

Review

A Systematic Review of Intracellular Microorganisms within *Acanthamoeba* to Understand Potential Impact for Infection

Binod Rayamajhee ^{1,2,*}, Dinesh Subedi ³[®], Hari Kumar Peguda ¹[®], Mark Duncan Willcox ¹[®], Fiona L. Henriquez ⁴[®] and Nicole Carnt ¹

- ¹ School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; h.peguda@unsw.edu.au (H.K.P.); m.willcox@unsw.edu.au (M.D.W.); n.carnt@unsw.edu.au (N.C.)
- ² Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur 44700, Nepal
- ³ School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; dinesh.subedi@monash.edu
 ⁴ Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences,
 - University of the West of Scotland (UWS), Paisley PA1 2BE, UK; fiona.henriquez@uws.ac.uk
 - Correspondence: b.rayamajhee@unsw.edu.au or rayamajheebinod@gmail.com

Abstract: Acanthamoeba, an opportunistic pathogen is known to cause an infection of the cornea, central nervous system, and skin. Acanthamoeba feeds different microorganisms, including potentially pathogenic prokaryotes; some of microbes have developed ways of surviving intracellularly and this may mean that Acanthamoeba acts as incubator of important pathogens. A systematic review of the literature was performed in order to capture a comprehensive picture of the variety of microbial species identified within Acanthamoeba following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Forty-three studies met the inclusion criteria, 26 studies (60.5%) examined environmental samples, eight (18.6%) studies examined clinical specimens, and another nine (20.9%) studies analysed both types of samples. Polymerase chain reaction (PCR) followed by gene sequencing was the most common technique used to identify the intracellular microorganisms. Important pathogenic bacteria, such as E. coli, Mycobacterium spp. and P. aeruginosa, were observed in clinical isolates of Acanthamoeba, whereas Legionella, adenovirus, mimivirus, and unidentified bacteria (Candidatus) were often identified in environmental Acanthamoeba. Increasing resistance of Acanthamoeba associated intracellular pathogens to antimicrobials is an increased risk to public health. Molecular-based future studies are needed in order to assess the microbiome residing in Acanthamoeba, as a research on the hypotheses that intracellular microbes can affect the pathogenicity of Acanthamoeba infections.

Keywords: Acanthamoeba; intracellular microbes; survival; carrier; co-infection

1. Introduction

Acanthamoeba, a ubiquitously distributed free-living amoeba, is known to cause a rare, but potentially sight-threatening, painful, often misdiagnosed, and difficult to treat corneal infection, keratitis, and meningoencephalitis, a fatal infection of the central nervous system (CNS) [1–5]. *Acanthamoeba* spp. can also cause sinusitis and cutaneous lesions in immunocompromised individuals, such as AIDS patients [3,4,6]. It has two distinct stages in its life cycle, an active phagotrophic trophozoite and a quiescent double walled cyst stage, with the cyst stage enabling the amoeba to remain viable for many years, even in harsh conditions, including chlorine treated water [7,8]. The infective form is the trophozoite stage, although both trophozoites and cysts can gain entry into the human body via different routes, such as debrided skin, cornea, and nasal passages [9]. Based on their morphology, *Acanthamoeba* species have been broadly classified into three groups (I, II, and III) [10] and pathogenic strains are common of group II [11]. *Acanthamoeba* species are

Citation: Rayamajhee, B.; Subedi, D.; Peguda, H.K.; Willcox, M.D.; Henriquez, F.L.; Carnt, N. A Systematic Review of Intracellular Microorganisms within *Acanthamoeba* to Understand Potential Impact for Infection. *Pathogens* **2021**, *10*, 225. https://doi.org/10.3390/pathogens 10020225

Academic Editor: María Reyes Batlle

Received: 31 January 2021 Accepted: 15 February 2021 Published: 18 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). also classified into at least 22 (T1–T22) genotypes based on their 18S rRNA sequences, with species, such as *A. castellanii* and *A. polyphaga*, within the T4 genotype frequently associated with corneal infection [12–14].

The *Acanthamoeba* trophozoite feeds on other microbes, such as bacteria, fungi, algae, and viruses, and can carry them intracellularly acting as "Trojan horse" [15,16]. Therefore, *Acanthamoeba* can act as a vector of potentially pathogenic microorganisms and, hence, play a role in pathogen dissemination as well as acting as a pathogen itself [17–19]. Both clinical and environmental isolates of *Acanthamoeba* harbour pathogenic prokaryotes as endosymbionts [20–22]. The term "endosymbiont" has been described as "a regulated, harmonious cohabitation of two nonrelated partners, in which one of them lives in the body of the other", and a bacterium is considered to be an endosymbiont when it is able to institute a replicative niche within, for example, eukaryotic cells [23]. However, another generic term "endocytobiont" has been coined to name the intracellular microbes that are associated with free-living amoeba to overcome any suggestion that the intracellular microbes might show mutualism, symbiosis, parasitism, phoresy, or zoochory [24,25]. Throughout the remainder of this review, the term "intracellular" will be used to encompass endosymbionts, endocytobionts, and other forms intracellular microbes within *Acanthamoeba* spp.

The detailed molecular pathways and strategies of intracellular interactions between Acanthamoeba and other microbes are unexplored at present. In a more generalised context, Acanthamoeba shares similar morphological and ultrastructural features to macrophages and they have a similar mechanism of interaction with microbes [26]. Amoeba may possess universal classes of receptors which bind with a wide array of microbial receptors facilitating adhesion and engulfment of a diverse range of microbes, such as Gal/GalNAc on Legionella pneumophila [27] or type III secretion structures on Vibrio parahaemolyticus [28] and E. coli K1 [29,30] (Figure 1). If the engulfed microbes can then escape the normal phagosome-associated feeding pathway, they may exist intracellular [18]. The ability of microbes to set up an intracellular lifestyle in Acanthamoeba and remain viable has been hypothesised to allow them to subsequently live intracellularly in mammalian cells [31,32]. The intracellular survival mechanisms of bacteria in the amoebal cytoplasm differ between species and this, coupled with analysis of phylogenetic lineages of intracellular bacteria, indicates the ability that has developed with time over the microbe's evolution [33]. For instance, V. cholerae can escape degradation by applying an intricate neutralising program that effectively neutralises changes to the pH, digestive enzyme functions, and the production of reactive oxygen radicals that may otherwise destroy the bacteria [34]. On the other hand, L. pneumophila forms a membrane-enclosed microenvironment within the Acanthamoeba that is produced via the endoplasmic reticulum, membrane transporters, and fusion with other membrane-bound vesicles [35,36]. The intracellular survival and proliferation of bacteria in amoebal cells has been associated with enhanced resistance of bacteria to antimicrobials and increased bacterial pathogenicity [37]. Acanthamoeba containing intracellular bacteria, such as Pseudomonas, Mycobacterium, and Chlamydia, has demonstrated a more rapid cytopathic effect (CPE) in in vitro as compared to isolates without intracellular bacteria [21,38], showing enhanced amoebal pathogenic potential.

This systematic review examines the intracellular microorganisms in *Acanthamoeba* and compares the types of microbial species that were identified in environmental and clinical isolates of *Acanthamoeba*, and potential impact of intracellular microorganisms on *Acanthamoeba* keratitis. The major aims of this review are: (a) to determine the laboratory techniques that have been used for the isolation and identification of intracellular microbes in *Acanthamoeba* spp.; (b) to assess whether different ways of culturing *Acanthamoeba* affect the types of intracellular bacteria; (c) to examine which microbes are most commonly found inside *Acanthamoeba* spp.; and (d) to determine whether environmental and clinical isolates of *Acanthamoeba* harbor the same intracellular prokaryotes.

Figure 1. Representation of the different microorganisms as food of *Acanthamoeba* and interaction with bacteria. (**a**) attachment: possible receptor-mediated adhesion of bacteria; (**b**) entry: ingestion of bacteria using pseudopods and phagocytosis; (**c**) trafficking: prevention of phagosome-lysosome fusion by bacteria helps them evade lysosomal degradation and prevents acidification of the phagosomes [39]; (**d**) spread: vacuoles containing microbes disperse throughout the amoebal cytoplasm; and (**e**) replication: intraphagosomal replication of bacteria possible eventual escape into the amoebal cytoplasm.

2. Results

2.1. Results of the Search

The electronic search identified 1331 articles (PubMed = 234, Scopus = 704, WoS = 393). After the removal of duplicates (n = 138), 1193 articles were screened based on their titles and abstracts. The outcome was that 43 studies met the inclusion criteria. Figure 2 depicts the screening process.

2.2. Included Studies

In total, 43 studies were analysed. The study location, sample type, laboratory methods used, species and genotypes of *Acanthamoeba* strains, types of intracellular microbes, and co-occurrence of multiple microorganisms were examined. Brief details of each study included in the analysis are mentioned in Table 1.

		-			
Country, Date of Study	Analysed Sample (Clinical/Environmental)	Laboratory Investigation	Positive Samples for Intracellular Microbes	Species and Genotypes of Acanthamoeba	Identified Intracellular Microbes
USA, 1993 [20]	Clinical (corneal-19, and contact lens-4), environmental specimens (soil, forest detritus, lake and stream sediments, pond water, tree bark, potting soil, 25), and ATCC strains (9)	Culture, electron microscopy, staining	14 of 57	ATCC strains: A. culbertsoni 30886, 30011, and 30868 A. rhysodes 30973, A. polyphaga 30871 and 30461 A. astronyxis 30137, A. hatchetti 30730, A. palestinensis 30870, Acanthamoeba strain 30173	Gram-negative rods and cocci and non-acid fast non-motile bacteria
Philippines, 1995 [40]	Pond	Culture, PCR, electronic microscopy	1 of 1	Acanthamoeba sps	Gram-negative rod-shaped bacteria, $1.3 \times 0.43 \ \mu m$ in size
South Korea, 1997 [41]	Contact lens storage	PCR, TEM	1 of 1	A. lugdunesis	Rod-shaped bacteria, $1.38\times0.5~\mu m$ in size
Germany, 1997 [42]	Nasal mucosa of humans	Culture, electron microscopy, in situ hybridization	2 of 2	Acanthamoeba spp. and A. mauritaniensis	Coccoid shaped related to <i>Chlamydia</i> spp.; Ca. Parachlamydia acanthamoebae (proposed name for strain Bn9)
Germany, 1997 [43]	Wet area of a physiotherapy unit	Culture, light, and electron microscopy, biochemical tests	1 of 2	Acanthamoeba spp. Group II	Burkholderia pickettii (biovar 2)
Germany, 1998 [44]	Cold water tap of a hospital plumbing system	Culture, electron microscopy, gas-liquid chromatography	1 of 1	<i>Acanthamoeba</i> spp. Group II (K62)	Legionella-like slender rods
Germany, 1998 [45]	Potable water reservoir	Culture, electron microscopy	1 of 1	Acanthamoeba sps Group II	Archaea like (short rod shaped, 1–1.5 μm length) endoparasite
Germany, 1999 [46]	Drinking water system of a hospital	Culture, phase contrast and electron microscopy, gas-liquid chromatography, Gram staining, biochemical tests	1 of 1	Acanthamoeba spp. Group II	<i>Cytophaga</i> spp. (K69i)
Germany, 1999 [47]	Two clinical isolates (HN-3 and UWC9) and one environmental isolate (UWE39)	Culture, PCR, Gram and Giemsa staining, sequencing, electron microscopy, FISH, confocal laser scanning microscopy (CLSM)	3 of 3	<i>Acanthamoeba</i> spp. (UWC9 and UWE39); <i>A. polyphaga</i> (HN-3) [20]	<i>Ca.</i> Caedibacter acanthamoebae (proposed name); Ca. Paracaedibacter acanthamoebae (proposed name); Ca. Paracaedibacter symbiosus (proposed name)

 Table 1. Intracellular microorganisms identified in environmental and clinical isolates of Acanthamoeba species.

