
632 | CANCER DISCOVERY MARCH  2023 AACRJournals.org

RESEARCH ARTICLERESEARCH ARTICLE

ABSTRACT Advanced prostate cancers comprise distinct phenotypes, but tumor classification 
remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to 

study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcrip-
tion regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts repre-
senting a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. 
Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of 
genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We 
identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, 
ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we 
developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for 
mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcrip-
tome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with 
diagnostic advantages for precision oncology.

SIGNIFICANCE: This study provides insights into the dynamics of nucleosome positioning and gene 
regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for 
classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA 
alterations with important implications for molecular classification and precision oncology.
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INTRODUCTION
Metastatic castration-resistant prostate cancer (mCRPC) 

describes the stage in which the disease has developed resist-
ance to androgen ablation therapies and is lethal (1). Androgen 
receptor signaling inhibitors (ARSI), designed for the treat-
ment of CRPC, repress androgen receptor (AR) activity and 
improve survival, but these therapies eventually fail (2, 3). Since 
the adoption of ARSI as standard of care for mCRPC, there 
has been a prominent increase in the frequency of treatment-
resistant tumors with neuroendocrine (NE) differentiation 
and features of small-cell carcinomas (4–7). These aggressive 
tumors may develop through a resistance mechanism of trans-
differentiation from AR-positive adenocarcinoma (ARPC) to 
NE prostate cancer (NEPC) that lacks AR activity (4, 7–10). 
Additional phenotypes can also arise based on the expression 
of AR activity and NE genes, including AR-low prostate cancer 
(ARLPC) and double-negative prostate cancer (DNPC; AR-
null/NE-null; refs. 5, 11–13). Distinguishing prostate cancer 
subtypes has clinical relevance in view of differential responses 
to therapeutics, but the need for a biopsy to diagnose tumor 

histology can be challenging: invasive procedures are expensive 
and accompanied by morbidity, a subset of tumors are not 
accessible to biopsy, and bone sites pose particular challenges 
with respect to sample quality (7, 14).

Circulating tumor DNA (ctDNA) released from tumor 
cells into the blood as cell-free DNA (cfDNA) is a noninvasive 
“liquid biopsy” solution for accessing tumor molecular infor-
mation. The analysis of ctDNA to detect mutation and copy-
number alterations has served to classify genomic subtypes of 
CRPC tumors (4, 15–21). However, the defining losses of TP53 
and RB1 in NEPC do not always lead to NE transdifferentia-
tion (7, 22). Rather, ARPC and NEPC tumors are associated 
with distinct reprogramming of transcriptional regulation  
(8, 9, 23). Methylation analysis of cfDNA in mCRPC to profile 
the epigenome shows promise for distinguishing phenotypes, 
but requires specialized assays such as bisulfite conversion, 
enzymatic treatment, or immunoprecipitation (24–27).

The majority of cfDNA represents DNA protected by nucleo-
somes when released from dying cells into circulation, leading 
to DNA fragmentation that is reflective of the nonrandom 
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enzymatic cleavage by nucleases (28, 29). Emerging approaches 
to analyze cfDNA fragmentation patterns from plasma for 
studying cancer can be performed directly from the stand-
ard whole-genome sequencing (WGS; refs. 30–35). cfDNA 
fragments primarily have a characteristic size of  ∼167 bp,  
consistent with protection by a single core nucleosome octamer 
and histone linkers, but the size distribution may vary between 
healthy individuals and patients with cancer (36–39). Recent 
studies have demonstrated that the nucleosome occupancy in 
cfDNA at the transcription start site (TSS) and transcription 
factor binding site (TFBS) can be used to infer gene expression 
and transcription factor (TF) activity from cfDNA (40–43). 
However, nucleosome positioning and spacing are dynamic in 
active and repressed gene regulation (44–46). A detailed under-
standing of the nucleosome patterns and accessible chromatin 
associated with transcriptional regulation in tumor pheno-
types has not been fully explored in cfDNA.

The objective of this study is to determine if ctDNA could 
be used to accurately classify tumor phenotypes in men with 
mCRPC. A major challenge for ctDNA analysis is the low tumor 
content (tumor fraction) in patient plasma samples. By con-
trast, plasma from patient-derived xenograft (PDX) models 
may contain nearly pure human ctDNA after bioinformatic 
exclusion of mouse DNA reads (37, 39, 47). This provides a 
resource that is ideal for studying the properties of ctDNA, 
developing new analytic tools, and validating both genetic and 
phenotypic features by comparison with matching tumors. In 
this study, we performed WGS of ctDNA from mouse plasma 
across 24 CRPC PDX lines with diverse phenotypes. Applying 
newly developed computational methods, we comprehensively 
interrogated the nucleosome patterns in ctDNA across genes, 
regulatory loci, TFBSs, TSSs, and open chromatin sites to reveal 
transcriptional regulation associated with mCRPC phenotypes. 
Finally, we designed two probabilistic models to accurately clas-
sify treatment-resistant tumors into divergent phenotypes and 
to estimate the phenotype heterogeneity within a ctDNA sam-
ple. We then validated the performance of these models in 159 
plasma samples from three mCRPC patient cohorts. Overall, 
these results highlight that transcriptional regulation of tumor 
phenotypes can be ascertained from ctDNA and has potential 
utility for diagnostic applications in cancer precision medicine.

RESULTS
Comprehensive Resource of Matched Tumor and 
Liquid Biopsies from PDX Models of Advanced 
Prostate Cancer

To develop approaches for the accurate classification of 
mCRPC using ctDNA, we evaluated 26 models from the 

LuCaP PDX series of advanced prostate cancer with well-
defined phenotypes determined by whole-transcriptome 
RNA-sequencing (RNA-seq) and IHC assays for protein 
expression (48). There were 18 models classified as ARPC, 
two classified as AR-low and NE-negative prostate cancer 
(ARLPC), and six classified as NEPC (Fig.  1A). For each 
PDX line, we pooled mouse plasma (1.9–3.0 mL) from four 
to eight mice (mean tumor volume range 393–1,239 mm3), 
extracted cfDNA, and performed deep WGS (mean 38.4× cov-
erage, range 21–85×; Methods; Supplementary Table S1). We 
used bioinformatic subtraction of mouse-sequenced reads 
to obtain nearly pure human ctDNA data (Methods). We 
observed that 25 lines had human ctDNA comprising more 
than 10% of the sample (mean 52.9%; range, 10.6%–96%) with 
NEPC samples having significantly higher human fractions 
(mean 85.1%; range, 77.1%–96%, two-tailed Mann–Whitney 
U test P = 9.6 × 10−4; Fig. 1B; Supplementary Table S1). After 
subsequent filtering by human ctDNA sequencing cover-
age, 24 PDX lines remained for further analysis (16 ARPC, 6 
NEPC, 2 ARLPC; mean 20.5×; range, 3.8–50.6×; Supplemen-
tary Table S1). In the matching tumors, we performed Cleav-
age Under Targets and Release using Nuclease (CUT&RUN) 
to profile H3K27ac, H3K4me1, and H3K27me3 histone post-
translational modifications (PTM; refs. 49, 50; Supplemen-
tary Fig. S1). We hypothesized that nucleosome organization 
inferred from ctDNA reflects the transcriptional activity state 
regulated by histone PTMs (51).

To study transcriptional regulation in mCRPC phenotypes 
from ctDNA, we interrogated four different features: (i) local 
promoter coverage, (ii) nucleosome positioning, (iii) fragment 
size analysis, and (iv) composite TFBSs plus open chromatin 
sites analysis using the Griffin framework (ref.  52; Fig.  1A; 
Methods). First, we analyzed three different local regions 
within ctDNA: all gene promoters and gene bodies and sites of 
histone PTMs guided by CUT&RUN analysis. For each of the 
three local regions, we extracted features of nucleosome perio-
dicity using a nucleosome phasing approach and computed 
the fragment size variability. For promoter regions, we also 
computed the coverage at the TSS. Next, we analyzed ctDNA 
at TFBSs and open chromatin regions. For each TF, ctDNA 
coverage at TFBSs was aggregated into composite profiles 
representing the inferred activity (42, 52). Similarly, features in 
the composite profiles of phenotype-specific open chromatin 
regions were extracted for analyzing the signatures of chro-
matin accessibility in ctDNA. Altogether, we assembled a mul-
tiomic sequencing dataset from matching tumor and plasma 
for a total of 24 PDX lines, making this a unique molecular 
resource and platform for developing transcriptional regula-
tion signatures of tumor phenotype prediction from ctDNA.

