposed

GC measure, and the GC values of the adjacency matrices are

directly used as features for emotion recognition. Table 2 show

the EEG emotion recognition performance of the SS, SC, CS and

CC measures.

It can be seen that the proposed four GC measures can

achieve better recognition performance in Table 2. For the

SC and CC measures with the cross-frequency bands, the

adjacent frequencies, such as θ∼α, α∼β , and β∼γ measures

can achieve better emotion recognition performance, and the

SC(β∼γ ) and CC(β∼γ ) have the highest recognition accuracy

of 73.32 and 69.29%, respectively. However, the non-adjacent

frequencies, such as θ∼β , θ∼γ , and α∼γ , which show poor

recognition performance. This further quantitatively verify the

conclusions in Figure 5 in Section 3.1.2. Therefore, the non-

adjacent frequency GC measures will no longer be considered

in the following section.

Moreover, Table 2 also presents the emotion recognition

performance of the direct cascade combinations of different

GC measures, where SS(4), CS(4), SC(3), and CC(3) represent

the concatenated combinations of the four SS measures, four

CS measures, three SC measures, and three CC measures,

respectively. The experimental results show that, compared with

a single feature, the recognition performance of combination

features was significantly improved. This proves that the causal

relationship of different combinations of the same GC measure

is complementary. Additionally, the cross-frequency measures

SC(3) and CC(3) can achieve an average of 8.55% and 9.30%

improvement compared with the same-frequency measures

SS(4) and CS(4), respectively. It is further proof that there is
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TABLE 2 The recognition performance of the proposed SS, SC, CS, and CC measures (%).

GCMeasures HAHV HALV LAHV LALV Average

SS

θ∼θ 75.54 70.18 43.14 63.08 62.98

α∼α 73.18 74.38 40.98 61.54 62.52

β∼β 80.08 73.67 47.04 64.36 66.29

γ∼γ 68.64 69.24 22.21 59.49 54.89

CS

θ∼θ 68.61 63.52 28.72 56.07 54.23

α∼α 66.25 62.79 27.09 53.11 52.31

β∼β 68.47 64.09 25.31 57.78 53.91

γ∼γ 69.84 54.25 22.00 37.75 45.96

SC

θ∼α 76.40 70.83 38.44 64.06 62.43

θ∼β 65.99 53.86 5.87 26.82 38.14

θ∼γ 62.43 43.64 14.73 29.99 37.70

α∼β 69.66 66.06 52.64 53.96 60.58

α∼γ 64.84 56.54 25.31 45.86 48.14

β∼γ 78.49 79.95 62.79 72.05 73.32

CC

θ∼α 72.00 65.05 38.01 61.54 59.15

θ∼β 63.37 56.98 26.09 35.90 45.58

θ∼γ 58.20 51.31 17.50 39.49 41.62

α∼β 76.93 69.23 38.88 61.80 61.71

α∼γ 62.14 52.45 22.66 38.72 43.99

β∼γ 74.51 80.23 53.19 69.23 69.29

SS (4) 79.88 70.25 77.40 53.39 70.23

CS (4) 76.09 68.28 45.64 57.19 61.80

SC (3) 85.27 82.35 58.44 72.18 74.56

CC (3) 85.01 73.85 80.89 61.53 75.32

a signification causal relationship between EEG signals with

cross-frequency bands in the left and right hemispheres.

4.3. The performance of the proposed
ATD method

Since the four GC adjacency matrices have similar structures

as shown in Figure 6, this section takes CC measure as an

example to evaluate the performance of the proposed ATD

method (GC+ATD). Four reference schemes were selected:

GC+PCA (Li et al., 2016), GC+Decorrelation (Weinstein et al.,

1993), GC+K-means (Orhan et al., 2011), andGC+the Restricted

Boltzmann Machine(RBM) (Hinton and Salakhutdinov, 2006).

Table 3 shows the emotion recognition performance.