Country, Date of Study	Analysed Sample (Clinical/Environmental)	Laboratory Investigation	Positive Samples for Intracellular Microbes	Species and Genotypes of Acanthamoeba	Identified Intracellular Microbes
USA, 1999 [48]	Corneal scraping	Culture, Gram and Giemsa staining, confocal laser-scanning microscopy, PCR amplification, sequencing of 16S rRNA gene, EM	2 of 2	<i>Acanthamoeba</i> species (UWC8 and UWC36)	Phylogenetically related to members of the order Rickettsiales branch of the alpha subdivision of the <i>Proteobacteria</i> (99.6% sequence similarity to each other), Ca. Midichloriaceae family in Rickettsiales
USA, 2000 [49]	Clinical (corneal tissues—1), and environmental isolates (soil samples from the USA—1, and sewage sludge from Germany—1)	Culture, Giemsa staining, FISH, electron microscopy, PCR, sequencing	4 of 4	Acanthamoeba spp.	Gram-negative cocci, may represent distinct species of Parachlamydiaceae <i>Ca.</i> Protochlamydia amoebophila (UWE25) [50]
Greece, 2000 [51]	Water sample collected from the drip-tray of the air conditioning unit of a hospital	Culture, Gimenez Staining, microscopy, PCR, 16S rRNA sequencing	1 of 1	Acanthamoeba sps	<i>Ca.</i> Odyssella thessalonicensis' gen. nov., sp. nov. [gram negative, rod, and motile] (proposed name); Note: The phylogenetic position, inferred from comparison of the 16S rRNA gene sequence, is within the α - <i>Proteobacteria</i> .
Germany, 2001 [52]	Drinking water in a hospital, corneal scrapings of a keratitis patients (Germany) and eutrophic lake sediment (Malaysia)	Culture, phase contrast and electron microscopy, PCR, 16S rRNA sequencing	3 of 3	Acanthamoeba spp. T4	Flavobacterium succinicans (99% 16S rRNA sequence similarity) or Flavobacterium johnsoniae (98% 16S rRNA sequence similarity); Cytophaga-Flavobacterium-Bacteroides (CFB) phylum (<82% 16S rRNA sequence similarity); Ca. Amoebophilus asiaticus (proposed name)
Germany, 2002 [53]	Clinical and environmental isolates from the USA and Malaysia	Culture, Gram, Giemsa and DAPI staining, electron microscopy, FISH, PCR, 16S and 23S rDNA-based sequencing	6 of 6	A. polyphaga strain Page 23 and Acanthamoeba spp.	Rod-shaped Gram-negative obligate bacterial endosymbionts, related to the β- <i>Proteobacteria</i> : Ca. Procabacter acanthamoebae' gen. nov., sp. nov. (proposed name)

Table 1. Cont.

Country, Date of Study	Analysed Sample (Clinical/Environmental)	Laboratory Investigation	Positive Samples for Intracellular Microbes	Species and Genotypes of Acanthamoeba	Identified Intracellular Microbes
France, 2003 [54]	Water of cooling tower	Gram staining, electronic microscopy, genome sequencing	1 of 1	A. polyphaga	Mimivirus
South Korea, 2007 [55]	Contact lens storage case	Culture, MtDNA RFLP analysis, TEM, PCR, sequencing, AFB, and fluorescent staining	1 of 1	A. lugdunensis	Mycobacterium spp.
South Korea, 2007 [56]	From the infected corneas of Korean patients	Culture, orcein staining, RFLP, TEM, PCR, sequence analysis of 16S rDNA of endosymbiontsand 18S rDNA of <i>Acanthamoeba</i>	4 of 4	Strains of <i>Acanthamoeba</i> spp. belonging to the <i>A. castellanii</i> complex T4	Caedibacter caryophilus (proposed name); Cytophaga-Flavobacterium-Bacteroides (CFB) phylum
Austria, 2007 [57]	Lake	Culture, FISH, TEM, PCR, 16S rRNA sequences	1 of 1	Acanthamoeba sps T4	<i>Ca.</i> procabacter sp. OEW1 (proposed name); <i>Parachlamydia acanthamoebae</i> Bn9
Spain, 2007 [58]	Tap water samples	Culture, PCR	34 of 236	Acanthamoeba spp. T2; T3; T4; T6 and T7	Human adenoviruses (HadV); serotypes HadV-1, 2, 8, and 37
Germany, 2008 [59]	Contact lens and storage case fluid	Culture, light and electron microscopy	1 of 1	 A. triangularis Not yet determined, with polygonal cysts 	Pandoravirus inopinatum [60]
Austria, 2008 [33]	Soil and lake sediment samples from Austria, Tunisia, and Dominica (N=10)	Culture, TEM and confocal laser scanning microscopy, PCR, genotyping, sequencing	8 of 10	<i>Acanthamoeba</i> spp. (isolates EI1, EI2, EI3, 5a2, EIDS3, and EI6) = T4 and (isolates EI4 and EI5) = T2	Parachlamydia sp. isolate Hall's coccus; Protochlamydia amoebophila UWE25; Ca. Paracaedibacter acanthamoebae (proposed name); Ca. Amoebophilus asiaticus TUMSJ-321 (proposed name); Ca. Procabacter acanthamoebae Page23 (proposed name); Parachlamydia sp. isolate UV-7
South Korea, 2009 [61]	Tap water	Culture, TEM and phase-contrast light microscopy, PCR, 16S r DNA sequencing	5 of 17	Acanthamoeba spp.	<i>Ca.</i> Amoebophilus asiaticus (proposed name); Ca. Odyssella thessalonicensis (<i>α-Proteobacteria</i>) (proposed name); <i>Methylophilus</i> spp.

		14010			
Country, Date of Study	Analysed Sample (Clinical/Environmental)	Laboratory Investigation	Positive Samples for Intracellular Microbes	Species and Genotypes of Acanthamoeba	Identified Intracellular Microbes
Japan, 2010 [62]	Environmental samples (41 soil samples: 19 river water samples, 4 lake water samples and 2 pond water samples)	Culture, PCR, sequencing, FISH, TEM	5 of 41	<i>Acanthamoeba</i> spp. T2; T4; T6 and T13	Rod-shaped belonging to α- and β-Proteobacteria phyla; sphere/crescent-shaped belonging to the order chlamydiales Protochlamydia; Neochlamydia [63]
USA, 2010 [21]	Acanthamoeba isolates (N=37) recovered from the cornea and contact lens paraphernalia of 23 patients, 1 environmental (water) isolate	Culture, PCR, sequencing, FISH, TEM	22 of 38	Acanthamoeba spp.	Legionella sp.; Pseudomonas sp.; Mycobacterium sp.; Chlamydia sp.
Spain, 2010 [64]	Three different water treatment plants	Axenic culture, sequencing a portion of the 18S rRNA gene for amoeba and specific 16S rRNA gene PCR for endosymbionts	5 of 9	Acanthamoeba T4 strain	Chlamydiae; Legionellae
France, 2011 [65]	Corneal scraping of AK patient, contact lens storage case liquid	Culture, slit-lamp examination, PCR, sequencing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry	1 of 1	A. polyphaga	<i>Ca.</i> Babela massiliensis/ Deltaproteobacterium (proposed name); <i>Alphaproteobacterium</i> bacillus; mimivirus strain Lentille; virophage Sputnik 2
USA, 2011 [66]	Eye infection <i>, A. castellanii</i> strain Ma (ATCC 50370), culture collection	Culture, light microscopy, PCR, sequencing	1 of 1	A. castellanii (ATCC 50370)	Species of <i>Mycobacterium avium</i> complex (MAC) (<i>M. timonense; M. marseillense</i> and <i>M. chimaera</i>).
UK, 2011 [67]	Sewage sludge	Culture, PCR, sequencing of Amoeba only	1 of 1	<i>A. palestinensis</i> (22/25 clones) within the T6 clade	Mimivirus-like particles
Germany, 2013 [68]	From biofilm of a flushing cistern in a lavatory	Culture, PCR, sequencing, electron microscopy	1 of 1	Acanthamoeba spp.	<i>Stenotrophomonas maltophilia</i> complex (96.5% sequence similarity)
Japan, 2014 [69]	Hot Spring in Japan	Culture, FISH, TEM, confocal laser and phase-contrast microscopy, PCR, sequencing	1 of 1	Acanthamoeba spp. T5	Protochlamydia

Table 1. Cont.

	Table 1. Cont.				
Country, Date of Study	Analysed Sample (Clinical/Environmental)	Laboratory Investigation	Positive Samples for Intracellular Microbes	Species and Genotypes of Acanthamoeba	Identified Intracellular Microbes
Austria, 2014 [70]	Three environmental samples	Axenic culture, PCR, FISH, sequencing	7 of 10	Acanthamoeba spp. (closely related to A. castellanii Neff GenBank Acc. U07416, A. polyphaga)	Paraceadibacter; Neochlamydia; Protochlamydia; Procabacter; Rickettsiales; Amoebophilus
Brazil, 2015 [71]	Seven samples from air-condition units, and five from contact lens cases	Culture, FISH, semi nested-PCR, DGGE, sequencing	3 of 12	Acanthamoeba spp. T3; T4 and T5	Paenibacillus spp., Ca. Protochlamydia amoebophila, (uncultured γ-Proteobacterium) (prposed name)
Brazil, 2015 [72]	Seven samples from air-condition units, and five from contact lens cases	Axenic culture, conventional PCR, amplicon sequencing	12 of 12	Acanthamoeba spp. T3; T4 and T5	Pseudomonas spp.
Japan, 2015 [73]	Isolated from a patient with AK	Culture, Gram staining, MicroScan autoSCAN-4 system, PCR	1 of 1	Acanthamoeba strain T4	E. coli
Iran, 2015 [74]	Recreational water sources	Axenic culture, staining, PCR, genotyping, microscopy	5 of 16	Acanthamoeba spp. T4 and T5	P. aeruginosa; Agrobacterium tumefaciens
Spain, 2015 [75]	Seventy water samples (three DWTP, three wastewater treatment plants and five natural pools)	Culture, PCR, genotyping, sequencing	43 of 54	Acanthamoeba T3, T4 and T11	<i>Legionella</i> spp.
Japan, 2016 [76]	Smear samples from University Hospital	Culture, PCR, sequencing	3 of 21	Acanthamoeba spp. T4	Protochlamydia spp.; Neochlamydia spp.
Austria, 2016 [22]	Corneal scraping of AK patient	Axenic culture, PCR, sequencing, FISH, TEM	1 of 1	A. hatchetti, T4	Parachlamydia acanthamoebae; Candidatus Paracaedibacter acanthamoebae (proposed name)
Austria, 2016 [77]	Seventy-eight water samples (66 cooling tower water: 2 cooling towers of hospital, 1 cooling tower of company, and 12 tap water)	Culture, FISH, real-time PCR, genotyping, and sequencing	3 of 53	Acanthamoeba spp. T4	Paracaedibacter acanthamoebae; Rickettsiales; L. pneumophila

	lable 1. Cont.				
Country, Date of Study	Analysed Sample (Clinical/Environmental)	Laboratory Investigation	Positive Samples for Intracellular Microbes	Species and Genotypes of Acanthamoeba	Identified Intracellular Microbes
Canada, 2017 [78]	Five clinical isolates (human cornea, nasal swab, monkey kidney tissue Culture) and four environmental isolates (lake sediment, soil, and water reservoir); all ATCC strains	Axenic culture, amplifying and sequencing of bacterial 16S DNA	3 of 9	<i>A. polyphaga</i> ATCC 30173 and 50495; <i>Acanthamoeba</i> spp. PRA-220	Holosporaceae (Rickettsiales); Mycobacterium spp.; Parachlamydia spp.; Ca. procabacter sp. (proposed name)
Malaysia, 2017 [79]	Isolates from air-conditioning outlets in wards and operating theatres (dust particles)	Axenic culture, PCR, genotyping, sequencing	29 of 36	Acanthamoeba spp.	Mycobacterium spp. (M. fortuitum, M. massiliense, M. abscessus, M. vanbaalenii, M. senegalense, M. trivial and M. vaccae); Legionella spp. (L. longbeachae, L. wadwaorthii, L. monrovica, L. massiliensis and L. feeleii); Pseudomonas spp. (P. stutzeri; P. aeruginosa; P. denitrificans; P. chlororaphis and P. knackmussi)
Malaysia, 2018 [80]	Air-condition (11 isolates), and keratitis isolates (2)	Axenic culture, PCR, sequencing, FISH (double), TEM	6 of 13	<i>Acanthamoeba</i> spp. T3; T4 and T5	<i>Ca.</i> Caedibacter acanthamoebae/ <i>Ca.</i> Paracaedimonas acanthamoeba and Ca. Jidaibacter acanthamoeba (proposed name)
Iran, 2019 [81]	Corneal scrapes and contact lenses isolate of keratitis patients	Culture, light microscopy, gram staining, PCR, sequencing	7 of 15	Acanthamoeba spp. T4	E. coli; Achromobacter sps; P. aeruginosa; Aspergillus sp.; Mastadenovirus sp.; Microbacterium sp.; Stenotrophomonas maltophilia; Brevundimonas vesicularis and Brevibacillus sp.