Figure 1.  Characterizing advanced prostate cancer through matched tumor and liquid biopsies from PDX models. A, Top, both blood and tissue samples 
were taken from 26 PDX mouse models with tumors originating from mCRPC with AR-positive adenocarcinoma (ARPC), neuroendocrine (NEPC), AR-low 
neuroendocrine-negative (ARLPC) phenotypes. cfDNA was extracted from pooled plasma collected from 4 to 8 mice and WGS was performed. Following 
bioinformatic mouse read subtraction, pure human ctDNA reads remained. From PDX tissue, ATAC-seq and CUT&RUN (targeting H3K27ac, H3K4me1, 
and H3K27me3) data were generated. Middle, four distinct ctDNA features were analyzed at five genomic region types using Griffin (52) or nucleosome 
phasing methods developed in this study (Methods). Bottom (left), overview of PDX ctDNA features profiled to characterize the mCRPC pathways, tran-
scriptional regulation, and nucleosome positioning. ctDNA features were evaluated for phenotype classification. Bottom (right), phenotype classification 
using probabilistic and analytic models that accounted for ctDNA tumor content and were informed by PDX features were applied to 159 samples in three 
patient cohorts. B, PDX phenotypes and mouse plasma sequencing. Inclusion status based on final mean depth after mouse read subtraction (< 3× cover-
age was excluded; red dotted line). Phenotype status, including 6 NEPC, 18 ARPC (2 excluded), and 2 ARLPC. Average depth of coverage before and after 
mouse subtraction (mean coverage 20.5×; dotted line). Percentage of the cfDNA sample that contains human ctDNA after mouse read subtraction.
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Characterizing Transcriptional Activity of AR and 
ASCL1 in PDX Phenotypes through Analysis of 
Tumor Histone Modifications and ctDNA

We sought to further characterize the transcriptional activ-
ity in different tumor phenotypes by studying epigenetic regu-
lation via histone PTMs. We identified broad peak regions for 
H3K4me1 (median of 17,643 regions; range, 1,894–64,934), 
H3K27ac (median 7,093; range, 1,610–34,047), and H3K27me3 
(median 8,737; range, 2,024–42,495) in the tumors of the 24 
PDX lines and an additional nine LuCaP PDX lines where 
only tumors were available (total of 25 ARPC, 2 ARLPC, and 
6 NEPC; Methods; Supplementary Fig.  S1; Supplementary 
Table  S2). Using unsupervised clustering and principal com-
ponents analysis (PCA), we identified putative active regulatory 
regions of enhancers and promoters (H3K27ac and H3K4me1) 
and gene repressive heterochromatic marks (H3K27me3) that 
were specific to ARPC, ARLPC, and NEPC phenotypes (ref. 53; 
Supplementary Fig. S2A).

AR and ASCL1 are two key differentially expressed TFs 
with known regulatory roles in ARPC and NEPC phenotypes, 
respectively (9, 54–56). When inspecting AR binding sites 
in ARPC tumors, we observed increased signals from flank-
ing nucleosomes with H3K27ac PTMs compared with the 
other phenotypes (area under mean peak profile of 18.46 
vs. 15.08 in ARLPC and 10.63 in NEPC, Fig.  2A; Supple-
mentary Fig. S2B; Methods). We also observed the strongest 
signals at the nucleosome depleted region (NDR) in ARPC 
for H3K27ac (1.54 coverage decrease vs. 0.78 for ARLPC and 
0.41 for NEPC). Conversely, in NEPC tumors, we observed 
stronger signals at nucleosomes with H3K27ac PTMs flank-
ing ASCL1 binding sites (area under mean peak profile 62.65 
vs. 29.18 for ARLPC and 10.83 for ARPC), and stronger NDR 
signals (2.26 coverage decrease vs. 0.19 for ARPC and 0.37 for 
ARLPC). We observed similar trends for H3K4me1 PTMs in 
the LuCaP PDX lines (Supplementary Fig. S2C).

We analyzed the ctDNA composite coverage profiles at 
1,000 consensus TFBSs to evaluate nucleosome accessibility, 
where lower normalized central (±30 bp window) mean cov-
erage across these sites suggests more nucleosome depletion 
(Methods). For AR TFBSs, we observed the strongest signal 
for nucleosome depletion in ARPC, as indicated by the lowest 
mean central coverage (average 0.64, n = 16), compared with 
moderate signals for ARLPC (average 0.88, n = 2), and weak-
est signals for NEPC (average 0.95, n = 6; Fig. 2B). Conversely, 
the composite coverage profile at ASCL1 TFBSs showed the 

strongest nucleosome depletion for NEPC samples (mean 
central coverage 0.69) compared with ARLPC (0.86) and 
ARPC (0.88; Fig.  2C). These observations were consistent 
with the differential binding activity by AR and ASCL1 in 
their respective phenotypes from tumor tissue (Fig. 2A). We 
confirmed the same differential binding activity trends when 
analyzing TFBSs identified from other primary tissue sources 
(refs. 9, 57, 58; Supplementary Fig.  S3A and S3B). We also 
noted that the composite TFBS coverage patterns in ctDNA 
resembled the NDR flanked by nucleosomes with H3K27ac 
and H3K4me1 modifications inferred by CUT&RUN (Fig. 2A; 
Supplementary Fig.  S2B and S2C). Together, these results 
suggest that the nucleosome depletion in ctDNA at AR and 
ASCL1 binding sites represents active TF binding and regula-
tory activity in specific prostate PDX tumor phenotypes.

Nucleosome Patterns at Gene Promoters Inferred 
from ctDNA Are Consistent with Transcriptional 
Activity for Phenotype-Specific Genes

We selected 47 genes comprising 12 ARPC and 35 NEPC 
lineage markers established previously (4, 5, 59, 60) and con-
firmed their phenotype associations by RNA-seq from the 
PDX tumors (Fig. 2D; Supplementary Table S3; Methods). To 
assess the activity of these genes from ctDNA, we analyzed the 
ctDNA fragment size in TSSs (±1 kb window) and gene bodies 
and found that the differential size variability between pheno-
types was positively correlated with relative expression (Spear-
man r = 0.844, P = 9.4 × 10−14; Fig. 2E; Supplementary Fig. S4; 
Supplementary Table  S2; Methods). However, closer inspec-
tion of ctDNA coverage patterns at promoters revealed con-
sistent nucleosome organization for transcription activity and 
repression (refs. 40, 61–63; Fig.  2D). Therefore, we grouped 
the genes based on differential signals in H3K27me3 histone 
PTMs, which are linked with polycomb repressive complex 
mediated regulation and chromatin compaction (64).

For 25 genes without differential H3K27me3 peaks 
(group 1), including AR, KLK3, and ASCL1, we observed 
nucleosome depletion at the TSS consistent with the pres-
ence of active PTMs, such as for AR (mean coverage 0.47, 
n  =  16) in ARPC and ASCL1 (0.30, n  =  6) in NEPC samples 
(Fig.  2F; Supplementary Fig.  S5). By contrast, we observed 
increased coverage at the TSS of AR (1.08) in NEPC and 
ASCL1 (0.42) in ARPC, which supports nucleosome deple-
tion in the absence of PTMs and inactive transcription. 
For 22 genes with differential H3K27me3 peaks (group 2), 

Figure 2.  Analysis of tumor histone modifications and ctDNA reveals nucleosome patterns consistent with transcriptional regulation in CRPC pheno-
type-specific genes. A, H3K27ac peak signals between ARLPC, ARPC, and NEPC PDX tumor phenotypes at 10,000 AR binding sites (left) and at ASCL1 
binding sites (right). Binding sites were selected from the GTRD (ref. 71; Methods). B and C, Composite coverage profiles at 1,000 AR (B) and ASCL1 (C) 
binding sites in ctDNA analyzed using Griffin for 140–250 bp fragments (Methods). Coverage profile means (lines) and 95% confidence interval computed 
using 1,000 bootstraps for a subset of sites (shading) are shown. The region ±150 bp is indicated with a vertical dotted line and yellow shading. D, Heat map 
of log2 fold change in 47 key genes upregulated and downregulated between ARPC and NEPC established through RNA-seq (left) grouped by the type of 
histone modification which dictates translation levels: Group 1 shows gene activity attributable to H3K27ac or H3K4me1 PTM marks in the gene promot-
ers or putative distal enhancers and lacking H3K27me3 heterochromatic mark in the gene body; group 2 features gene body spanning H3K27me3 repres-
sion marks. Central columns show differential peak intensity for each of the assayed histone modifications, separated by whether they appear upstream or 
in the promoter or the body of each gene. On the right, the log2 fold change between ARPC and NEPC lines’ cfDNA fragment size CV is shown for TSS ± 1 KB 
windows and respective gene bodies. E, Comparison of the log2 fold change (ARPC/NEPC) of mean mRNA expression vs. mean CV in the 47 phenotypic line-
age marker genes’ promoter regions. F, Top, illustrations of expected ctDNA coverage profiles for group 1 genes with and without H3K27ac or H3K4me1 
modification leading to active and inactive transcription, respectively. Bottom, ±1,000 bp surrounding the promoter region for AR and ASCL1 in ARPC and 
NEPC. Shown are coverage profile means (lines) and 95% confidence interval computed using 1,000 bootstraps for a subset of sites (shading). Decreased 
coverage is reflective of increased nucleosome accessibility and thus increased transcription. Dotted line and yellow shading highlight the TSS at −230 bp 
and +170 bp. G, Illustration of expected ctDNA coverage profiles for group 2 genes with repressed transcription caused by H3K27me3 modifications in the 
gene body. Neuronal gene UNC13A has increased nucleosome phasing in the ctDNA of ARPC samples compared with NEPC.