Judging from the results, the proposed GC+ATD can achieve

an improvement of 2.24, 2.92, and 1.86% than three CC

adjacency matrix features, respectively. Compared with the

GC+PCA, GC+Decorrelation, GC+K-means, and GC+RBM,

GC+ATD is always better with average improvements of 5.41,

2.51, 8.87, and 11.65%, and the average running time increased

by 7.57, 2.46, –6.18, and 2.87%, respectively. The experimental

results show that the GC+ATD can effectively improve the

performance of emotion recognition with less extra time

complexity. In addition, Table 3 also shows the feature numbers

of different methods, where the feature numbers of GC+ATD is

the smallest in most cases.

4.4. Performance of the proposed
multi-GC feature fusion strategy

In this section, we evaluate the performance of the proposed

GC+ATD multi-feature weighted fusion scheme, the emotion

recognition performance is shown in Table 4. In order to verify

the effectiveness of the proposed scheme, the direct cascading

feature scheme is taken into comparison. The following

discussion can be obtained from the results:
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TABLE 3 The recognition performance of di�erent CC feature combinations.

Feature Accuracy (%) Feature numbers Run time

(θ∼α) (α∼β) (β∼γ ) (θ∼α) (α∼β) (β∼γ ) (θ∼α) (α∼β) (β∼γ )

GC 59.15 61.71 69.29 392 392 392 542 546 544

GC+PCA 53.17 58.53 69.24 80 130 85 553 558 554

GC+Decorrelation 59.03 59.70 70.91 242 340 290 576 594 578

GC+K-Means 56.86 56.86 56.86 330 270 350 635 641 633

GC+RBM 51.43 51.07 59.72 100 100 100 578 583 580

GC+ATD 61.39 64.63 71.15 71 83 77 596 605 590

TABLE 4 The GC value numbers of di�erent measures.

Feature Accuracy (%) Feature number Run time(s)

GC GC+ATD GC GC+ATD GC GC+ATD

Single

SS 70.23 70.21 1,568 180 2,167 2,420

CS 61.80 63.34 784 124 1,081 1,170

SC 74.56 75.56 1,176 180 1,638 1,811

CC 75.32 76.21 1,176 124 1,632 1,803

Two

SS+CS 69.01 69.55 2,352 304 3,248 3621

SC+CC 75.94 78.27 2,352 304 3,270 3,640

SS+SC 73.13 74.28 2,744 360 3,805 4,270

CS+CC 70.51 76.67 1,960 248 2,713 2,991

Four
Cascade 76.49 79.55 4,704 608 6,518 7,260

Proposed 76.49 84.91 4,704 608 6,518 7,263

(1) Compared with the single GC feature, GC+ATD features

can achieve an average improvement of 0.85%, the running

time of the model increased by 10.52%, and the average

number of features decreased by 87.07% of the GC features.

This means that the ATD method can effectively reduce the

number of features without reducing the performance of

emotion recognition and less extra time complexity.

(2) For the same-frequency fusion features of SS+CS and the

cross-frequency fusion features of SC+CC, the GC+ATD

feature can achieve an improvement of 0.54 and 2.33%

than that of GC features, the running time of the model

increased by 11.48 and 10.40%, and the average number

of features both decreased by 87.07% of the GC features.

Otherwise, the two kinds of fusion features have the same

feature numbers, but the emotion recognition performance

of cross-frequency fusion features is 8.72% higher than that

of same-frequency fusion features. This indicates that there

is a significant difference in emotional EEG signals between

the cross-frequency bands.

(3) For the same-hemisphere fusion features of SS+SC and

the cross-hemisphere fusion features CS+CC, the GC+ATD

feature can achieve an improvement of 1.15 and 6.16%

than that of GC features, the running time of the model

increased by 12.22 and 10.25%, and the average number of

features decreased by 86.88 and 87.35% of the GC features,

respectively. Compared with the same-hemisphere fusion

features, the emotion recognition of the cross-hemisphere

fusion features increased by 2.20 and the number of

features decreased by 31.11%, indicating that the emotion

EEG signals have a more obvious causal difference in the

cross-hemisphere.