Key: AFB = Acid Fast Bacilli, ATCC = American Type Culture Collection, AK = *Acanthamoeba* keratitis, PCR = Polymerase Chain Reaction, TEM = Transmission Electron Microscopy, SEM = Scanning Electron Microscope, FISH =Fluorescence in situ Hybridization, DWTP = Drinking Water Treatment Plant, DAPI = 4',6-diamidino-2-phenylindole, MtDNA = Mitochondrial DNA, RFLP = Restriction Fragment Length Polymorphism, DGGE = Denaturing Gradient Gel Electrophoresis, Ca. = *Candidatus*.

Table 1. Cont.

Figure 2. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow diagram for selection of articles.

2.3. Laboratory Techniques Used for the Isolation and Identification of Intracellular Microbes in Acanthamoeba spp.

Microbial culture, fluorescence in situ hybridization (FISH), microscopy, polymerase chain reaction (PCR), gene sequencing, and gas liquid chromatography were the laboratory techniques used for the identification of *Acanthamoeba* and associated intracellular microbes [21,22,33,48,50,55,56,61,72,74,76]. Two studies used gas–liquid chromatography to detect cellular fatty acids of intracellular bacteria and the identification was performed using Microbial Identification Inc. protocols (MIDI) (Newark, DE, USA) [44,46]. PCR (33/43, 76.7%), gene sequencing (30/43, 69.8%), and microscopy (transmission and scanning electron microscopy, confocal laser scanning, and phase-contrast microscopy) (29/43, 67.4%) were the most commonly used techniques to identify the amoeba and intracellular microbes, followed by fluorescence in situ hybridization (12/43, 27.9%) (Figure S1) [21,49,52,53,62,68,74,77]. Two studies observed intracellular bacteria in *Acanthamoeba* cysts [52,80].

2.4. Culture Techniques Used to Isolate and Identify Acanthamoeba

Acanthamoeba can be axenically cultured [82], which means a culture in which only a single species is present entirely free from other contaminating organisms, i.e., with no food organisms, or by adding live or dead microbes to stimulate the growth of trophozoites [15,83,84]. Samples (clinical or environmental) are cultured on non-nutrient agar (NNA) covered with bacteria where amoebae graze and move away from the inoculation point in order to recover the symbiont with its natural amoeba host [85]. Axenic culture medium that supports *Acanthamoeba* growth consists of protease peptone, yeast extract, glucose (PYG), and inorganic salts (MgSO₄ × 7H₂O, sodium citrate dihydrate × 2H₂O, Na₂HPO₄ × 7H₂O, KH₂PO₄, Fe(NH₄)₂(SO₄)₂ × 6H₂O) [86,87]. A wide range of bacteria have been used in co-culture with *Acanthamoeba*. The most common microbes used to culture Acanthamoeba are E. coli, Klebsiella aerogenes [88–90] and Enterobacter spp. (E. cloacae and E. aerogenes) [8,25,59] on NNA or in saline [83] (Figure 3). It is not entirely clear why E. coli or K. aerogenes are the most commonly used as food supplement for culturing Acanthamoeba spp. There are only a few studies examining whether Gram negative or Gram positive are preferred or whether bacterial preference is dependent on amoebal species or genotypes [88]. One such study has shown that Acanthamoeba grows better on E. coli, Salmonella enterica serovar Typhimurium, or Bacillus subtilis than Enterococcus faecalis or Staphylococcus aureus [91].

Figure 3. Laboratory procedures for the isolation and identification of *Acanthamoeba* and associated intracellular microorganisms from clinical and environmental samples. Adapted from Thomas et al. (2010) [37]. PAS: Page's Amoeba Saline, NNA: Non-nutrient agar, TEM = Transmission Electron Microscopy, SEM = Scanning Electron Microscope. Created with BioRender.com (accessed on 20 January 2021).

> The bacteria used are commonly heat-killed [86,92] or heat-inactivated [56,62] and spread upon NNA plates [70]. The use of bacteria, even dead bacteria, to grow Acanthamoeba trophozoites could potentially affect the types of intracellular microbes that can be grown from the Acanthamoeba. Twelve studies have examined the presence of intracellular bacteria using axenic culture [22,43,46,51,66,69,71,72,78–80], where three studies [58,71,72] have used antibiotics (streptomycin, penicillin, and gentamicin) in PYG to grow amoebae axenically, 18 studies have used NNA with live/inactivated or killed bacteria (E. coli, E. cloacae, S. cerevisiae, E. aerogenes), followed by axenic culture, to recover the intracellular microbes harbouring *Acanthamoeba* [20,21,49,53,56,57,59,61,62,64,65,67,68,75–77,81] and antibiotics (penicillin, streptomycin, ampicillin, and amphotericin B) were added in culture media (NNA, TSB, SCGYE, PYG) to make the growth contamination free and axenic in another seven studies [40,42,45,47,48,52,70] (Table 2). Some studies have used PYG without inorganic salts to maintain axenic growth of amoeba [69,72]. In the absence of established method for the recovery and identification of intracellular microbes of amoeba, different methods have been used to cultivate intracellular microorganisms carrying Acanthamoeba, which has shown inconsistent results. Pathogenic bacteria, such as Mycobacterium spp. [55,66,79] and Pseudomonas spp. [72,74,79], were often detected by axenic culture technique, whereas pathogenic intracellular bacteria belonging to the genera Legionella, Pseudomonas, Mycobacterium, and Chlamydia in clinical isolates of Acanthamoeba were detected by culturing on NNA pre-seeded with heat killed *E. coli* followed by axenic

culture in 1X Page's saline solution [21]. Ten studies have used antibiotics at some point of cultivation to maintain the axenic culture and they have reported limited intracellular microorganisms as compared to studies grown *Acanthamoeba* on NNA supplemented with bacteria, where phylogenetically varied intracellular bacteria were repeatedly detected. In addition, axenic culture has been frequently used for clinical specimens (5/8) and NNA with pre-seeded bacteria was preferred to culture environmental samples (22/26). Four serotypes of Adenovirus (Ad1, Ad2, Ad8, and Ad37) were detected in water-isolated *Acanthamoeba* by growing amoeba in PYG with gentamicin (50 µg/mL) [58].

The co-culture of environmental samples with symbiont-free *Acanthamoeba* as a surrogate host is being used as a new method to grow and recover facultative or obligate intracellular bacteria [93–95], but this method is not appropriate for isolating symbiont bacteria together with natural host.

Some bacteria have been examined for their ability to survive co-culture with Acanthamoeba. S. aureus can grow within A. polyphaga strain [91]. Shigella dysenteriae and S. sonnei were able to survive in co-culture with A. castellanii for >3 weeks [96] and mycobacterial strains related to M. intracellulare and M. avium for six years without any amoebal cytopathic effects [55]. Co-culture of C. jejuni with amoebal cells resulted in longer survival times as compared to bacteria grown alone [97]. C. jejuni and L. pneumophila were able to be resuscitated from a viable-but-nonculturable (VBNC) state when co-cultured with A. polyphaga or A. castellanii, respectively [97,98]. Acanthamoeba co-culture has been used to enrich low bacterial concentrations of four Campylobacter species, C. jejuni, C. lari, C. coli, and C. hyointestinalis [99]. VBNC P. aeruginosa can become culturable and active within 2 h of Acanthamoeba ingestion [100]. In vitro studies have shown A. castellanii can act as an important environmental reservoir of highly infectious bacteria, such as Francisella *tularensis* and *V. cholerae* [101,102]. Furthermore, *V. cholerae* survives within the contractile vacuole of amoeba, even upon the encystment and F. tularensis grows faster in co-culture with amoeba when compared to bacteria grown alone and causes rapid amoebal encystment [103]. Similarly, viable and intact growth of Helicobacter pylori is increased when co-cultured with A. castellanii [104]. Spores of a virulent B. anthracis (Ames strain with both pX01 and pX02 virulence plasmids, and Sterne strain with only pX01), an agent of bioterrorism, have shown a 50-times increase in spore count after 72 h of co-culture with A. castellanii. In addition, the spores were germinated within phagosomes of amoeba, with the Sterne strain showing less growth [105]. Pathogenic bacteria, such as A. baumannii, K. pneumoniae, and E. coli have been recovered from water samples by A. polyphaga coculture [93]. Acanthamoeba also promotes the survival and growth of fungi and viruses (Table 3), suggesting that Acanthamoeba can act as an environmental incubator for medically important prokaryotes and fungi.

Table 2. The t	ypes of microbes	isolated from A	<i>canthamoeba</i> spp.	using differen	t culturing techniques.
			11	0	

Culture Type	Source of Acanthamoeba	Identified Intracellular Organism in Acanthamoeba	Study
_		Mycobacterium avium complex	[66]
	Clinical isolates	Escherichia coli	[73]
		Parachlamydia acanthamoebae and Ca. Paracaedibacter acanthamoebae	[22]
		Candidatus spp.	[51]
Axenic culture on PYG, V_{CM} accer NINA ($u = 12$)	Environmental isolates	Protochlamydia	[69]
$\mathbf{KCW} \ \mathbf{agar}, \mathbf{NNA} \ (n=12)$		Burkholderia pickettii (biovar 2)	[43]
		<i>Cytophaga</i> spp.	[46]
		Mycobacterium spp.	[55]
		P. aeruginosa and Agrobacterium tumefaciens	[74]
		Mycobacterium spp. and Pseudomonas spp.	[79]

Culture Type	Source of Acanthamoeba	Identified Intracellular Organism in Acanthamoeba	Study
	Clinical and environmental (both) isolates	Rickettsiales; <i>Mycobacterium</i> spp.; <i>Parachlamydia</i> spp. and Ca. procabacter sp.	[78]
	(botti) isolutes	Candidatus spp.	[80]
		Human adenoviruses	[58]
Axenic culture in presence of antibiotics $(n = 3)$	Environmental isolates	Paenibacillus spp.; Ca. Protochlamydia amoebophila; γ-Proteobacterium	[71]
		Pseudomonas spp.	[72]
	Clinical isolates	E. coli; Achromobacter sps; P. aeruginosa; Aspergillus sps; Mastadenovirus; Microbacterium sps; Stenotrophomonas maltophilia; Brevibacillus sps and Brevundimonas vesicularis	[81]
		Caedibacter caryophilus and Cytophaga-Flavobacterium-Bacteroides	[56]
		<i>Ca.</i> Babela massiliensis, <i>Alphaproteobacterium</i> bacillus, Mimivirus (Lentille), Virophage (Sputnik 2)	[65]
		Mimivirus-like particles	[67]
		Stenotrophomonas maltophilia complex	[68]
		Legionella spp.	[75]
NNA with		Ca. procabacter sp. and Parachlamydia acanthamoebae	[57]
live/inactivated/killed	Environmental isolates	Protochlamydia spp. and Neochlamydia spp.	[76]
bacteria (n= 18)		Paracaedibacter acanthamoebae; Rickettsiales; L. pneumophila	[77]
		Pandoravirus	[59]
		Parachlamydia sp.; Protochlamydia amoebophila; Candidatus spp.	[33]
		Candidatus spp.	[61]
		α - and β - <i>Proteobacteria</i> and chlamydiales	[62]
		Chlamydiae; Legionellae	[64]
		Gram-negative; rods and coccus; non-acid fast; non-motile	[20]
	Clinical and environmental	Parachlamydiaceae and Ca. Protochlamydia amoebophila	[49]
	(both) isolates	<i>Ca.</i> Procabacter acanthamoebae' gen. nov., sp. nov. (proposed)	[53]
		Legionella; Pseudomonas; Mycobacterium; Chlamydia	[21]
	Clinical inslator	Chlamydia spp. and Ca. Parachlamydia acanthamoebae	[42]
	Clinical isolates	Rickettsiales spp.	[48]
Live/inactivated/killed		Archaea like organism	[45]
bacteria on	Environmental isolates	Gram-negative, rod-shaped bacteria	[40]
with antibiotics $(n=7)$		Paraceadibacter; Neochlamydia; Protochlamydia; Procabacter; Rickettsiales; Amoebophilus	[70]
	Clinical and environmental	Candidatus spp.	[47]
	(both) isolates	Flavobacterium spp. and Ca. Amoebophilus asiaticus	[52]

Table 2. Cont.

Key: PYG = Peptone-yeast-glucose, KCM agar = KCM buffer (KCl, CaCl₂ and MgSO₄.H₂O) in Bacto agar, NNA = non-nutrient agar, TSB = Tryptic soy-yeast extract broth, SCGYE = Serum-casein glucose yeast extract.