De Sarkar et al.RESEARCH ARTICLE

638 | CANCER DISCOVERY MARCH  2023 AACRJournals.org

A
HOXB13 (chr17: 46.802Mb–46.806Mb)

Prostate tumor phenotypes

NEPC ARPC ARLPC

N
or

m
al

iz
ed

 fr
ag

m
en

t c
ov

er
ag

e

160
140
120
100
80
60
40
20
0

40
35
30
25
20
15
10
5
0

LuCaP 93 (NEPC)
Phased-nucleosome distance: 249 bp

NPS: 1.93    

LuCaP 136 (ARPC)

46,803,125 46,804,125
Gene coordinates (bp)

Fragment coverage Phased
(observed)
(>146 bp)

Baseline
(150–180 bp)

Stable
(180–210 bp)Phased local peaks

Phased-nucleosome distance

Gene body (ctDNA)
(17,946 genes)

M
ea

n 
ph

as
ed

-n
uc

le
os

om
e

di
st

an
ce

 (
bp

)

P = 0.027
320

310

300

290

280

270 M
ea

n 
ph

as
ed

-n
uc

le
os

om
e

di
st

an
ce

 (
bp

)

320

310

300

290

280

270
ARPC

(n = 16)
NEPC
(n = 6)

ARPC

Mean CCP score

Gene body (ctDNA)Gene body (ctDNA)

AR genes
P = 0.070

ARPC
(n = 16)

NEPC
(n = 6)

ARPC
(n = 16)

NEPC
(n = 6)

M
ea

n 
N

P
S

2.80
2.60
2.40
2.20
2.00
1.80
1.60
1.40
1.20 –L

og
10

 a
dj

us
te

d 
q-

va
lu

e 2.5

2.0

1.5

1.0

0.5

0.0

NE genes
P = 0.134

Significant
Phenotype marker genes

ARPC (12)

–4.0

NPS log2 fold change (ARPC/NEPC)

Normalized composite TFBS coverage

1.2 1.0 0.8 0.6 0.4 0.2

Relative
expression
in tumors

(ARPC:NEPC)
log2 fold
change

–0.2 0.0 0.2

TMPRSS2

CHRNB2
ASCL1

NEUROD1 XKR7
MYCLGRP
CHGB

0.4 0.6

NEPC (35) N.S.

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6

Spearman   = −0.563, P = 0.006r
NEPC

Periodic
(stable)

Aperiodic
(unstable)

Inactive/repressed
transcription

Active
transcription

[Mean phased peak distance] [Stable amplitude/baseline amplitude]

Nucleosome phasing score (NPS)

Nucleosome frequency components

46,805,125 chr17

Phased-nucleosome distance: 332 bp
NPS: 1.63    

F

B

D E

C

ARPC
NEPC

N.S.

Up-reg.
Down-reg.

0.
5

14
5–

1

17
3–

1
20

8–
4

13
6C

R 70
70

C
R 92 58 35

35
C

R
17

0–
2

23
5–

3

18
9–

3
17

4–
1

17
6C

R
17

6

18
9–

4

13
6 96 81 78

14
5–

2 49 93 0.
0

–0
.5

FOXA2
EHF
RXRA

ETV5
ETV4

FLI1
E2F8

NR3C1

ESR1
ONECUT2

SOX5

POU3F2

NEUROG2
SOX2
SIX2

IRF4

EBF1

TP73

TCF4

PAX5

GATA3

SP5
MYC
CTCFL
KLF9
SP4
MYCN
KLF11
ETV1
SIX5
ETS1

ASCL1

PGR

RUNX1

BCL11B

HEY1

IKZF1

IRF1

ZNF217

HNF4G

HNF1A

ZBTB42

TEAD1

HIF3A
HOXC5
E2F7
CEBPD
SCRT1
POU2F2
ETV6
SPDEF
ZIC2
STAT5A
PLAG1

PRDM6

PBX4
PROX1
NR2F1
NR2F6
MEIS2
MEIS1
BATF
FOXO1

ZNF486
ZFHX2

OSR2

ZEB2
SCRT2
BCL11A
STAT4
BACH2
CEBPA
NKX2–1
GLIS3
ISL1
EOMES
PAX3
EBF3
ZBTB16
TBX2
TBXT
TAL1

RUNX3
NEUROD1
NFKB2
MECOM

ZNF467
TP63

GFI1
TBX5
BATF3
HOXC9

PRDM9

TEAD3

RARG
NR2F2

GATA2

REST

AR
HOXB13
NKX3–1

FOXA1
GRHL2

TRPS1
TFAP2C
ZEB1
KLF1
KLF15



Cancer Phenotype Classification Using ctDNA RESEARCH ARTICLE

 MARCH  2023 CANCER DISCOVERY | 639 

Figure 3.  Phasing analysis in ctDNA recapitulates nucleosome stability and trends in transcriptional activity between CRPC phenotypes. A, Illustration 
of nucleosome phasing analysis using TritonNP for HOXB13, which is expressed in ARPC but not NEPC. Fourier transform and a band-pass filter-based 
smoothing method was used to identify phased peaks (gray dotted lines). Frequency components corresponding to nucleosome dyads (wavelength > 146 
bp) are shown in purple. The mean internucleosome distance was computed from all peaks in the gene body: lower values represent more periodic and 
stable nucleosomes. NPS is defined as the ratio of the mean amplitudes between frequency components 180–210 bp (“stable,” green curve) and 150–180 
bp (“baseline,” red curve). B, Boxplot of mean phased-nucleosome distance in 17,946 gene bodies per ctDNA sample for ARPC and NEPC PDX lines. 
Two-tailed Mann–Whitney U test P value is shown. C, Comparison of the mean phased-nucleosome distance and the mean CCP score (estimated from 
RNA-seq) for 16 ARPC and 6 NEPC PDX lines. D, Boxplot of NPS in gene bodies of 47 phenotype-defining genes (35 NE-regulated and 12 AR-regulated) 
between ARPC and NEPC lines. Two-tailed Mann–Whitney U test P values are shown. E, Volcano plot of NPS log2 fold change (ARPC/NEPC) in the 47 
phenotype-defining genes. Genes with significantly higher NPS scores (solid-colored dots; two-tailed Mann–Whitney U test, Benjamini–Hochberg 
adjusted FDR at P < 0.05) and nonsignificant genes (open circle) are shown. F, Hierarchical clustering of the normalized composite central mean coverage 
at TFBSs from the Griffin analysis of ctDNA for 108 TFs in LuCaP PDX lines of ARPC (n = 16), NEPC (n = 6), and ARLPC (n = 2) phenotypes. This list of TFs 
was initially selected as having differential expression between ARPC and NEPC from LuCaP PDX RNA-seq analysis. Heat map colors indicate increased 
accessibility (low values; yellow, orange, red) and decreased accessibility (higher values; black) in ctDNA. TFs with increased accessibility in NEPC 
samples (log2 fold change > 0.05, Mann–Whitney U test P < 0.05) are indicated with red bars; increased accessibility in ARPC (log2 fold change < −0.05, 
P < 0.05) are indicated with blue bars. Text color indicates relative expression between ARPC and NEPC PDX tumors by RNA-seq shown for TFs with 
significant differential accessibility.

including INSM1, CHGB, and SRRM4, we observed a relatively 
consistent increase in nucleosome occupancy and phasing 
in the TSS as well as in the gene body for ∼50% of the genes 
(Fig.  2G; Supplementary Fig.  S6). The neuronal signaling 
genes in this group, such as UNC13A and INSM1, had reduced 
signals for the stable nucleosome dyad position, consist-
ent with the heterogeneous (“fuzzy”) nucleosome patterns 
described for actively transcribed genes (45, 65). Interestingly, 
although UNC13A was active in NEPC tumors, we did not 
detect H3K27ac nor H3K4me1 PTM marks in the regulatory 
loci of this gene (Supplementary Fig.  S7A and S7B). These 
results illustrate that ctDNA analysis can reveal patterns that 
are consistent with different modalities of transcriptional 
regulation by histone modifications for key genes that define 
prostate cancer phenotypes.