(4) For the four features fusion with the direct cascade fusion

method and the proposed multi-feature fusion method, the

GC+ATD feature can achieve an average improvement of

3.06 and 8.42% than the GC feature, the running time

of the model increased by 11.38 and 11.43%, and the

average number of features both decreased by 87.07% of the

GC features. Otherwise, the emotion recognition accuracy

of the proposed GC+ATD multi-feature weighted fusion

method reaches 84.91%, which is 5.36% higher than that of

the direct cascade fusion method. The results further verify

that both recognition accuracy and the feature number of

a single feature can effectively improve the performance of

EEG emotion recognition.
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TABLE 5 The recognition performance with latest literatures (%).

Method Feature Classifier Classes Accuracy

Zheng and Lu (2015) DASM,RASM SVM 4 69.67

Zheng and Lu (2015) DCAU SVM 4 67.42

Shi et al. (2018) Transfer entropy SVM 4 74.54

Jin et al. (2022) Phase amplitude

coupling

SVM 4 71.65

Gao et al. (2020) GC SVM 4 76.48

This paper GC+ATD SVM 4 84.91

(5) Comparing the single feature, two fusion features, and

four fusion features, the GC+ATD feature always has the

best emotion recognition performance. Among them, the

emotional recognition performance of four fusion features

is 11.42 and 11% higher than that of a single feature and

two fusion features. The results further verify that both

recognition accuracy and the computational complexity of

a single GC feature affect the performance of the feature

fusion scheme, and they can interact to improve the final

emotion recognition performance.

To further verify the effectiveness of the proposed method,

we will compare the proposed scheme with several state-of-the-

art reference features for the DEAP dataset. several reference

features are chosen: the asymmetry features of the left and right

hemispheres such as DASM and RASM (Zheng and Lu, 2015),

the asymmetry features of the differential caudality (DCAU)

(Zheng and Lu, 2015), and the traditional GC feature (Gao et al.,

2020). All the schemes adopt the same EEG signal division and

5-fold cross-validation with SVM classifiers, and the recognition

accuracy of each scheme is shown in Table 5. The emotion

recognition accuracy of the proposed GC+ATD scheme can

reach 84.91%, which is always better than DASM+RASM and

DACU features with average improvements of 15.24% and

17.49%, respectively. Compared with the transfer entropy (TE)

(Shi et al., 2018) and phase amplitude coupling (PAC) (Jin

et al., 2022) features of EEG signal in the same-frequency bands

and cross-frequency bands, the proposed ATD-GC feature

can achieve an average improvement of 10.37 and 13.35%,

respectively. In addition, compared with the traditional GC

feature with the same-frequency band, the GC+ATD method

has increased by 8.43%, this result further proves that the cross-

frequency causal analysis of EEG signals can further improve the

performance of emotion recognition.

5. Conclusion

In this paper, combining the asymmetry of the left and

right hemispheres and the GC relationship of the EEG signals,

an emotion recognition scheme based on multi-GC feature

extraction and fusion in the left and right hemispheres is

proposed. First of all, the GC relationship of the EEG signals

is divided into four categories according to whether the

EEG signals belong to the same hemisphere and frequency.

we mainly analyze the GC relationship of EEG signals with

the cross-frequency band, making the causal analysis of the

EEG signal more compliable. Then, we design an ATD

feature extraction method to adaptive remove the redundant

connections in the GC brain network, which can effectively

reduce the number of features without reducing the emotion

recognition performance. Finally, considering the recognition

accuracy and the computational complexity of each single

GC feature, a new multi-feature weighted fusion scheme is

designed, which pays closer attention to the GC feature with

higher recognition accuracy and lower feature numbers during

the fusion process. The results on the DEAP emotion dataset

show the GC+ATD features can achieve an improvement of

8.43% than the GC feature, and the proposed multi-feature

weighted fusion scheme is 5.36% higher than that of the direct

cascade fusion method. The results of this paper show that it

is necessary to take the cross-frequency causality of the EEG

signal as part of causal attributes to enhance the causality

of EEG signals and improve the performance of emotion

recognition.
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