S.N.	Microorganisms	Interaction with Acanthamoeba spp.	Reference
1.		Fungi	
	Histoplasma capsulatum	Co-culture with A. castellanii (ATCC 30324), cell lysis	[106]
	C. neoformans	Intracellular multiplication in A. castellanii strain 30324	107
	Sporothrix schenckii	Co-culture with <i>A. castellanii</i> (ATCC 30324), cell lysis	[106]
	, Fusarium conidia	Co-culture with different strains of <i>A. castellanii</i> (ATCC 30010, 50492), germinate in amoebal cells	[108]
2.		Viruses	
	HAdV	Co-culture with different isolates of Acanthamoeba, intracellular survival	[58]
	Coxsackie virus	Intracyst and intracellular survival in a clinical isolate of A. castellanii	[109]
	Mimivirus	Intracellular multiplication in <i>A. polyphaga</i> isolated from the water sample of a cooling tower	[54]

Table 3. Interactions of fungi or viruses with Acanthamoeba spp.

2.5. Species and Genotypes of Acanthamoeba spp.

The most commonly reported genotypes of *Acanthamoeba* are T4 [11,52,57,64,73,74,76,77,81], followed by T3 [58,69,71,72,75,80], T5 [69,72,80,110], and T2 [33,58,62,74] (Figure S2). *A. polyphaga* was detected in eight studies [20,33,47,53,54,65,70,78] and *A. castellani* was observed in five studies [20,33,56,66,70]. *A. hatchetti* (T11, T4) [20,22] and *A. palestinensis* (T2, T6) [20,67] were observed in two studies. Additionally, *A. culbertsoni*, *A. astronyxis* (T7) [20], *A. lugdunesis* [41], *A. mauritaniensis* [42], and *Acanthamoeba* T7 [58] and T11 [75] strains were also reported by single studies.

2.6. The Types of Microorganisms Commonly Found Inside Acanthamoeba spp.

Bacteria were the most commonly identified intracellular microorganism in *Acanthamoeba* followed by viruses and fungi (Figure S3). Unidentified bacteria, termed *Candidatus*, were reported in 1/3rd of included studies [22,33,42,47,50–53,57,61,65,69,72,77,78,80] and *Chlamydia* species were detected in 11 studies [21,33,42,49,57,62,64,69,70,76,78]. Five studies found *Legionella* spp. [21,44,64,75,79], another five studies reported *Mycobacterium* [21,55,66,78,79] or *Pseudomonas* spp. [21,71,74,79,81], four studies found *Rickettsia* spp. [48,77,78,111], three studies detected *Cytophaga* spp. [46,52,56], and *E. coli* [73,81] or *Stenotrophomonas maltophilia* [68,81] were detected in two studies. *Burkholderia pickettii* [43], *Agrobacterium tumefaciens* [74], *Brevibacillus* sp. [81], *Flavobacterium* sp. [52], *Brevundimonas vesicularis*, or *Microbacterium* sp. [81] were also reported in single studies. Three studies only reported the morphology of intracellular "bacteria" present in *Acanthamoeba* [20,40,41]. An archaea-like organism was detected in the cytoplasm of *Acanthamoeba* recovered from a potable water reservoir [45].

Giant mimivirus was detected in three studies [54,65,67], and human adenovirus (HAdV) was isolated in two studies [58,81]. The virophage sputnik 2 [65] and pandoravirus [59] were detected in the contact lens of AK patient in one study. *Aspergillus* was found in *Acanthamoeba* recovered from corneal scrapes and contact lenses of a keratitis patient in one study [81].

The presence of more than one intracellular microbe was reported in ten studies [21,22,57,62,65,70,71,78,79,81]. For example, *Chlamydia* and *Legionella* have been observed in a clinical isolate of *Acanthamoeba*, an environmental isolate that harboured *Legionella* and *Mycobacterium* [21], and *Procabacter* and *Parachlamydia* were found in *Acanthamoeba* (OEW1) isolated from a saline lake in Austria [57]. A study from Iran reported three intracellular microorganisms, *P. aeruginosa, Aspergillus* spp. and HAdV in a clinical isolate of *Acanthamoeba* T4 (ICS7) [81]. *A. polyphaga* isolated from a keratitis patient hosted four intracellular prokaryotes: Deltaproteobacterium, Alphaproteobacterium, mimivirus Lentille, and the virophage Sputnik 2 [65].

2.7. Differences between the Intracellular Prokaryotes Found in Environmental and Clinical Isolates of Acanthamoeba

Twenty-six studies (60.5%) analysed environmental samples that were collected from soil, sewage sludge, water treatment plants, household tap water, recreational water sources, air conditioning units, hospital areas, such as operating theatres, and contact lens storage cases. Eight (18.6%) studies processed specimens from patients, such as nasal or mucosal swabs, corneal scrapes/swabs or tissue, and AK patient's contact lenses, and these were grouped as clinical samples. Another nine studies (20.9%) examined both types of samples (Figure S4 and Table 1).

Pathogenic bacteria, such as *E. coli*, *Mycobacterium* spp. and *P. aeruginosa*, were observed in *Acanthamoeba* strains that were cultured from clinical specimens [21,66,73,81] (Table 4). *Acanthamoeba* spp. obtained from the corneas of patients contained obligate intracellular bacteria of the order Rickettsiales [48,111], *E. coli* [73], *Pseudomonas, Chlamydia* [21], *Caedibacter caryophilus* and *Cytophaga-Flavobacterium-Bacteroides* (CFB) [56]. The presence of bacteria in *Acanthamoeba* has been shown to exacerbate keratitis [21,112] and influence the virulence, pathogenicity, and susceptibility of keratitis causing amoeba to therapeutic drugs [55,75]. *Chlamydia* was observed in *Acanthamoeba* isolated from the nasal mucosa of volunteers [42] and presence of *Pandoravirus inopinatum* was confirmed in *Acanthamoeba* strain recovered from pieces of contact lenses worn by a keratitis patient [59,60].

Acanthamoeba carrying mimivirus and *Legionella* spp. were isolated from environmental samples that were collected from air-conditioning units, water treatment plants, and sewage sludge [44,54,64,67,75]. Contact lens cases, often cultured when a keratitis case presented for treatment, have been a rich source of intracellular microbes. Mimivirus strain Lentille, Sputnik 2 [65] and *Mycobacterium* sp. [55] have been isolated from contact lens storage cases. Even though contact lens cases are frequently exposed to disinfectants, several studies have shown that these disinfectants often have poor activity against *Acanthamoeba* spp. [113–115]. Hospital floor and sink swabs were found to be positive for *Acanthamoeba* with *Chlamydia* (14.3%) showing the possibility of pathogen transmission via amoeba in the hospital setting [76]. Four different serotypes of human adenovirus (HAdV-1, 2, 8, 37) were found in 14.4% (34/236) of amoeba isolated from tap water [58]. *P. aeruginosa* and *A. tumefaciens* were detected in *Acanthamoeba* strains cultured from recreational water samples [74]. *Acanthamoeba* trophozoites and cysts are highly resistant to disinfectants used to decontaminate water supplies and the intracellular bacteria may be protected from these external disinfectants [37,74,116].

Irrespective of the place of isolation, *Acanthamoeba* hosts many different pathogens [18] but endemically important human pathogens, such as *E. coli, Pseudomonas* spp. and *My-cobacterium* spp., were more commonly identified in *Acanthamoeba* cultured from clinical specimens, whereas giant viruses (mimivirus and *Pandoravirus*), *Legionella* spp., and unnamed bacteria of genus *Candidatus* were often detected in environmental *Acanthamoeba*. This suggests that most intracellular microbes interact with *Acanthamoeba* in their natural environment [117]. *Acanthamoeba* may act as a "Trojan horse" for microbes, providing them with the opportunity to colonise or infect different environments [118]. The ability of *Acanthamoeba* to host several different intracellular microbes suggests that these may interact with each other and lead to highly complex differences in the pathogenesis of *Acanthamoeba* [21].

Sample Type	Analysed Sample	Amoebal Host	Identified Intracellular Pathogenic Microbes in <i>Acanthamoeba</i> spp.	Study
		Acanthamoeba spp.	Legionella, Pseudomonas; Mycobacterium; Chlamydia	[21]
	Compations	A. castellanii (ATCC 50370)	Mycobacterium avium complex (MAC)	[66]
		A. polyphaga (ATCC 50495)	Mycobacterium spp.	[78]
	contear specificits	Acanthamoeba spp.	Rickettsiales	[48,111]
Clinical specimens		Acanthamoeba spp. T4	P. aeruginosa; Aspergillus spp.; Mastadenovirus spp.	[81]
-		A. castellanii T4	Caedibacter caryophilus; Cytophaga-Flavobacterium-Bacteroides (CFB)	[56]
		A. hatchetti T4	Parachlamydia acanthamoebae	[22]
		Acanthamoeba T4	E. coli	[73,81]
	Human nasal musasa	Acanthamoeba spp.	<i>Chlamydia sps;</i> <i>Candidatus Parachlamydia</i> acanthamoebae	[42]
		A. polyphaga (ATCC 30173)	Rickettsiales	[78]
	Contact lens and fluid	Acanthamoeba spp. (A. triangularis)	Pandoravirus inopinatum	[59,60]
-	Tap water	<i>Acanthamoeba</i> (T2, T3, T4, T6, and T7)	Human adenoviruses	[58]
	Recreational water sources	Acanthamoeba (T4, T5) P. aeruginosa; A. tumefaciens		[74]
	Water treatment plant, natural pools	Acanthamoeba (T3, T4, T11)	Legionella spp.	[64,75]
	Sewage sludge and cooling tower water	A. palestinensis; A. polyphaga	Mimivirus	[54,67]
		A. lugdunensis	Mycobacterium spp.	[55]
Environmental	Contact lens storage case/liquid	A. polyphaga	Deltaproteobacterium; Mimivirus Lentille; Virophage Sputnik 2; <i>Alphaproteobacterium</i> bacillus	[65]
samples	Soil and lake sediment	A. castellanii and A. royreba T4; A. pustulosa and A. polyphaga T2	Parachlamydia sp.; Protochlamydia amoebophila; Ca. Paracaedibacter acanthamoebae; Ca. Amoebophilus asiaticus, Ca. Procabacter acanthamoebae	[33]
	Biofilm of a flushing cistern in a lavatory	Acanthamoeba spp.	Stenotrophomonas spp.	[68]
	Hot Spring	Acanthamoeba spp. T5	Protochlamydia	[69]
	Hospital environment	Acanthamoeba spp. T4	Protochlamydia spp.; Neochlamydia spp.	[76]
	Tap water	Acanthamoeba spp.	<i>Ca.</i> Amoebophilus asiaticus; <i>α</i> - <i>Proteobacteria</i> ; <i>Methylophilus sps</i>	[61]
	Recreational water sources	<i>Acanthamoeba</i> spp. T4 and T5	P. aeruginosa and Agrobacterium tumefaciens	[74]
	Lake water	Acanthamoeba sps T4	Parachlamydia acanthamoebae; Ca. procabacter sp.	[57]

 Table 4. Intracellular microbes identified in Acanthamoeba spp. from clinical or environmental sources.

3. Discussion

This study systematically analysed 43 published studies assessing the reported intracellular microorganisms that were associated with clinical and environmental isolates of Acanthamoeba. PCR followed by gene sequencing and microscopy were the most common laboratory techniques used to identify the intracellular microbes. Potentially pathogenic bacteria, such as Mycobacterium spp., P. aeruginosa, Rickettsiales, and E. coli, were often detected in clinical isolates, while Legionella, human adenovirus, mimivirus, and uncategorised bacteria (*Candidatus*) were found in environmental isolates. It appeared that the niche from which Acanthamoeba had been isolated affected the types of intracellular microbes present, or perhaps affected the ability of particular Acanthamoeba strains to cause infections. This latter hypothesis is presented based on previous investigations that domestic water supplies and contact lenses that are exposed to water are risk factors for Acanthamoeba keratitis [5,119–121]. This suggests that water is the source of the infecting Acanthamoeba [122] and, perhaps, those strains that harbour particular intracellular microbes are more able to instigate corneal (or other) infections [21]. However, not all Acanthamoeba isolated from infections have been shown to harbour intracellular microbes, perhaps because their presence has not been analysed. Alternatively, the Acanthamoeba may expel resident intracellular microbes during the infectious process. These hypotheses require scientific investigation.