Phasing Analysis in ctDNA Reveals Nucleosome 
Periodicity Associated with Transcriptional 
Activity between CRPC Phenotypes

Regions of inactive or repressed transcription are expected 
to have stably bound nucleosomes, resulting in more periodic 
phasing in the gene body (62, 66, 67). Conversely, actively 
transcribed regions may exhibit overall disordered phasing 
in the gene body due to fast nucleosome turnover, resulting 
in relatively aperiodic patterns with highly varied protec-
tion from nucleases along the gene (68). To systematically 
quantify internucleosomal spacing and predict nucleosome 
phasing, we developed TritonNP, a tool utilizing Fourier 
transforms and band-pass filters on guanine-cytosine–
corrected ctDNA coverage to isolate frequency components 
corresponding to phased nucleosomes (Fig. 3A; Supplemen-
tary Fig. S8A and S8B; Methods). This approach allows for 
calling phased nucleosome dyad positions to generate an 
average internucleosome distance from the originating cells, 
encapsulating potential heterogeneity in nucleosome occu-
pancy and stability. In PDX ctDNA, we observed a larger 
mean phased-nucleosome distance across 17,946 genes in 
the ARPC lines compared with the NEPC lines (median 291.1 
bp vs. 282.6 bp, P = 0.027; two-tailed Mann–Whitney U test; 
Fig.  3B). The phased nucleosome distance was also nega-
tively correlated with the mean cell-cycle progression (CCP) 
score (Spearman rho = −0.563, P = 0.006; Fig. 3C; Methods). 
These results suggest that increased nucleosome periodic-
ity in NEPC ctDNA may reflect the condensed chromatin 
in hyperchromatic nuclei of NE cells (14), and the phasing 

analysis may have potential utility for assessing tumor pro-
liferation and aggressiveness (69).

To model the relationship between nucleosome phas-
ing and transcriptional activity more directly, we further 
extracted the frequency components corresponding to the 
interdyad distances of “stable” nucleosomes (180–210 bp) 
and a “baseline” component (150–180 bp) for normalization 
between samples of differing depths (70). We then computed 
the ratio of the mean frequency amplitudes between these 
components, which we designated the nucleosome phasing 
score (NPS), where a higher score corresponded to more 
ordered nucleosome phasing and repressed transcription. 
As an example, HOXB13, which is transcriptionally inactive 
in NEPC, had higher overall GC-corrected coverage (mean 
56.85 depth) and a phased nucleosome distance of 249 bp 
with a 1.93 NPS in the LuCaP 93 NEPC PDX (Fig.  3A). By 
contrast, HOXB13 is actively transcribed in ARPC and had 
lower coverage (mean 13.54 depth) and a more disordered 
phased-nucleosome distance of 332 bp with a 1.63 NPS in 
the LuCaP 136 ARPC PDX. When assessing the 47-prostate 
cancer phenotype marker genes, we observed that the mean 
NPS for the 35 NE genes was lower in NEPC lines compared 
with ARPC (median NPS 1.95 vs. 2.21, P = 0.134; two-tailed 
Mann–Whitney U test; Fig. 3D); although this was not statis-
tically significant, it was consistent with their active transcrip-
tion. Conversely, the mean NPS for the 12 AR-regulated genes 
was lower in ARPC lines compared with NEPC (median NPS 
1.82 vs. 2.13, P = 0.070; two-tailed Mann–Whitney U test). In 
particular, 26 (74%) of the NE genes had lower NPS in NEPC 
compared with ARPC [log2 fold change (ARPC:NEPC)  >  0], 
including seven genes (ASCL1, CHGB, CHRNB2, GRP, MYCL, 
XKR7, and NEUROD1) that were statistically significant 
(P < 0.05); 10 (83%) of the AR-regulated genes had lower NPS 
in ARPC (log2 fold change < 0), with TMPRSS2 being statisti-
cally significant (Fig.  3E; Supplementary Table  S3). These 
results illustrate that the NPS captured signals distinguish-
ing key lineage-specific gene markers.

Inferred TF Activity from Analysis of Nucleosome 
Accessibility at TFBSs in ctDNA Confirms Key 
Regulators of Tumor Phenotypes

To characterize the regulation of prostate tumor phe-
notype lineages, we considered nucleosome accessibility at 
TFBSs in PDX ctDNA for 338 TFs from the Gene Transcrip-
tion Regulation Database (GTRD; ref.  71; Methods). First, 
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we identified 108 TFs out of the 338 that were differentially 
expressed between ARPC and NEPC PDX tumors by RNA-seq 
(Supplementary Fig. S9; Supplementary Table S3; Methods). 
Through unsupervised hierarchical clustering of composite 
TFBS central coverage values for these 108 TFs, we observed 
distinct groups of TFs in PDX ctDNA (Fig. 3F). Of these 108 
TFs, 38 had significantly different accessibility in ctDNA 
between ARPC and NEPC phenotypes (two-tailed Mann–
Whitney U test, Benjamini–Hochberg adjusted P < 0.05; Sup-
plementary Table S3). Most of these TFs [27/38 (71%)] had 
differential inferred accessibility in ctDNA that was consist-
ent with their upregulation in the same phenotype by tumor 
mRNA expression, although some TFs [11/38 (29%)] did not 
show this trend (Fig.  3F; Supplementary Fig.  S10). A com-
parison of TFBS between paralogous TFs revealed that the 
binding sites used in the analysis had limited overlap (median 
18.3%; range, 0–81.2%), suggesting that many of the TFs may 
have some independent inferred accessibility (Supplementary 
Fig.  S11; Supplementary Table  S3). For paralogs with high 
TFBS overlap (≥19%), such as AR, NR3C1, and PGR, we noted 
only a subset of TFs were expressed in one phenotype.

REST had the largest difference in accessibility as supported 
by a decrease in coverage within ARPC models compared with 
NEPC (log2 fold change  =  −0.77, adjusted P  =  5.7  ×  10−4; 
Supplementary Fig. S12A; Supplementary Table S3). FOXA1 
and GRHL2 binding sites were significantly more accessible 
in ARPC (and ARLPC) samples compared with NEPC (log2 
fold change < −0.57; adjusted P < 1.3 × 10−3). AR, HOXB13, 
and NKX3-1 had higher accessibility in ARPC compared with 
NEPC (log2 fold change  <  −0.37, adjusted P  <  1.3  ×  10−3), 
but with only moderate accessibility in ARLPC, as expected. 
We also observed a group of TFs that followed a similar 
trend, including nuclear hormone receptors (NR2F2 and 
RARG), pioneer factor GATA2, and nuclear factors HNF4G 
and HNF1A (log2 fold change  <  −0.10, adjusted P  <  0.027; 
Supplementary Fig. S12A).

For factors that had higher accessibility in NEPC models 
compared with ARPC and ARLPC, ASCL1 had the largest 
TFBS coverage difference (log2 fold change 0.36; adjusted 
P = 5.7 × 10−4; Figs. 2C and 3F). Other TFs, including RUNX1, 
BCL11B, POU3F2, NEUROG2, and SOX2, also had sites 
with higher accessibility in NEPC (log2 fold change  >  0.06; 
adjusted P < 0.048; Supplementary Fig. S12B), although the 
difference was modest. Other notable factors such as MYC 
and ETS transcription family genes (ETV4, ETV5, ETS1, and 
ETV1) had high accessibility across all phenotypes, whereas 
NEUROD1, RUNX3, and TP63 sites were inaccessible in 
nearly all samples. Furthermore, we considered restricting the 
analysis to 20 TFs with TFBSs that were observed in prostatic 
tissue and cell lines and were also differentially expressed in 
the PDX tumors by RNA-seq (Methods). However, although 
hierarchical clustering distinguished PDX tumor pheno-
types, key NEPC-defining markers, such as ASCL1, were omit-
ted from this analysis as ChIP-seq for many NEPC-defining 
markers had not been performed on prostate lineage samples 
in GTRD (Supplementary Fig. S13). Overall, we identified the 
accessibility of known prostate cancer regulators, including 
ASCL1, HNF4G, HNF1A, GATA2, and SOX2 (72–74), that 
have not been shown before from ctDNA analysis in these 
tumor phenotypes.

Phenotype-Specific Open Chromatin Regions 
(ATAC-Seq) in PDX Tumor Tissue Are Reflected in 
ctDNA Profiles of Nucleosome Accessibility

Nucleosome profiling from cfDNA sequencing analysis has 
shown agreement with overall chromatin accessibility in tumor 
tissue (38, 42, 75); however, its application for distinguishing 
tumor phenotypes has been limited. We hypothesized that due 
to lack of protection from nucleases, regions of open chromatin 
would be underrepresented in ctDNA assays. We investigated 
the use of ATAC-seq data from tumor tissue for 10 LuCaP 
PDX lines (5 ARPC and 5 NEPC) to inform phenotype-related 
differences in chromatin accessibility (9). We defined an initial 
set of 28,765 ARPC and 21,963 NEPC differential consensus 
open chromatin regions that we further restricted to those 
that overlapped TFBSs for 338 TFs, resulting in 15,879 ARPC 
and 11,692 NEPC sites (Methods; Fig. 4A). For ARPC-specific 
open chromatin sites, we observed decreased overall composite 
site coverage (±1 kb window) and central coverage (±30 bp) 
in the ctDNA for ARPC PDX lines (mean central coverage 
0.75, n  =  16) compared with NEPC lines (mean 0.96, n  =  6) 
and cfDNA from healthy human donors (mean 0.97, n  =  14; 
Fig.  4B; Supplementary Table  S3, Methods). Conversely, for 
NEPC-specific open chromatin sites, coverage was decreased in 
ctDNA for NEPC lines (mean 0.89) compared with ARPC lines 
(mean 1.01) and healthy donor cfDNA (mean 1.00; Fig.  4C; 
Supplementary Table  S3). Coverage patterns were discernible 
between phenotypes for as few as 100 sites, suggesting that 
even a smaller subset of open chromatin regions may still be 
informative (Supplementary Fig. S14A and S14B). These results 
confirmed that tumor tissue chromatin accessibility can be 
corroborated in ctDNA and that ARPC and NEPC phenotypes 
have distinct ctDNA coverage profiles at these sites.

Comprehensive Evaluation of ctDNA Features 
across Genomic Contexts for CRPC Phenotype 
Classification

To assess the utility of ctDNA nucleosome profiling for 
informing prostate cancer phenotype classification, we sys-
tematically evaluated four groups of global genome-wide 
ctDNA features: phasing, fragment sizes, local coverage pro-
filing, and composite site coverage profiling (Fig. 1A). From 
PCA, we observed distinct feature signals between ARPC 
and NEPC phenotypes for composite TFBS coverage of TFs, 
NPS of the 47 phenotype marker genes, and fragment size 
variability at global sites of PTMs (Fig.  4D; Supplementary 
Fig. S15A; Supplementary Table S4; Methods). In addition to 
these features, we also included previously reported features, 
including short–long fragment ratio and local coverage pat-
terns at the TSS (max wave height between −120 bp and 195 
bp; refs. 30, 41; Methods).

We then quantitatively evaluated all combinations of 
coverage, phasing, and fragment size features for different 
genomic contexts to investigate their potential to classify 
ARPC and NEPC phenotypes. For each feature set, we con-
ducted 100 iterations of stratified cross-validation using a 
supervised machine-learning classifier (XGBoost) on ctDNA 
samples from the ARPC and NEPC models and computed 
the area under the receiver operating characteristic (AUC) 
curve (Methods). First, we evaluated an established set of 10 
genes associated with AR activity (5, 12). We observed that the 
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Figure 4. Comprehensive evaluation of ctDNA features throughout the genome for CRPC phenotype classification in PDX models. A, Volcano plot of 
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phased nucleosome distance at H3K27ac sites and the central 
coverage at TSSs had moderate predictive performance (AUC 
0.88; Supplementary Fig.  S15B; Supplementary Table  S4). 
For the set of 47 phenotype markers, the NPS of gene bodies 
was most predictive (AUC 0.98; Supplementary Fig.  S15C; 
Supplementary Table  S4). When considering all PTM sites, 
promoters, genes, TFs, and open chromatin regions, the 
best-performing features included mean fragment size at 
H3K4me1 sites (n  =  9,750, AUC 1.0) and promoter TSSs 
(n = 17,946, AUC 1.0), and both open chromatin composite 
site features (AUC 1.0; Fig. 4E; Supplementary Table S4).

Accurate Classification of ARPC and NEPC 
Phenotypes from Patient Plasma Using a 
Probabilistic Model Informed by PDX ctDNA Analysis

An important consideration and challenge in analyzing 
plasma from patients is the presence of cfDNA released by 
hematopoietic cells, which leads to a lower ctDNA fraction 
(i.e., tumor fraction). Furthermore, the small patient cohorts 
with available tumor phenotype information make super-
vised machine-learning approaches suboptimal. Therefore, 
we developed ctdPheno, a probabilistic model to classify 
ARPC and NEPC from an individual plasma sample, account-
ing for the tumor fraction (Fig.  5A; Methods). We focused 
on the phenotype-specific open chromatin composite site 
features and used the PDX plasma ctDNA signals (27,571 
total sites, Fig. 4B and C; Supplementary Table S3) to inform 
the model. The model produces a normalized prediction 
score that represents the estimated signature of ARPC (lower 
values) and NEPC (higher values). We applied this method 
to benchmarking datasets generated by simulating varying 
tumor fractions and sequencing coverages using five ARPC 
and NEPC PDX ctDNA samples each, and healthy donor 
plasma cfDNA (Supplementary Fig.  S15D; Methods). We 
achieved a 1.0 AUC at 25× coverage down to 0.01 tumor frac-
tion, 1.0 AUC at 1× down to 0.2 tumor fraction, and 1.0 AUC 
at 0.2× coverage at 0.3 tumor fraction, suggesting a possible 
upper-bound performance for classifying samples with lower 
tumor fraction in plasma (Fig. 5B; Supplementary Table S4).

To test the performance of ctdPheno on patient sam-
ples, we analyzed a published dataset of ultra-low-pass WGS 
(ULP-WGS) of plasma cfDNA (mean coverage 0.52×, range, 
0.28–0.92×) from 101 patients with mCRPC, comprising 80 
adenocarcinoma (ARPC) and 21 NEPC samples [Dana-Farber 
Cancer Institute (DFCI) cohort I; ref.  25]. Using ctdPheno, 

which was unsupervised and used parameters informed only 
by the PDX analysis, we achieved an overall AUC of 0.96 
(Fig.  5C; Supplementary Table  S5). The performance was 
0.97 AUC and 0.76 AUC when considering samples with high 
(≥0.1) and low (<0.1) tumor fractions, respectively, and 0.83 
AUC when using only 2,000 sites for analysis (Supplemen-
tary Fig.  S16A and S16B). We identified an optimal overall 
performance at 97.5% specificity (ARPC) and 90.4% sensitiv-
ity (NEPC), which corresponded to the prediction score of 
0.3314 (Fig. 5C). These results were concordant (92.1%) with 
phenotype classification by cfDNA methylation on the same 
plasma samples (Supplementary Fig.  S16C; Supplementary 
Table S5). In another published dataset of 11 mCRPC samples 
from 6 patients who had high prostate-specific antigen (PSA), 
treatment with ARSI, or both (DFCI cohort II; refs. 76, 77), 
the model correctly classified patients as ARPC in 8 (73%) 
ULP-WGS (∼0.1×) samples when using the optimal score 
cutoff (Supplementary Fig. S16D; Supplementary Table S5).

Next, we analyzed 61 clinical plasma samples from 31 patients 
with CRPC with ARPC, NEPC, and mixed phenotypes that are 
representative of typical clinical histories [University of Washing-
ton (UW) Cohort; Supplementary Table S5]. We performed ULP-
WGS of cfDNA and selected 47 samples (26 ARPC, 5 NEPC, and 
16 mixed phenotype) from 27 patients based on having greater 
than 3% estimated tumor fraction (Supplementary Table  S5; 
Methods). For the 26 samples with ARPC clinical phenotype, 
ctdPheno correctly classified 22 (85%) samples with ARPC-dom-
inant clinical phenotype and all five (100%) samples with NEPC-
dominant clinical phenotype using the score cutoff of 0.3314 
(Fig.  5D). For the remaining 16 samples with clinical histories 
or tumor histologies that reflected mixed phenotypes such as a 
tumor with AR-positive adenocarcinoma intermixed with NEPC, 
the classification results were variable (Fig. 5D; Supplementary 
Table S5; Supplementary Fig. S17). Overall, we achieved an accu-
racy of 87% for ULP-WGS data of ctDNA samples with dominant 
clinical phenotypes, but the variable predictions for mixed-phe-
notype samples underscore the complexities associated with 
tumor heterogeneity in the setting of metastatic disease.

Quantifying ARPC and NEPC Phenotype 
Heterogeneity within Individual Patient Plasma 
ctDNA

Phenotype heterogeneity may arise in the clinical setting, 
particularly when transdifferentiation can lead to a mixture 
of ARPC and NEPC cells or lesions. To account for and 