NNA with live/heat-inactivated/killed E. cloacae/E. coli was the most common method (25/43) used for the recovery and identification of Acanthamoeba associated microorganisms [21,33,56,68]. A higher proportion of clinical specimens were cultivated using axenic (PYG, NNA, KCM agar) media, while NNA with bacteria was often used to culture environmental samples. Environmental samples may consist of more promiscuous microbes, thus the culture media with Acanthamoeba could enhance the recovery and isolation of intracellular bacteria [95]. The use of different bacterial strains to cultivate amoebal trophozoites could affect the intracellular bacteria that can be recovered from the Acanthamoeba since different bacteria affect trophozoite growth and encystment [83]. In addition, antibiotics have been used to eliminate live bacteria for the axenic cultivation of Acanthamoeba. However, this review supports that use of antibiotics in culture media to grow clinical or environmental Acanthamoeba axenically could inhibit amoebal symbionts and limits the recovery of multiple intracellular bacteria. Therefore, before the adaptation to axenic growth, Acanthamoeba spp. should be sub-cultured several times on NNA plates that were covered with heat-killed E. coli [70], even though Acanthamoeba may grow better with live bacteria than heat killed [83]. The use of live E. coli tolC knockout mutants on NNA without antibiotics improved the axenic growth of Acanthamoeba spp. and these amoebae had phylogenetically distinct intracellular bacteria [70]. There is a definite need to understand whether the food preferences of Acanthamoeba depend on its resident sites/species/genotypes or intracellular microbes or change the intracellular community of microbes. Information such as preference for bacterial consumption on growth of amoeba, time for cyst formation, and intracellular survival of bacteria during the cultivation of Acanthamoeba have not yet been reported. These dynamics of Acanthamoeba-bacteria interaction should be taken into consideration in future studies.

Phylogenetically unrelated intracellular microbes were found within the same isolate of *Acanthamoeba* in ten studies. The diversity of intracellular microbes suggests that their ability to exploit *Acanthamoeba* as a host has developed continually, independent of the phylogenetic lineage [31]. Intracellular microbes can be either in a stable or transient association. Long-term stable interactions have been observed between *Acanthamoeba* and α/β -*Proteobacteria*, chlamydiae, M. *avium* subsp. *paratuberculosis*, and Bacteroidetes [51,52,123]. However, amoeba can release intracellular microbes in suitable environments [124]. Transient association has been reported for bacteria, such as *E. coli* O157:H7, *L. pneumophila*, among others [39,125]. Intracellular survival of enterohaemorrhagic *E. coli* O157:H7 in *A. castellanii* was reduced by Shiga toxins (Stx) that were produced by the bacterium [125]. Co-occurrence of phylogenetically different bacterial species in *Acanthamoeba* can provide an opportunity for lateral gene transfer between intracellular bacteria [57,126]. Multiplespecies association within the same host cell poses challenges to all intracellular microbes, such as competition for nutrients obtained from the host cell, while the interplay between intracellular microbes needs to be balanced to ensure the stability of the association [57]. In depth biochemical and genomic analysis are needed in future research to understand the details of the interactions.

Intracellular microbes have been detected in *Acanthamoeba* isolates that belong to genotypes T2–T7, T11, and T13 [33,47,56,58,62,69,75], whether the occurrence of intracellular microbial strains is, in some way, dependent with amoebal genotypes is still an unanswered question. *Acanthamoeba* hosts for a wide range of microbial species that can presumably, and especially if they are permanent residents, resist phagocytosis, survive, multiply, and endure intracellularly [127]. Whether this can train these intracellular bacteria to survive in other cells, such as human macrophages [31,128,129], perhaps by the exchange of genes with other intracellular microbes [130] or by genetic mutation requires further investigation. This hypothesis is further supported by *Chlamydia* species, which use the same strategies to interact with various different host cells and that likely evolved years ago during interaction with primitive unicellular eukaryotes [31]. From a clinical viewpoint, a better understanding of molecular mechanisms by which pathogenic bacteria can resist amoebal phagocytosis may allow for the design of future antibiotics and vaccines in the treatment of intracellular human bacterial pathogens.

4. Methods

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were followed for this systematic review [131].

4.1. Search Strategy and Data Sources

A systematic search was conducted using three electronic databases, PubMed (Medline), Scopus, and Web of Science (WoS), to identify peer-reviewed articles providing information on the types of intracellular microbes associated with *Acanthamoeba* spp. The literature search was performed using the key terms, "Free-living amoeba" OR "FLA" OR "*Acanthamoeba*" AND "Bacterial endosymbiont"/"Bacterial endocytobiont" OR "Intracellular *Acanthamoeba* Endosymbiosis" OR "Amoeba symbiosis" OR "Amoeba-resisting bacteria" as Combinations of Medical Subject Headings (MeSH). This results in searches of articles containing the words '*Acanthamoeba*' AND "Endosymbiont"/"Endocytobiont" OR "*Acanthamoeba* endosymbiosis" OR "Intracellular" OR "Symbiosis" OR "Free-living amoeba" OR "FLA" in their titles and/or abstracts. Additionally, a snow-ball sampling approach was applied while using the reference lists of the selected articles to expand the search. The search was limited to studies that were published in English language and full text articles published between 1 February 1993 to 30 July 2019.

4.2. Inclusion Criteria

For an article to be included in this study, it had to be peer-reviewed, available in full text, with its primary objective to isolate and identify intracellular microbes in clinical or environmental isolates of *Acanthamoeba* spp. However, case reports of *Acanthamoeba* with symbionts were included. A narrative review was performed for all of the selected studies.

4.3. Exclusion Criteria

Articles that were published in languages other than English, conference abstracts, institutional protocols, other review papers, in vitro studies on the co-culture of *Acanthamoeba* species with bacteria, or other microorganisms for the analysis of symbiosis and isolation of intracellular microbes from amoeba other than *Acanthamoeba* were excluded from the study. Additionally, the coincidental finding of *Acanthamoeba* and microbes in the same sample, but with no evidence of the other microbes being intracellular, were not included in this study.

4.4. Data Abstraction, Quality Assessment, and Appraise Risk of Bias in Individual Studies

At first, two members of the review team screened all of the articles, as per the inclusion and eligibility criteria following PRISMA guidelines and excluded inappropriate articles after consultation with the other authors. Following the database search, studies were pooled and uploaded sequentially into EndNote version X9 (Clarivate Analytics, Philadelphia, PA, USA), then duplicate studies were removed from the list. The authors reviewed a selection of the articles to verify the selection methodology. Any discrepancies between the reviewers were resolved by consensus discussion amongst all of the reviewers. Variables of interest in the included studies were laboratory techniques that were used for the identification of microorganisms, detection and types of *Acanthamoeba* and associated intracellular microbial species, study location, type of sample analysed (clinical or environmental), co-occurrence of multiple intracellular microbes within a *Acanthamoeba* cell, and sequence similarity of detected microbes with reference strains.

The potential risk of bias was assessed with a raw score of quality, as per the Newcastle-Ottawa Scale (NOS) guidelines (adapted for cross-sectional and observational studies) for the appropriateness and aims of the study, method of sample collection, and laboratory identification of *Acanthamoeba* and intracellular microbes [132]. A final score was assigned to each study after consensus between the reviewers. NOS scores can vary from 0 to 9, and studies, with an average score of ≥ 6 were included for this review (Table S1) [133]. A meta-analysis of the studies was not performed due to a high level of heterogeneity. Therefore, a systematic analysis was performed. Relevant data were extracted from each study in customised datasheets. Because of the diversity in variables in each study, the assessment scale was primarily based on the methodological quality, *Acanthamoeba* identification and evidence of intracellular microbes. Figures were created using Origin Lab, Version 2018 (Northampton, MA, USA).

4.5. Outcome Measurements

The main outcome measure of this review was the types of intracellular microbes that were identified dwelling in *Acanthamoeba* species. The secondary outcome measures were the effect of culture techniques on the types of intracellular microbes recovered from *Acanthamoeba* and the type of intracellular microbes from environmental and clinical sources.

5. Conclusions

This study systematically reviewed articles on the types of intracellular microorganisms in *Acanthamoeba*. *Acanthamoeba* acts as an incubator and carrier of a wide range of microorganisms. The niche or home of the *Acanthamoeba* appears to affect the types of intracellular microbes. *Chlamydia* spp., *E. coli*, Rickettsiales, *Pseudomonas* spp., and *Mycobacterium* spp. were the most commonly reported microbes in *Acanthamoeba* that were cultured from clinical specimens and *Legionella*, human adenovirus, mimivirus, and bacteria of *Candidatus* group were detected in environmental *Acanthamoeba*. Human macrophage and *Acanthamoeba* share significant cellular and functional features, particularly phagocytic activity, so amoebal cells might train and serve as a preparatory arena for the pathogens to onset diseases in mammalian cells. Molecular-based future studies are expected to assess the microbiome composition residing in *Acanthamoeba* to view the role of amoeba as a universal host and evolutionary trigger of phylogenetically varied microorganisms.

6. Limitations of the Study

The major limitation of this review was the lack of meta-analysis due to heterogeneous variables among the included studies. Although the study used multiple search engines using keywords, the query string may not have short-listed all the relevant studies given the disparity in terminology, such as "endosymbiont", "endocytobiont", "endosymbiosis", "amoeba symbiosis", "intracellular bacteria", and "amoeba-resisting bacteria". Additionally, the use of different laboratory techniques to identify the intracellular microbes in the included studies may have biased the reported microbes. Many studies applied protocols

to isolate and identify particular prokaryotes, rather than assessing the whole microbiome residing in *Acanthamoeba*, which may not represent all of the microorganisms present within the amoebal cell. This suggests the use of deep sequencing technique could help to identify the composition of amoebal microbiome.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-0817 /10/2/225/s1. Supplementary file I (S1): Table S1: The Newcastle-Ottawa Scale (NOS) for assessing the quality of studies included in this review; Supplementary file II (S2): List of supplementary figures (S1–S4); Supplementary file III (S3): PRISMA 2009 checklist.

Author Contributions: Conceptualization of the study, B.R., N.C., M.D.W., F.L.H.; data selection and extraction, B.R.; analysis, B.R., analysis, editing, M.D.W., F.L.H., N.C., D.S., H.K.P.; writing—original draft preparation, B.R., D.S., M.D.W., N.C., F.L.H.; review and editing; M.D.W., N.C., F.L.H., D.S., H.K.P.; supervision: M.D.W., N.C. and F.L.H. All authors have read and agreed to the published version of the manuscript.

Funding: None of the authors received external funding for this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in Tables 1–3 and S1, and Figures S1–S4.

Acknowledgments: Authors acknowledge the assistance of an academic librarian of the University of New South Wales (UNSW), Sydney, Australia for guiding the search strategy in the databases. B.R. is recipient of the Tuition Fee Scholarship (UNSW, Sydney) for his doctor degree, with which this review was completed.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ARMs	Amoeba-resistant microorganisms
ARB	Amoeba-resistant bacteria
CPE	Cytopathic effect
FLA	Free living amoeba
HAdV	Human adenovirus
PYG	Peptone-yeast-glucose medium
PRISMA	Preferred Reporting Items for Systematic reviews and Meta-Analyses
MATE	Multidrug and toxin extrusion
MBP	Mannose-binding protein
NOS	Newcastle-Ottawa Scale
NNA	Non-nutrient agar
NTM	Nontuberculous Mycobacterium
PYG	Peptone-yeast-glucose
SCGYE	Serum-casein glucose yeast extract
TSB	Tryptic soy-yeast extract broth
VBMC	Viable but non-culturable
WoS	Web of Science

References

- 1. Neelam, S.; Niederkorn, J.Y. Pathobiology and immunobiology of *Acanthamoeba* keratitis: Insights from animal models. *Yale J. Biol.* **2017**, *90*, 261–268.
- Goldschmidt, P.; Degorge, S.; Saint-Jean, C.; Year, H.; Zekhnini, F.; Batellier, L.; Laroche, L.; Chaumeil, C. Resistance of *Acanthamoeba* to classic DNA extraction methods used for the diagnosis of corneal infections. *Br. J. Ophthalmol.* 2008, 92, 112–115. [CrossRef] [PubMed]
- 3. Torno, M.S., Jr.; Babapour, R.; Gurevitch, A.; Witt, M.D. Cutaneous acanthamoebiasis in AIDS. J. Am. Acad. Dermatol. 2000, 42, 351–354. [CrossRef]

- Dunand, V.A.; Hammer, S.M.; Rossi, R.; Poulin, M.; Mary, A.; Doweiko, J.P.; DeGirolami, P.C.; Coakley, E.; Piessens, E.; Wanke, C.A. Parasitic sinusitis and otitis in patients infected with human immunodeficiency virus: Report of five cases and review. *J Clin. Infect. Dis.* 1997, 25, 267–272. [CrossRef] [PubMed]
- Rayamajhee, B.; Subedi, D.; Won, S.; Kim, J.J.Y.; Vijay, A.; Tan, J.; Henriquez, F.L.; Willcox, M.; Carnt, N.A.J.W. Investigating Domestic Shower Settings as a Risk Factor for *Acanthamoeba* Keratitis. *Water* 2020, 12, 3493. [CrossRef]
- Friedland, L.R.; Raphael, S.A.; Deutsch, E.S.; Johal, J.; Martyn, L.J.; Visvesvara, G.S.; Lischner, H.W. Disseminated *Acanthamoeba* infection in a child with symptomatic human immunodeficiency virus infection. *Paediatr. Infect. Dis. J.* 1992, 11, 404–407. [CrossRef]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: *Acanthamoeba* spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. *FEMS. Immunol. Med. Microbiol.* 2007, 50, 1–26. [CrossRef]
- Schuster, F.L. Cultivation of pathogenic and opportunistic free-living amoebas. *Clin. Microbiol. Rev.* 2002, 15, 342–354. [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED). Parasites—*Acanthamoeba*—Granulomatous Amoebic Encephalitis (GAE); Keratitis. Available online: https://www.cdc.gov/para sites/acanthamoeba/pathogen.html (accessed on 20 November 2020).
- 10. Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasites Vectors 2012, 5, 6. [CrossRef]
- 11. Xuan, Y.; Shen, Y.; Ge, Y.; Yan, G.; Zheng, S. Isolation and identification of *Acanthamoeba* strains from soil and tap water in Yanji, China. *Environ. Health Prev. Med.* **2017**, *22*, 58. [CrossRef]
- 12. Corsaro, D.; Walochnik, J.; Köhsler, M.; Rott, M.B. *Acanthamoeba* misidentification and multiple labels: Redefining genotypes T16, T19, and T20 and proposal for *Acanthamoeba micheli* sp. nov. (genotype T19). *Parasitol. Res.* **2015**, *114*, 2481–2490. [CrossRef]
- 13. Zhao, G.; Sun, S.; Zhao, J.; Xie, L.J. Genotyping of *Acanthamoeba* isolates and clinical characteristics of patients with *Acanthamoeba* keratitis in China. *J. Med. Microbiol.* **2010**, *59*, 462–466. [CrossRef]
- 14. Taher, E.E.; Méabed, E.M.; Abdallah, I.; Wahed, W. *Acanthamoeba* keratitis in noncompliant soft contact lenses users: Genotyping and risk factors, a study from Cairo, Egypt. *J. Infect. Public Health* **2018**, *11*, 377–383. [CrossRef]
- 15. Marciano-Cabral, F.; Cabral, G. *Acanthamoeba* spp. as agents of disease in humans. *Clin. Microbiol. Rev.* 2003, *16*, 273–307. [CrossRef]
- 16. Henriquez, F.L.; Mooney, R.; Bandel, T.; Giammarini, E.; Zeroual, M.; Fiori, P.L.; Margarita, V.; Rappelli, P.; Dessì, D. Paradigms of protist/bacteria symbiosis affecting human health: *Acanthamoeba* species and Trichomonas vaginalis. *Front. Microbiol.* **2020**, *11*, 3380.
- 17. Scheid, P.; Schwarzenberger, R. *Acanthamoeba* spp. as vehicle and reservoir of adenoviruses. *Parasitol. Res.* **2012**, *111*, 479–485. [CrossRef]
- Guimaraes, A.J.; Gomes, K.X.; Cortines, J.R.; Peralta, J.M.; Peralta, R.H. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol. Res. 2016, 193, 30–38. [CrossRef]
- Clarke, M.; Lohan, A.J.; Liu, B.; Lagkouvardos, I.; Roy, S.; Zafar, N.; Bertelli, C.; Schilde, C.; Kianianmomeni, A.; Bürglin, T.R.; et al. Genome of *Acanthamoeba* castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. *Genome Biol.* 2013, 14, 1–15. [CrossRef]
- Fritsche, T.; Gautom, R.; Seyedirashti, S.; Bergeron, D.; Lindquist, T.D. Occurrence of bacterial endosymbionts in *Acan-thamoeba* spp. isolated from corneal and environmental specimens and contact lenses. *J. Clin. Microbiol.* 1993, 31, 1122–1126. [CrossRef]
- Iovieno, A.; Ledee, D.R.; Miller, D.; Alfonso, E.C. Detection of bacterial endosymbionts in clinical *Acanthamoeba* isolates. *Ophthalmology* 2010, 117, 445–452.e443. [CrossRef]
- Müller, A.; Walochnik, J.; Wagner, M.; Schmitz-Esser, S. A clinical *Acanthamoeba* isolate harboring two distinct bacterial endosymbionts. *Eur. J. Protistol.* 2016, 56, 21–25. [CrossRef] [PubMed]
- 23. Buchner, P. Endosymbiosis of Animals with Plant Microorganisms; John Wiley & Sons: Hoboken, NJ, USA, 1965.
- 24. Scheid, P. Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. *Parasitol. Res.* **2014**, *113*, 2407–2414. [CrossRef] [PubMed]
- 25. Scheid, P.; Hauröder, B.; Michel, R. Investigations of an extraordinary endocytobiont in *Acanthamoeba* sp.: Development and replication. *Parasitol. Res.* **2010**, *106*, 1371–1377. [CrossRef] [PubMed]
- 26. German, N.; Doyscher, D.; Rensing, C. Bacterial killing in macrophages and amoeba: Do they all use a brass dagger? *Future Microbiol.* **2013**, *8*, 1257–1264. [CrossRef]
- 27. Declerck, P.; Behets, J.; De Keersmaecker, B.; Ollevier, F. Receptor-mediated uptake of Legionella pneumophila by *Acanthamoeba* castellanii and Naegleria lovaniensis. *J. Appl. Microbiol.* **2007**, *103*, 2697–2703. [CrossRef] [PubMed]
- 28. Matz, C.; Nouri, B.; McCarter, L.; Martinez-Urtaza, J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. *PLoS ONE* **2011**, *6*, e20275. [CrossRef]
- 29. Siddiqui, R.; Malik, H.; Sagheer, M.; Jung, S.-Y.; Khan, N.A. The type III secretion system is involved in *Escherichia coli* K1 interactions with *Acanthamoeba. Exp. Parasitol.* **2011**, *128*, 409–413. [CrossRef]
- 30. Jung, S.-Y.; Matin, A.; Kim, K.S.; Khan, N.A. The capsule plays an important role in *Escherichia coli* K1 interactions with *Acanthamoeba*. Int. J. Parasitol. 2007, 37, 417–423. [CrossRef]

- 31. Molmeret, M.; Horn, M.; Wagner, M.; Santic, M.; Kwaik, Y.A. Amoebae as training grounds for intracellular bacterial pathogens. *Appl. Environ. Microbiol.* 2005, *71*, 20–28. [CrossRef]
- 32. Greub, G.; Raoult, D. Microorganisms resistant to free-living amoebae. *Clin. Microbiol. Rev.* 2004, 17, 413–433. [CrossRef] [PubMed]
- 33. Schmitz-Esser, S.; Toenshoff, E.R.; Haider, S.; Heinz, E.; Hoenninger, V.M.; Wagner, M.; Horn, M. Diversity of bacterial endosymbionts of environmental *Acanthamoeba* isolates. *Appl. Environ. Microbiol.* **2008**, 74, 5822–5831. [CrossRef]
- 34. Espinoza-Vergara, G.; Hoque, M.M.; McDougald, D.; Noorian, P. The Impact of Protozoan Predation on the Pathogenicity of Vibrio cholerae. *Front. Microbiol.* **2020**, *11*, 17. [CrossRef] [PubMed]
- Maumus, F.; Blanc, G. Study of gene trafficking between Acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome Biol. Evol. 2016, 8, 3351–3363. [CrossRef] [PubMed]
- 36. Hervet, E.; Charpentier, X.; Vianney, A.; Lazzaroni, J.-C.; Gilbert, C.; Atlan, D.; Doublet, P. Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. *Infect. Immun.* **2011**, *79*, 1936–1950. [CrossRef] [PubMed]
- 37. Thomas, V.; McDonnell, G.; Denyer, S.P.; Maillard, J.-Y.J. Free-living amoebae and their intracellular pathogenic microorganisms: Risks for water quality. *FEMS. Microbiol. Rev.* **2010**, *34*, 231–259. [CrossRef] [PubMed]
- 38. Fritsche, T.R.; Sobek, D.; Gautom, R.K. Enhancement of in vitro cytopathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts. *FEMS. Microbiol. Lett.* **1998**, *166*, 231–236. [CrossRef]
- 39. Bozue, J.A.; Johnson, W. Interaction of Legionella pneumophila with *Acanthamoeba* castellanii: Uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. *Infect. Immun.* **1996**, *64*, 668–673. [CrossRef]
- 40. Yagita, K.; Matias, R.; Yasuda, T.; Natividad, F.; Enriquez, G.; Endo, T. *Acanthamoeba* sp. from the Philippines: Electron microscopy studies on naturally occurring bacterial symbionts. *Parasitol. Res.* **1995**, *81*, 98–102. [CrossRef] [PubMed]
- 41. Chung, D.I.; Kong, H.H.; Kim, T.H.; Hwang, M.Y.; Yu, H.S.; Yun, H.C.; Seol, S.Y. Bacterial endosymbiosis within the cytoplasm of *Acanthamoeba* lugdunensis isolated from a contact lens storage case. *Korean J. Parasitol.* **1997**, *35*, 127–133. [CrossRef]
- 42. Amann, R.; Springer, N.; Schönhuber, W.; Ludwig, W.; Schmid, E.N.; Müller, K.; Michel, R. microbiology, e. Obligate intracellular bacterial parasites of acanthamoebae related to *Chlamydia* spp. *Appl. Environ. Microbiol.* **1997**, *63*, 115–121. [CrossRef]
- Michel, R.; Hauröder, B. Isolation of an *Acanthamoeba* strain with intracellular *Burkholderia pickettii* infection. *Int. J. Med Microbiol.* 1997, 285, 541–557. [CrossRef]
- 44. Michel, R.; Müller, K.-D.; Amann, R.; Schmid, E.N. Legionella-like slender rods multiplying within a strain of *Acanthamoeba* sp. isolated from drinking water. *Parasitol. Res.* **1997**, *84*, 84–88. [CrossRef] [PubMed]
- Hoffmann, R.; Michel, R.; Muller, K.-D.; Schmid, E.N. Archaea like endocytobiotic organisms isolated from *Acanthamoeba* SP (GR II). *Endocytobiosis Cell Res.* 1998, 12, 185–188.
- 46. Mölled, K.-D.; Schmid, E.N.; Michel, R. Intracellular Bacteria of *Acanthamoebae* Resembling Legionella spp. Turned Out to be *Cytophaga* sp. *Int. J. Med Microbiol.* **1999**, 289, 389–397.
- 47. Horn, M.; Fritsche, T.R.; Gautom, R.K.; Schleifer, K.H.; Wagner, M. Novel bacterial endosymbionts of *Acanthamoeba* spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. *Environ. Microbiol.* **1999**, *1*, 357–367. [CrossRef]
- Fritsche, T.R.; Horn, M.; Seyedirashti, S.; Gautom, R.K.; Schleifer, K.-H.; Wagner, M. In situ detection of novel bacterial endosymbionts of *Acanthamoeba* spp. phylogenetically related to members of the order Rickettsiales. *Appl. Environ. Microbiol.* 1999, 65, 206–212. [CrossRef]
- Fritsche, T.R.; Horn, M.; Wagner, M.; Herwig, R.P.; Schleifer, K.-H.; Gautom, R.K. Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of *Acanthamoeba* spp. *Appl. Environ. Microbiol.* 2000, *66*, 2613–2619. [CrossRef]
- 50. Collingro, A.; Toenshoff, E.R.; Taylor, M.W.; Fritsche, T.R.; Wagner, M.; Horn, M. 'Candidatus Protochlamydia amoebophila', an endosymbiont of *Acanthamoeba* spp. *Int. J. Syst. Evol. Microbiol.* **2005**, *55*, 1863–1866. [CrossRef]
- Birtles, R.; Rowbotham, T.; Michel, R.; Pitcher, D.; Lascola, B.; Alexiou-Daniel, S.; Raoult, D. 'Candidatus Odyssella thessalonicensis' gen. nov., sp. nov., an obligate intracellular parasite of *Acanthamoeba* species. *Int. J. Syst. Evol. Microbiol.* 2000, 50, 63–72. [CrossRef]
- Horn, M.; Harzenetter, M.D.; Linner, T.; Schmid, E.N.; Müller, K.D.; Michel, R.; Wagner, M. Members of the Cytophaga– Flavobacterium–Bacteroides phylum as intracellular bacteria of acanthamoebae: Proposal of 'Candidatus Amoebophilus asiaticus'. *Environ. Microbiol.* 2001, *3*, 440–449. [CrossRef] [PubMed]
- 53. Horn, M.; Fritsche, T.R.; Linner, T.; Gautom, R.K.; Harzenetter, M.D.; Wagner, M. Obligate bacterial endosymbionts of *Acan-thamoeba* spp. related to the beta-Proteobacteria: Proposal of 'Candidatus Procabacter acanthamoebae'gen. nov., sp. nov. *Int. J. Syst. Evol. Microbiol.* **2002**, *52*, 599–605. [CrossRef]
- 54. La Scola, B.; Audic, S.; Robert, C.; Jungang, L.; de Lamballerie, X.; Drancourt, M.; Birtles, R.; Claverie, J.-M.; Raoult, D. A giant virus in amoebae. *Science* 2003, 299, 2033. [CrossRef]
- 55. Yu, H.S.; Jeong, H.J.; Hong, Y.-C.; Seol, S.-Y.; Chung, D.-I.; Kong, H.H. Natural occurrence of *Mycobacterium* as an endosymbiont of *Acanthamoeba* isolated from a contact lens storage case. *Korean J. Parasitol.* **2007**, *45*, 11. [CrossRef] [PubMed]
- 56. Xuan, Y.-H.; Yu, H.S.; Jeong, H.J.; Seol, S.-Y.; Chung, D.-I.; Kong, H.H. Molecular characterization of bacterial endosymbionts of *Acanthamoeba* isolates from infected corneas of Korean patients. *Korean J. Parasitol.* **2007**, *45*, 1. [CrossRef]