Figure 5.  Accurate classification and estimation of prostate cancer in patient plasma samples. A, Schematic illustration of the ctdPheno classifica-
tion method. Griffin-derived features and ichorCNA tumor fraction estimates from patient plasma samples are combined in a probabilistic framework 
informed by PDX models to predict the presence of NEPC. B, Performance for classification on admixtures samples using ctdPheno. Five ctDNA admix-
tures were generated for each phenotype from PDX lines, each at various sequencing coverages and tumor fractions. In total, 125 admixtures were evalu-
ated. The mean AUC across the 5 admixtures is shown for each configuration. C, ROC curve for 101 patients with mCRPC (DFCI cohort I) with ULP-WGS 
data. The optimal performance of 90.4% sensitivity (for predicting NEPC) and 97.5% specificity (for predicting ARPC) corresponding to a prediction 
score cutoff of 0.3314 is indicated with horizontal and vertical dotted lines, respectively. D, Prediction scores from ctdPheno for 47 ULP-WGS plasma 
samples with clinical phenotypes comprising 26 ARPC (blue), 5 NEPC (red), and 16 mixed or ambiguous phenotypes (purple, triangles), including DNPC 
(gray). The 0.3314 score cutoff threshold (dotted line) was used for classifying NEPC and ARPC. Tumor fractions were estimated by ichorCNA from WGS 
data. E, Schematic illustration of the Keraon mixture estimation method. Griffin-derived features from PDX lines and healthy donors define a known fea-
ture space, which is transformed based on Griffin features and ichorCNA tumor fraction estimates for each patient plasma sample. Based on the patient’s 
location in the transformed phenotype space, fractions of each phenotype are inferred directly. F, Illustration of mixture simulations. Five ARPC and five 
NEPC PDX samples were combined in the ratios shown with a single healthy donor at the tumor fractions shown, for a total of 810 mixed-phenotype sam-
ples at 25× for evaluating mixture proportions with Keraon. G, Boxplot of predicted total NEPC fraction in 810 simulated mixed-phenotype samples using 
Keraon, Pearson r = 0.884. MAE was computed as the median absolute difference between estimated and expected NEPC fraction across all samples. H, 
Fractional phenotype estimates for 47 WGS plasma samples with clinical phenotypes comprising 26 ARPC (blue), 5 NEPC (red), and 16 mixed or ambigu-
ous phenotypes (purple, triangles), including DNPC; gray). The 2.8% NEPC fraction threshold indicates the predicted presence of NEPC (dotted line).
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predict phenotype mixtures within a patient ctDNA sample, 
we developed Keraon, an analytic model that estimates the 
proportions of phenotypes from WGS using the same ctDNA 
features as ctdPheno (Fig.  5E; Methods). First, we evaluated 
Keraon using a benchmark dataset generated for simulating 
varying tumor fractions and proportions of ARPC–NEPC mix-
tures at 25×  coverage using PDX ctDNA and healthy donor 
cfDNA data (Fig. 5F; Methods). In 810 simulated phenotype 
mixtures, we observed the estimated total NEPC fraction 
was consistent with expected proportions (Pearson r = 0.884) 
with a mean absolute error (MAE) of 0.028, highlighting the 
method’s potential for accurate estimation of emergent phe-
notypes in mixed histology samples (Fig. 5G; Supplementary 
Table S5). Next, we evaluated Keraon for classifying NEPC in 
DFCI cohort I and observed the highest performance (0.96 
AUC) using all 27,571 open chromatin sites, with decreased 
performance (0.84 AUC) when using only 2,000 sites (Supple-
mentary Fig. S16D). Applying Keraon to analyze DFCI cohort 
II, we correctly estimated dominant ARPC with undetectable 
NEPC phenotype in 10 (91%) samples with WGS (mean cover-
age, 27×; Supplementary Fig. S18; Supplementary Table S5).

We performed deeper WGS (22.13×  mean coverage; range, 
15.15×–31.79×) for the UW cohort ctDNA samples and applied 
Keraon to classify the presence of NEPC and to estimate the 
proportions of ARPC and NEPC phenotypes (Fig. 5H). Keraon 
correctly estimated the dominant phenotype (≥0.5 relative phe-
notype fraction) in 25 of 26 (96%) samples with ARPC clinical 
phenotype and in 5 of 5 (100%) NEPC samples. For 10 samples 
with the presence of ARPC and NEPC phenotypes reported in 
the clinical histories, Keraon correctly detected both phenotypes 
in nine samples (NEPC fraction ≥0.028, ARPC fraction ≥0.06). 
In two samples with ARPC–DNPC phenotypes, one was esti-
mated to be ARPC-dominant (0.20 fraction), and in three sam-
ples with NEPC–DNPC phenotypes, all three were estimated 
as being NEPC-dominant (≥0.028 fraction). In 14 (82%) out of 
17 patients with multiple plasma collected, the predicted phe-
notypes were consistent across all ctDNA samples. Overall, we 
observed an accuracy of 97% for correctly classifying ARPC- and 
NEPC-dominant phenotypes and 87% for estimating NEPC frac-
tions in samples with admixed clinical phenotypes from ctDNA.

DISCUSSION
The development of minimally invasive blood-based assays 

of ctDNA to define tumor subtypes has dramatically changed 
the landscape of clinical oncology. To date, the majority of 
these assays characterize genomic alterations in oncogenes such 
as EGFR or tumor suppressors, such as BRCA2, that inform 
outlier responses to specific therapeutics. However, tumor clas-
sification determined by gene-expression analyses, such as the 
PAM50 subtyping of breast carcinoma and the transcript-based 
classification of urothelial cancers, is also informative of clini-
cal trajectories. Consequently, the ability to characterize tumor 
phenotype using blood-based assays has the potential to add 
relevant information for guiding treatment allocation.

In the present study, we analyzed multiple features of DNA 
to infer the activity of gene-expression programs correspond-
ing to distinct prostate cancer phenotypes. A key component 
of the work that allowed for the development of optimized 
methods and the identification of the most informative ctDNA 

features was the use of PDX models. The sequencing of mouse 
plasma provided a unique opportunity to comprehensively 
interrogate the epigenetic nucleosome patterns in ctDNA from 
well-characterized tumor models. We developed and applied 
computational methodologies to evaluate a multitude of 
ctDNA features, each of which was associated with transcrip-
tional regulation across CRPC tumor phenotypes. The use of 
PDX mouse plasma overcomes the challenge of low ctDNA 
content or incomplete knowledge of the tumor when studying 
patient samples. Using features learned from the PDX ctDNA, 
we developed models to accurately classify ARPC and NEPC 
and to estimate their proportions in phenotypically heteroge-
neous samples from patient plasma in three clinical cohorts. 
Although these data were focused on ARPC and NEPC phe-
notypes, the approaches may serve as a framework for the use 
of ctDNA to subtype malignancies arising in other organ sites 
based on distinctive gene-expression programs.

The analysis of the LuCaP PDX ctDNA sequencing data 
confirmed the activity of key regulators between ARPC and 
NEPC phenotypes, including a set of 47 established differen-
tially expressed genes that associate with cell lineage. Although 
gene-expression inference from ctDNA has been shown in 
proof-of-concept studies (34, 41), the PDX ctDNA allowed for 
a detailed dissection of nucleosome organization associated 
with the transcriptional activity of individual genes that define 
the tumor phenotypes. Previous analytic approaches have pro-
filed nucleosome occupancy from cfDNA (38, 75). However, 
our assessment of nucleosome stability by means of the NPS 
is the first to capture the highly variable spacing, positioning, 
and turnover of the nucleosome arrays associated with tran-
scription and tumor aggressiveness (44, 68, 69, 78).

In addition to the existing molecular profiling available for 
these models, we now provide a characterization of histone 
PTMs in LuCaP PDX tumors using CUT&RUN. At regions 
with these PTMs on histone tails, we observed expected 
nucleosome patterns inferred in ctDNA that were consistent 
with active or repressed gene transcription. To our knowl-
edge, this is the first time that ctDNA analysis has been 
performed in the context of histone PTMs and will provide a 
blueprint to develop new approaches for studying additional 
epigenetic alterations using PDX plasma.

Although the regulation of key factors such as AR, HOXB13, 
NKX-3.1, FOXA1, and REST has been shown from ctDNA in 
CRPC (35, 42), we report the differential activity of other key 
factors in CRPC from ctDNA analysis. This included nuclear 
factors HNF4G and HNF1A and pioneering factor GATA2, 
which are associated with prostate adenocarcinoma (ARPC; 
refs. 72, 74, 79). ASCL1 is a pioneer TF with roles in neuronal 
differentiation and was recently described to be active during 
NE transdifferentiation and in NEPC (9, 56). To our knowl-
edge, this study is the first to demonstrate ASCL1 binding 
site accessibility and provide a detailed characterization of its 
transcriptional activity in NEPC from plasma ctDNA.

We show an expansive analysis of TFBSs for 338 factors in each 
plasma sample without the need for chromatin immunopre-
cipitation or other epigenetic assays. However, we did not find a 
significant difference in accessibility for 70 out of the 108 TFs in 
ctDNA, which may be consistent with TF activity not necessarily 
being correlated with its own expression level (80). On the other 
hand, the accessibility of TFBSs may not necessarily indicate true 



Cancer Phenotype Classification Using ctDNA RESEARCH ARTICLE

 MARCH  2023 CANCER DISCOVERY | 645 

TF activity, as other cobound TFs or coactivators/corepressors 
influence gene regulation. Moreover, our analyses were based on 
TFBSs obtained from public databases, including for a limited 
number of prostate-specific TFs; however, expanded phenotype-
specific TF cistrome data may improve this approach.

We applied state-of-the-art computational approaches 
built on existing and new concepts of ctDNA data analysis to 
extract tumor-specific features, including the representation 
of nucleosome phasing, periodicity, and spacing associated 
with transcriptional activity. Other approaches have also 
considered regions, such as TSSs, TFBSs, and DNase hyper-
sensitivity sites (33, 38, 41, 42); however, after a systematic 
evaluation, we found that ctDNA features in open chromatin 
sites derived from ATAC-seq of PDX tissue (9) provided the 
highest performance for distinguishing CRPC phenotypes. 
We presented ctdPheno, which is a probabilistic model that 
classifies ARPC and NEPC from ULP-WGS data, and Keraon, 
an analytic model that estimates the proportion of ARPC 
and NEPC from WGS of patient plasma. Both models are 
unsupervised and utilize a statistical framework informed 
directly by parameters from the LuCaP PDX ctDNA analysis. 
These models do not require training on patient samples but 
do require tumor fraction estimates (ichorCNA; ref. 81) and 
in the case of ctdPheno a prediction score cutoff determined 
from DFCI cohort I. Both frameworks can also be extended to 
model additional phenotypes. Insights from additional data-
sets such as single-cell nucleosome and accessibility profiling 
(82, 83) of PDX tumors and clinical samples may improve the 
resolution for ctDNA analysis. Although we observed optimal 
performance analyzing all open chromatin sites, a smaller 
subset was still informative, which may be useful when con-
sidering targeted assays for clinical applications.

Applying the prediction models to patient datasets with 
definitive clinical phenotypes yielded high performance even 
when using low depth of coverage sequencing. In particular, our 
performance for the DFCI cohort I was also consistent with the 
reported phenotype classification results using ctDNA meth-
ylation in the same patients (25). Similarly, in the UW cohort, 
samples with well-defined clinical phenotypes had near-perfect 
concordance from WGS data. We established the lower limits 
of phenotype classification performance to be at 8% tumor frac-
tion for ctdPheno (ULP-WGS) and 3% for Keraon (WGS). These 
results support a strategy whereby ULP-WGS is performed for 
screening using ctdPheno, along with clinical assessments, and 
followed up with standard WGS for more accurate and com-
prehensive phenotype characterization using Keraon. Although 
this framework may have limited performance for low (<3%) 
ctDNA levels, it may be optimal at the initial assessment of 
metastatic disease and at tumor progression on therapy, which 
is when the clinical decision points are most critical.

Tumor heterogeneity and coexistence of different molecu-
lar phenotypes are common in mCRPC where treatment-
induced phenotypic plasticity may vary within and between 
tumors in an individual patient. In real data simulations 
and patients with cases of mixed clinical phenotypes, Keraon 
accurately detected the contributions of mixed phenotypes 
with a detection limit of 2.8% NEPC, providing the first 
approach to directly quantify phenotype proportions and 
heterogeneity from ctDNA. In this study, estimation of phe-
notype heterogeneity using Keraon required standard depths 

of WGS. Larger studies with a comprehensive assessment 
of the tumor histologies will be needed for evaluating these 
models as potential biomarkers of treatment response.

In summary, this study illustrates that analysis of ctDNA 
from PDX mouse plasma at scale can facilitate a detailed 
investigation of tumor regulation. These results, together 
with the suite of computational methods presented here, 
highlight the utility of ctDNA for surveying transcriptional 
regulation of tumor phenotypes and its potential diagnostic 
applications in cancer precision medicine.

METHODS
PDX Mouse Models

The establishment and characterization of the LuCaP PDX models 
were described previously (84). PDXs were propagated in vivo in male 
NOD/SCID IL2R-gamma-null (NSG) mice (cat. #005557). The col-
lection of tumors for the establishment of PDX lines was approved 
by the UW Human Subjects Division Institutional Review Board (IRB 
#2341). PDX lines were evaluated using histopathology by at least 
two expert pathologists, and histologic phenotypic subtype annota-
tions were orthogonally validated based on transcriptome-derived 
signature marker expression scores to define phenotypes (4, 5, 22): 
ARPC, NEPC, and ARLPC. Resected PDX tumors (300–800 mm3) 
were divided into  ∼50 mg to  ∼100 mg pieces and stored at  −80°C. 
Animal studies were approved by the Fred Hutchinson Cancer Center 
(FHCC) Institutional Animal Care and Use Committee (protocol 
1618) and performed in accordance with the NIH guidelines. For the 
current study, blood was collected by cardiac puncture from animals 
bearing PDX tumors (measurable size 300–1,400 mm3).

Human Subjects
UW Cohort. Blood samples were collected from men with mCRPC 

at the UW (collected under UW Human Subjects Division IRB proto-
col number CC6932 between years 2014 and 2021). Patients in this 
study have provided written informed consent for research participa-
tion. In this study, 61 plasma samples from 31 patients were analyzed. 
After initial ULP-WGS analysis, 47 plasma samples from 27 patients 
with sufficient tumor fraction (>3%, based on initial ichorCNA analy-
sis using GRCh37 genome build) and three additional samples not 
meeting the threshold but with clear AR amplification seen in man-
ual curation (FH0243_E_1_A, FH0345_E_1_A, and FH0482_E_1_A) 
were retained for further high depth of coverage WGS analysis. All 
samples were deidentified prior to ctDNA analysis and we used a dou-
ble-blinded approach for evaluating clinical phenotype predictions.

DFCI Cohort I. Plasma was collected from men diagnosed with 
mCRPC and treated at the DFCI, Brigham and Women’s Hospital, or 
Weill Cornell Medicine (WCM) between April 2003 and August 2021. 
All patients provided written informed consent for research participa-
tion and genomic analysis of their biospecimen and blood. The use 
of samples was approved by the DFCI IRB (#01-045 and 09-171) 
and WCM (1305013903) IRBs. The ULP-WGS data at mean coverage 
0.5× (range 0.3×–0.9×) for 101 patients were published previously (25).

DFCI Cohort II. Plasma samples in this cohort were collected 
from men diagnosed with mCRPC and treated at the DFCI. All 
patients provided written informed consent for blood collection and 
the analysis of their clinical and genetic data for research purposes 
(DFCI protocol #01-045 and 11-104). WGS data at mean coverage 
27×  (range, 11×–44×; ref.  76), and ULP-WGS data at mean cover-
age 0.13×  (range, 0.07×–0.18×; refs. 77, 81) were downloaded from 
dbGAP accession phs001417. Eleven samples from six patients had 
matching WGS and ULP-WGS with paired-end reads, necessary for 
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analysis by Griffin. PSA (ng/mL) values and treatment at the time 
of the blood draw were previously published (77). The six patients 
were treated for adenocarcinoma using abiraterone, enzalutamide, or 
bicalutamide, or the patients had detectable levels of PSA.

Healthy donor plasma cfDNA WGS data used in this study were 
obtained from previously published studies. Two samples (HD45 and 
HD46, both male) with coverage of 13×  and 15×, respectively, were 
accessed from dbGAP under accession phs001417 (76, 81). These donors 
were consented under DFCI protocol IRB (# 03-022). Plasma cfDNA 
WGS data from thirteen healthy donors [12 male: NPH002, 03, 06, 07, 
12, 18, 23, 26, 33, 34, 35, 36; 1 female (used in admixtures): NPH004] 
with coverages between 13.5× and 27.6× were obtained from the Euro-
pean Phenome Archive (EGA) under accession EGAD00001005343 (42).

PDX Plasma Processing
Blood samples were collected from NSG mice bearing subcutane-

ous PDX tumors at the time of sacrifice. The PDX lines were main-
tained at vivaria in the UW and FHCC. The blood was processed 
following methods described for human plasma DNA processing for 
subsequent DNA isolation. Blood was collected in Sarstedt Micro 
sample tube K3 EDTA tubes and processed within 4 hours. All 
blood samples were sequentially double spun, first at 2,500 × g for 10 
minutes followed by a 16,000 × g centrifugation of the plasma frac-
tion for 10 minutes at room temperature. For each PDX line, 4 to 8 
mouse plasma samples were pooled. Processed plasma samples were 
preserved in clean, screw-capped cryo-microfuge tubes and stored 
at −80°C prior to cfDNA isolation.

cfDNA Isolation
The QIAamp Circulating Nucleic Acid Kit was used to isolate 

cfDNA from PDX mouse-derived plasma using the recommended 
protocol. The pooled plasma samples from 4 to 8 mice for each PDX 
line contained 1.9 to 3 mL total plasma volume for each line. The 
filter retention-based cfDNA kit method does not implement any 
fragment size class enrichment. Isolated cfDNA was quantified using 
the Qubit dsDNA HS assay (Invitrogen) and the cfDNA fragment size 
profiles were analyzed using TapeStation HS D5000 and HS D1000 
assays (Agilent).

cfDNA Library Preparation and Sequencing
For LuCaP PDX mouse plasma samples, NGS libraries were pre-

pared with 50 ng input cfDNA. Illumina NGS sequencing libraries 
were prepared with the KAPA hyperprep kit, adopting nine cycles of 
amplification, and purified using lab-standardized SPRI beads. We 
used KAPA UDI dual-indexed library adapters. Library concentra-
tions were balanced and pooled for multiplexing and sequenced using 
the Illumina HiSeq 2500 at the Fred Hutchinson Genomics Shared 
Resources (200 cycles) and Illumina NovaSeq platform at the Broad 
Institute Genomics Platform Walkup-Seq Services using S4 flow cells 
(300 cycles). To match with Illumina HiSeq 2500 data, truncated 200 
cycles FASTQ files were generated (100 bp paired-end reads).