- 57. Heinz, E.; Kolarov, I.; Kästner, C.; Toenshoff, E.R.; Wagner, M.; Horn, M. An Acanthamoeba sp. containing two phylogenetically different bacterial endosymbionts. *Environ. Microbiol.* 2007, *9*, 1604–1609. [CrossRef]
- Lorenzo-Morales, J.; Coronado-Álvarez, N.; Martínez-Carretero, E.; Maciver, S.K.; Valladares, B. Detection of four adenovirus serotypes within water-isolated strains of *Acanthamoeba* in the Canary Islands, Spain. *Am. J. Trop. Med. Hyg.* 2007, 77, 753–756.
 [CrossRef]
- 59. Scheid, P.; Zöller, L.; Pressmar, S.; Richard, G.; Michel, R. An extraordinary endocytobiont in *Acanthamoeba* sp. isolated from a patient with keratitis. *Parasitol. Res.* **2008**, *102*, 945–950. [CrossRef] [PubMed]
- 60. Antwerpen, M.; Georgi, E.; Zoeller, L.; Woelfel, R.; Stoecker, K.; Scheid, P. Whole-genome sequencing of a pandoravirus isolated from keratitis-inducing acanthamoeba. *Genome Announc.* **2015**, *3*. [CrossRef]
- 61. Choi, S.H.; Cho, M.K.; Ahn, S.C.; Lee, J.E.; Lee, J.S.; Kim, D.-H.; Xuan, Y.-H.; Hong, Y.C.; Kong, H.H.; Chung, D.I.; et al. Endosymbionts of *Acanthamoeba* isolated from domestic tap water in Korea. *Korean J. Parasitol.* **2009**, *47*, 337. [CrossRef] [PubMed]
- 62. Matsuo, J.; Kawaguchi, K.; Nakamura, S.; Hayashi, Y.; Yoshida, M.; Takahashi, K.; Mizutani, Y.; Yao, T.; Yamaguchi, H. Survival and transfer ability of phylogenetically diverse bacterial endosymbionts in environmental *Acanthamoeba* isolates. *Environ. Microbiol. Rep.* **2010**, *2*, 524–533. [CrossRef]
- 63. Okude, M.; Matsuo, J.; Nakamura, S.; Kawaguchi, K.; Hayashi, Y.; Sakai, H.; Yoshida, M.; Takahashi, K.; Yamaguchi, H. Environmental chlamydiae alter the growth speed and motility of host acanthamoebae. *Microbes Environ.* **2012**, *27*, 423–429. [CrossRef] [PubMed]
- 64. Corsaro, D.; Pages, G.S.; Catalan, V.; Loret, J.-F.; Greub, G. Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants. *Int. J. Hyg. Environ. Health* **2010**, *213*, 158–166. [CrossRef] [PubMed]
- 65. Cohen, G.; Hoffart, L.; La Scola, B.; Raoult, D.; Drancourt, M. Ameba-associated keratitis, France. *Emerg. Infect. Dis.* **2011**, *17*, 1306. [CrossRef] [PubMed]
- 66. Glaser, K.C.; Hetrick, N.D.; Molestina, R.E. Evidence for a Previously Unrecognized Mycobacterial Endosymbiont in *Acanthamoeba* castellanii Strain Ma (ATCC[®] 50370[™]). *J. Eukaryot. Microbiol.* **2011**, *58*, 75–76. [CrossRef] [PubMed]
- 67. Gaze, W.H.; Morgan, G.; Zhang, L.; Wellington, E.M. Mimivirus-like particles in acanthamoebae from Sewage Sludge. *Emerg. Infect. Dis.* **2011**, *17*, 1127. [CrossRef]
- 68. Corsaro, D.; Müller, K.-D.; Michel, R. Molecular characterization and ultrastructure of a new amoeba endoparasite belonging to the Stenotrophomonas maltophilia complex. *Exp. Parasitol.* **2013**, *133*, 383–390. [CrossRef]
- 69. Sampo, A.; Matsuo, J.; Yamane, C.; Yagita, K.; Nakamura, S.; Shouji, N.; Hayashi, Y.; Yamazaki, T.; Yoshida, M.; Kobayashi, M.; et al. High-temperature adapted primitive Protochlamydia found in *Acanthamoeba* isolated from a hot spring can grow in immortalized human epithelial HEp-2 cells. *Environ. Microbiol.* **2014**, *16*, 486–497. [CrossRef]
- 70. Lagkouvardos, I.; Shen, J.; Horn, M. Improved axenization method reveals complexity of symbiotic associations between bacteria and acanthamoebae. *Environ. Microbiol. Rep.* 2014, *6*, 383–388. [CrossRef]
- 71. Maschio, V.J.; Corção, G.; Bücker, F.; Caumo, K.; Rott, M.B. Identification of Paenibacillus as a Symbiont in *Acanthamoeba*. *Curr. Microbiol.* **2015**, *71*, 415–420. [CrossRef]
- 72. José Maschio, V.; Corção, G.; Rott, M.B. Identification of Pseudomonas spp. as amoeba-resistant microorganisms in isolates of *Acanthamoeba. Rev. Inst. Med. Trop. São Paulo* **2015**, *57*, 81–83.
- 73. Nakagawa, H.; Hattori, T.; Koike, N.; Ehara, T.; Fujita, K.; Takahashi, H.; Kumakura, S.; Kuroda, M.; Matsumoto, T.; Goto, H. Investigation of the role of bacteria in the development of *Acanthamoeba* keratitis. *Cornea* **2015**, *34*, 1308–1315. [CrossRef]
- 74. Niyyati, M.; Mahyar, M.; Haghighi, A.; Vala, M.H. Occurrence of Potentially Pathogenic Bacterial-Endosymbionts in *Acan-thamoeba* spp. J. Iran. J. Parasitol. 2015, 10, 181.
- 75. Magnet, A.; Peralta, R.; Gomes, T.; Izquierdo, F.; Fernandez-Vadillo, C.; Galvan, A.; Pozuelo, M.; Pelaz, C.; Fenoy, S.; Del Águila, C. Vectorial role of *Acanthamoeba* in Legionella propagation in water for human use. *Sci. Total Environ.* 2015, 505, 889–895. [CrossRef] [PubMed]
- 76. Fukumoto, T.; Matsuo, J.; Okubo, T.; Nakamura, S.; Miyamoto, K.; Oka, K.; Takahashi, M.; Akizawa, K.; Shibuya, H.; Shimizu, C.; et al. *Acanthamoeba* containing endosymbiotic chlamydia isolated from hospital environments and its potential role in inflammatory exacerbation. *BMC Microbiol.* **2016**, *16*, 292. [CrossRef]
- 77. Scheikl, U.; Tsao, H.-F.; Horn, M.; Indra, A.; Walochnik, J. Free-living amoebae and their associated bacteria in Austrian cooling towers: A 1-year routine screening. *Parasitol. Res.* **2016**, *115*, 3365–3374. [CrossRef]
- 78. Purssell, A.; Lau, R.; Boggild, A.K. Azithromycin and doxycycline attenuation of *Acanthamoeba* virulence in a human corneal tissue model. *J. Infect. Dis.* **2017**, *215*, 1303–1311. [PubMed]
- 79. Faizah, M.; Anisah, N.; Yusof, S.; Noraina, A.; Adibah, M.R. Molecular detection of bacterial endosymbionts in *Acanthamoeba* spp.: A preliminary study. *Med Health* **2017**, *12*, 286–292.
- 80. Chan, L.L.; Mak, J.W.; Ambu, S.; Chong, P.Y. Identification and ultrastructural characterization of *Acanthamoeba* bacterial endocytobionts belonging to the Alphaproteobacteria class. *PLoS ONE* **2018**, *13*, e0204732. [CrossRef]
- Hajialilo, E.; Rezaeian, M.; Niyyati, M.; Pourmand, M.R.; Mohebali, M.; Norouzi, M.; Pashabeyg, K.R.; Rezaie, S.; Khodavaisy, S. Molecular characterization of bacterial, viral and fungal endosymbionts of *Acanthamoeba* isolates in keratitis patients of Iran. *Exp. Parasitol.* 2019, 200, 48–54. [CrossRef] [PubMed]
- 82. Jensen, T.; Barnes, W.G.; Meyers, D. Axenic cultivation of large populations of *Acanthamoeba* castellanii (JBM). J. Parasitol. **1970**, 56, 904–906. [CrossRef]

- 83. De Moraes, J.; Alfieri, S.C. Growth, encystment and survival of *Acanthamoeba* castellanii grazing on different bacteria. *FEMS*. *Microbiol. Ecol.* **2008**, *66*, 221–229. [CrossRef] [PubMed]
- 84. de Lacerda, A.G.; Lira, M. *Acanthamoeba* keratitis: A review of biology, pathophysiology and epidemiology. *Ophthalmic Physiol. Opt.* **2021**, *41*, 116–135. [CrossRef] [PubMed]
- 85. Neff, R.J. Mechanisms of purifying amoebae by migration on agar surfaces. J. Protozool. 1958, 5, 226–231. [CrossRef]
- 86. Neff, R.J. Purification, axenic cultivation, and description of a soil amoeba, *Acanthamoeba* sp. J. *Protozool.* **1957**, *4*, 176–182. [CrossRef]
- 87. Niyyati, M.; Abedkhojasteh, H.; Salehi, M.; Farnia, S.; Rezaeian, M. Axenic cultivation and pathogenic assays of acanthamoeba strains using physical parameters. *Iran. J. Parasitol.* **2013**, *8*, 186. [PubMed]
- 88. Khan, N.A. *Acanthamoeba*: Biology and increasing importance in human health. *FEMS. Microbiol. Rev.* **2006**, *30*, 564–595. [CrossRef]
- 89. Kilvington, S.; Larkin, D.; White, D.; Beeching, J.R. Laboratory investigation of *Acanthamoeba* keratitis. *J. Clin. Microbiol.* **1990**, *28*, 2722–2725. [CrossRef] [PubMed]
- 90. Eroğlu, F.; Evyapan, G.; Koltaş, İ.S. The cultivation of *Acanthamoeba* using with different axenic and monoxenic media. *Middle Black Sea J. Health Sci.* **2015**, *1*, 13–17. [CrossRef]
- 91. Huws, S.A.; Morley, R.J.; Jones, M.V.; Brown, M.R.; Smith, A.W. Interactions of some common pathogenic bacteria with *Acanthamoeba* polyphaga. *FEMS. Microbiol. Lett.* **2008**, *282*, 258–265. [CrossRef]
- Todd, C.D.; Reyes-Batlle, M.; Martín-Navarro, C.M.; Dorta-Gorrín, A.; López-Arencibia, A.; Martínez-Carretero, E.; Piñero, J.E.; Valladares, B.; Lindo, J.F.; Lorenzo-Morales, J. Isolation and genotyping of *Acanthamoeba* strains from soil sources from Jamaica, West Indies. J. Eukaryot. Microbiol. 2015, 62, 416–421. [CrossRef]
- 93. Pagnier, I.; Raoult, D.; La Scola, B. Isolation and identification of amoeba-resisting bacteria from water in human environment by using an *Acanthamoeba* polyphaga co-culture procedure. *Environ. Microbiol.* **2008**, *10*, 1135–1144. [CrossRef] [PubMed]
- Collingro, A.; Poppert, S.; Heinz, E.; Schmitz-Esser, S.; Essig, A.; Schweikert, M.; Wagner, M.; Horn, M. Recovery of an environmental chlamydia strain from activated sludge by co-cultivation with *Acanthamoeba* sp. *Microbiology* 2005, 151, 301–309. [CrossRef]
- 95. Thomas, V.; Casson, N.; Greub, G. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. *J. Environ. Microbiol.* **2006**, *8*, 2125–2135. [CrossRef]
- 96. Saeed, A.; Abd, H.; Edvinsson, B.; Sandström, G. *Acanthamoeba* castellanii an environmental host for Shigella dysenteriae and Shigella sonnei. *Arch. Microbiol.* **2009**, *191*, 83. [CrossRef]
- 97. Axelsson-Olsson, D.; Waldenström, J.; Broman, T.; Olsen, B.; Holmberg, M. Protozoan *Acanthamoeba* polyphaga as a potential reservoir for Campylobacter jejuni. *Appl. Environ. Microbiol.* **2005**, *71*, 987–992. [CrossRef] [PubMed]
- 98. Steinert, M.; Emödy, L.; Amann, R.; Hacker, J.; Microbiology, E. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by *Acanthamoeba* castellanii. *Appl. Environ. Microbiol.* **1997**, *63*, 2047–2053. [CrossRef]
- 99. Axelsson-Olsson, D.; Ellström, P.; Waldenström, J.; Haemig, P.D.; Brudin, L.; Olsen, B. *Acanthamoeba*-Campylobacter coculture as a novel method for enrichment of Campylobacter species. *Appl. Environ. Microbiol.* **2007**, *73*, 6864–6869. [CrossRef] [PubMed]
- 100. Dey, R.; Rieger, A.M.; Stephens, C.; Ashbolt, N.J. Interactions of pseudomonas aeruginosa with *Acanthamoeba* polyphaga observed by imaging flow cytometry. *Cytom. A* **2019**, *95*, 555–564. [CrossRef] [PubMed]
- 101. Abd, H.; Johansson, T.; Golovliov, I.; Sandström, G.; Forsman, M. Survival and growth of Francisella tularensis in *Acanthamoeba* castellanii. *J Appl. Environ. Microbiol.* **2003**, *69*, 600–606. [CrossRef]
- 102. Van der Henst, C.; Scrignari, T.; Maclachlan, C.; Blokesch, M. An intracellular replication niche for Vibrio cholerae in the amoeba *Acanthamoeba* castellanii. *ISME J.* **2016**, *10*, 897–910. [CrossRef]
- 103. El-Etr, S.H.; Margolis, J.J.; Monack, D.; Robison, R.A.; Cohen, M.; Moore, E.; Rasley, A. Francisella tularensis type A strains cause the rapid encystment of *Acanthamoeba* castellanii and survive in amoebal cysts for three weeks postinfection. *J. Appl. Environ. Microbiol.* 2009, 75, 7488–7500. [CrossRef]
- Hojo, F.; Osaki, T.; Yonezawa, H.; Hanawa, T.; Kurata, S.; Kamiya, S. Acanthamoeba castellanii supports extracellular survival of Helicobacter pylori in co-culture. J. Infect. Chemother. 2020, 26, 946–954. [CrossRef]
- Dey, R.; Hoffman, P.S.; Glomski, I.J. Germination and amplification of anthrax spores by soil-dwelling amoebas. J. Appl. Environ. Microbiol. 2012, 78, 8075–8081. [CrossRef] [PubMed]
- 106. Steenbergen, J.N.; Nosanchuk, J.D.; Malliaris, S.D.; Casadevall, A. Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with *Acanthamoeba* castellanii. *Infect. Immun.* **2004**, *72*, 3478–3488. [CrossRef] [PubMed]
- Steenbergen, J.; Shuman, H.; Casadevall, A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. *Proc. Natl. Acad. Sci. USA* 2001, *98*, 15245–15250. [CrossRef]
- 108. Nunes, T.E.T.; Brazil, N.T.; Fuentefria, A.M.; Rott, M.B. *Acanthamoeba* and Fusarium interactions: A possible problem in keratitis. *Acta Trop.* **2016**, 157, 102–107. [CrossRef] [PubMed]
- 109. Mattana, A.; Serra, C.; Mariotti, E.; Delogu, G.; Fiori, P.L.; Cappuccinelli, P. *Acanthamoeba* castellanii promotion of in vitro survival and transmission of coxsackie b3 viruses. *Eukaryot. Cell* **2006**, *5*, 665–671. [CrossRef]
- Yamaguchi, H.; Matsuo, J.; Yamazaki, T.; Ishida, K.; Yagita, K. Draft genome sequence of high-temperature-adapted Protochlamydia sp. HS-T3, an amoebal endosymbiotic bacterium found in *Acanthamoeba* Isolated from a hot spring in Japan. *Genome Announc*. 2015, 3. [CrossRef]

- 111. Wang, Z.; Wu, M. Complete genome sequence of the endosymbiont of *Acanthamoeba* strain UWC8, an amoeba endosymbiont belonging to the "Candidatus Midichloriaceae" family in Rickettsiales. *Genome Announc.* **2014**, 2. [CrossRef]
- 112. Hsia, Y.C.; Leal, S.M., Jr.; Booton, G.C.; Joslin, C.E.; Cianciotto, N.P.; Tu, E.Y.; Pearlman, E. *Acanthamoeba* Keratitis Is Exacerbated In The Presence Of Intracellular Legionella Pneumophila. *Investig. Ophthalmol. Vis. Sci.* **2011**, *52*, 5794.
- 113. Johnston, S.P.; Sriram, R.; Qvarnstrom, Y.; Roy, S.; Verani, J.; Yoder, J.; Lorick, S.; Roberts, J.; Beach, M.J.; Visvesvara, G. Resistance of *Acanthamoeba* cysts to disinfection in multiple contact lens solutions. *J. Clin. Microbiol.* **2009**, *47*, 2040–2045. [CrossRef]
- 114. Verani, J.R.; Lorick, S.A.; Yoder, J.S.; Beach, M.J.; Braden, C.R.; Roberts, J.M.; Conover, C.S.; Chen, S.; McConnell, K.A.; Chang, D.C.; et al. National outbreak of *Acanthamoeba* keratitis associated with use of a contact lens solution, United States. *Emerg. Infect. Dis.* 2009, 15, 1236. [CrossRef]
- 115. Carnt, N.; Hoffman, J.J.; Verma, S.; Hau, S.; Radford, C.F.; Minassian, D.C.; Dart, J.K. Acanthamoeba keratitis: Confirmation of the UK outbreak and a prospective case-control study identifying contributing risk factors. Br. J. Ophthalmol. 2018, 102, 1621–1628. [CrossRef]
- 116. Scheikl, U.; Sommer, R.; Kirschner, A.; Rameder, A.; Schrammel, B.; Zweimüller, I.; Wesner, W.; Hinker, M.; Walochnik, J. Free-living amoebae (FLA) co-occurring with legionellae in industrial waters. *Eur. J. Protistol.* **2014**, *50*, 422–429. [CrossRef]
- 117. Albert-Weissenberger, C.; Cazalet, C.; Buchrieser, C. Legionella pneumophila—A human pathogen that co-evolved with freshwater protozoa. *Cell. Mol. Life Sci.* 2007, *64*, 432–448. [CrossRef]
- 118. Barker, J.; Brown, M.R.W. Trojan horses of the microbial world: Protozoa and the survival of bacterial pathogens in the environment. *Microbiology* **1994**, *140*, 1253–1259. [CrossRef] [PubMed]
- 119. Koltas, I.S.; Eroglu, F.; Erdem, E.; Yagmur, M.; Tanır, F. The role of domestic tap water on *Acanthamoeba* keratitis in non-contact lens wearers and validation of laboratory methods. *Parasitol. Res.* **2015**, *114*, 3283–3289. [CrossRef] [PubMed]
- 120. Zimmerman, A.B.; Richdale, K.; Mitchell, G.L.; Kinoshita, B.T.; Lam, D.Y.; Wagner, H.; Sorbara, L.; Chalmers, R.L.; Collier, S.A.; Cope, J.R. Water exposure is a common risk behavior among soft and gas-permeable contact lens wearers. *Cornea* 2017, 36, 995. [CrossRef] [PubMed]
- 121. Kilvington, S.; Gray, T.; Dart, J.; Morlet, N.; Beeching, J.R.; Frazer, D.G.; Matheson, M. *Acanthamoeba* keratitis: The role of domestic tap water contamination in the United Kingdom. *Investig. Ophthalmol. Vis. Sci.* **2004**, *45*, 165–169. [CrossRef]
- 122. Jeong, H.J.; Yu, H.S. The role of domestic tap water in *Acanthamoeba* contamination in contact lens storage cases in Korea. *Korean J. Parasitol.* 2005, 43, 47. [CrossRef] [PubMed]
- 123. Mura, M.; Bull, T.J.; Evans, H.; Sidi-Boumedine, K.; McMinn, L.; Rhodes, G.; Pickup, R.; Hermon-Taylor, J. Replication and long-term persistence of bovine and human strains of *Mycobacterium avium* subsp. paratuberculosis within *Acanthamoeba* polyphaga. *Appl. Environ. Microbiol.* 2006, 72, 854–859. [CrossRef]
- 124. Berk, S.G.; Ting, R.S.; Turner, G.W.; Ashburn, R.J.; Microbiology, E. Production of Respirable Vesicles Containing LiveLegionella pneumophila Cells by Two *Acanthamoeba* spp. *Appl. Environ. Microbiol.* **1998**, *64*, 279–286. [CrossRef]
- 125. Chekabab, S.M.; Daigle, F.; Charette, S.J.; Dozois, C.M.; Harel, J. Shiga toxins decrease enterohaemorrhagic *Escherichia coli* survival within *Acanthamoeba* castellanii. *FEMS. Microbiol. Letters.* **2013**, 344, 86–93. [CrossRef] [PubMed]
- 126. Schmitz-Esser, S.; Linka, N.; Collingro, A.; Beier, C.L.; Neuhaus, H.E.; Wagner, M.; Horn, M. ATP/ADP translocases: A common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. *J. Bacteriol.* 2004, 186, 683–691. [CrossRef] [PubMed]
- Siddiqui, R.; Khan, N.A. War of the microbial worlds: Who is the beneficiary in *Acanthamoeba*–bacterial interactions? *Exp. Parasitol.* 2012, 130, 311–313. [CrossRef] [PubMed]
- 128. Segal, G.; Shuman, H.A. Legionella pneumophila utilizes the same genes to multiply within *Acanthamoeba* castellanii and human macrophages. *Infect. Immun.* 1999, 67, 2117–2124. [CrossRef] [PubMed]
- 129. Best, A.; Price, C.; Ozanic, M.; Santic, M.; Jones, S.; Kwaik, Y.A. A Legionella pneumophila amylase is essential for intracellular replication in human macrophages and amoebae. *Sci. Rep.* **2018**, *8*, 1–12. [CrossRef]
- Ogata, H.; La Scola, B.; Audic, S.; Renesto, P.; Blanc, G.; Robert, C.; Fournier, P.-E.; Claverie, J.-M.; Raoult, D. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. *PLoS Genet.* 2006, 2, e76. [CrossRef] [PubMed]
- 131. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Med.* **2009**, *6*, e1000097. [CrossRef]
- 132. Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. J. Eur. J. Epidemiol. 2010, 25, 603–605. [CrossRef]
- 133. Wang, C.; Ye, C.; Liao, L.; Wang, Z.; Hu, Y.; Deng, C.; Liu, L. Adjuvant β-lactam therapy combined with vancomycin or daptomycin for methicillin-resistant Staphylococcus aureus bacteraemia: A systematic review and meta-analysis. *Antimicrob. Agents Chemother.* 2020, 64, 11. [CrossRef] [PubMed]