Clinical patient plasma samples collected at the University of 
Washington (UW cohort) were submitted to the Broad Institute 
Blood Biopsy Services. Briefly, cfDNA was extracted from 2 mL dou-
ble-spun plasma and ULP-WGS to approximately 0.2× coverage was 
performed. The ichorCNA pipeline was used to estimate tumor DNA 
content (i.e., tumor fraction; see below). Forty-seven samples (from 
31 patients) had either  ≥5% tumor fraction or  ≥2% tumor fraction 
with AR amplification observed in ichorCNA and were subsequently 
sequenced to deeper WGS coverage (∼20×).

cfDNA Sequencing Analysis and Mouse Subtraction
All cfDNA sequencing data used in this study were realigned to 

the hg38 (GRCh38) human reference genome (http://hgdownload.
soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz). FASTQ files 

were realigned using BWA (v0.7.17) mem (85). The complete align-
ment pipeline including configuration settings may be accessed at 
https://github.com/GavinHaLab/ fastq_to_bam_paired_snakemake.

For PDX ctDNA WGS data, we performed mouse genome subtrac-
tion following the protocol described previously (86), wherein reads 
were aligned using BWA mem to a concatenated reference consisting of 
both human (hg38) and mouse (mm10, GRCm38.p6, http://igenomes.
illumina.com.s3-website-us-east-1.amazonaws.com/Mus_musculus/
NCBI/GRCm38/Mus_musculus_NCBI_GRCm38.tar.gz) reference 
genomes. Read pairs where both reads aligned to the human reference 
genome were retained and all other read pairs were removed. Then, the 
remaining reads were realigned to the human-only reference. Finally, 
the GATK best practices workflow was applied to each sample (87); 
the complete mouse subtraction pipeline used in this study, including 
tool versions and parameters, can be accessed at https://github.com/
GavinHaLab/PDX_mouseSubtraction. Following mouse subtraction, 
samples with <3× depth were removed for downstream analysis.

CCP Score Calculation
The 31-gene CCP signature (69) was computed from RNA-seq data 

using GSVA (88). The single-sample enrichment scores were calcu-
lated with default parameters using genome-wide log2 FPKM values 
as input for the 31 genes.

Differential mRNA Expression Analysis
RNA isolation of 102 tumors from 46 LuCaP PDX samples was 

performed as described previously (11). RNA concentration, purity, 
and integrity were assessed by NanoDrop (Thermo Fisher Scientific 
Inc) and Agilent TapeStation, and RNA integrity number (RIN) ≥ 8 
was retained for library preparation. RNA-seq libraries were con-
structed from 1 μg of total RNA using the Illumina TruSeq Stranded 
mRNA LT Sample Prep Kit according to the manufacturer’s pro-
tocol. Barcoded libraries were pooled and sequenced by Illumina 
NovaSeq 6000 or Illumina HiSeq 2500, generating 50 bp paired-end 
reads. Sequencing reads were mapped to the hg38 human reference 
genome and mm10 mouse reference genomes using STAR.v2.7.3a 
(89). All subsequent analyses were performed in R-4.1.0. Sequences 
aligning to the mouse genome and therefore derived from potential 
contamination with mouse tissue were removed from the analysis 
using XenofilteR (v1.6; ref. 90). Gene-level abundance was quantitated 
using the R package GenomicAlignments v1.32.0 summarizeOver-
laps function using mode =  IntersectionStrict, restricted to primary 
aligned reads. We used refSeq gene annotations for transcriptome 
analysis. Transcript abundances (FPKM) were input to edgeR v3.38.1 
(91), filtered for a minimum expression level using the filterByExpr 
function with default parameters, and then limma v3.52.1 voom 
was used for differential expression analysis of NEPC versus ARPC 
and ARLPC versus ARPC. We then filtered the results using a list of 
1,635 human TFs published previously (92), which resulted in 514 
genes with FDR < 0.05 and log2 fold change > 1.58. Out of these 514, 
deregulation of gene expression for 404 TF genes delineated ARPC 
from NEPC.

CUT&RUN
CUT&RUN is an antibody-targeted enzyme tethering chromatin 

profiling assay in which controlled cleavage by micrococcal nuclease 
releases specific protein–DNA complexes into the supernatant for 
paired-end DNA sequencing analysis. We performed CUT&RUN assays 
for three histone modifications, H3K27ac, H3K4me1, and H3K27me3, 
according to published protocols (49). We performed CUT&RUN on 
LuCaP PDX tumors using ∼75 mg flash-frozen tissue pieces.

Paired-end (50 bp) sequencing was performed and reads were aligned 
using bowtie2 v2.4.2 (93) to the hg38 human reference assembly. Aligned 
reads were processed as described in the SEACR protocol (https://
github.com/FredHutch/SEACR#preparing-input-bedgraph-files). 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
https://github.com/GavinHaLab/fastq_to_bam_paired_snakemake
http://igenomes.illumina.com.s3-website-us-east-1.amazonaws.com/Mus_musculus/NCBI/GRCm38/Mus_musculus_NCBI_GRCm38.tar.gz
http://igenomes.illumina.com.s3-website-us-east-1.amazonaws.com/Mus_musculus/NCBI/GRCm38/Mus_musculus_NCBI_GRCm38.tar.gz
http://igenomes.illumina.com.s3-website-us-east-1.amazonaws.com/Mus_musculus/NCBI/GRCm38/Mus_musculus_NCBI_GRCm38.tar.gz
https://github.com/GavinHaLab/PDX_mouseSubtraction
https://github.com/GavinHaLab/PDX_mouseSubtraction
https://github.com/FredHutch/SEACR#preparing-input-bedgraph-files
https://github.com/FredHutch/SEACR#preparing-input-bedgraph-files
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Peaks were called using SEACR version 1.3 (50) using “stringent” 
settings and with reference to paired IgG controls. BigWig files were 
prepared using bamCoverage in deepTools 3.5.0 (94). Genome-wide 
peak heat map, targeted heat map, and respective profiles were plotted 
using deepTools v3.5.0. bigwig formatted files for each phenotype were 
obtained using the mean function in wiggletools 1.2.8. and deepTools 
computeMatrix. Phenotype-specific informative region coordinates 
were obtained from diffBind v3.5.0, and the top 10,000 most signifi-
cant regions (all with FDR < 0.05) differentially open between ARPC 
and NEPC lines were used for downstream feature analyses (see Gene 
body and promoter region selection for additional subsetting criteria 
applied on a feature-by-feature basis). For heat maps and profiles, 
the plotHeatmap function was used. We utilized the “Peak Center” 
option to derive desired heat maps. These steps were all performed 
for H3K27ac, H3K4me1, and H3K27me3 antibodies. Scaled heat map 
profiles’ AUC (±1.5 kbp) and peak height at the profile center were 
estimated using deepStats v0.4 (https://zenodo.org/record/3668336; 
comparable profiles are scaled to 10 units).

Differential Histone PTM Analysis
Differential PTM analysis was performed with the DiffBind version 

2.16.0 package (95) in R-4.0.1 using standard parameters (https://
bioconductor.riken.jp/packages/3.0/bioc/html/DiffBind.html). 
ARPC, NEPC, and ARLPC samples were grouped by histopathologic 
and transcriptome signature-defined phenotypes described in the 
“PDX mouse models” section (Supplementary Table  S2). Samples 
were loaded with the dba function, reads counted with the dba.count 
function, and contrast specified as phenotype with dba.contrast and 
a minimum members of 2. Differential peak sites were computed 
with the dba.analyze function with default settings. Differential peak 
binding of NEPC and ARLPC was computed against ARPC samples. 
Unique binding sites in NEPC and ARLPC were cataloged using 
bedtools v2.29.2 (96). Intergroup differentially bound peaks were 
annotated using ChIPseeker 1.28.3 (97) and TxDb.Hsapiens.UCSC.
hg38.knownGene 3.2.2 in R 4.1.0.

ATAC-seq Analysis
ATAC-seq sequence data for 15 tumor samples from 10 PDX lines 

were published previously (9). These lines included LuCaP PDX lines 
with ARPC (23.1, 77, 78, 81, and 96) and NEPC (three replicates 
of 173.1, two replicates each of 49, 93, 145.1, and one replicate of 
145.2) phenotypes. Paired-end reads were aligned using bowtie2 
v2.4.2 (93) to the UCSC hg38 human reference assembly with the 
“very-sensitive” “-k 10” settings. Peaks were called using Genrich 
version 0.6.1 (https://github.com/jsh58/Genrich). Differential bind-
ing analysis was performed using DiffBind version 3.5.0 package in 
R version 4.1.0. ENCODE blacklisted regions were excluded using 
hg38-blacklist.v2 (ref.  98; https://github.com/Boyle-Lab/Blacklist). 
Phenotype-specific regions were isolated by first selecting for positive 
fold change open chromatin enrichment and then using Intervene 
0.6.5 (99), where regions were considered overlapping if they shared 
at least 1 bp with another phenotype. Regions with FDR adjusted 
P < 0.05 were then subset to those overlapping the 3,380,000 estab-
lished TFBSs (338 TFs × 10,000 binding sites, see Griffin analysis for 
site selection) by at least 1 bp using BedTools v2.30.0 Intersect. Only 
regions that overlapped an established TFBS from those lists were 
retained. For analyses restricted to 10,000, 1,000, or 100 sites, sites 
were ranked and chosen by adjusted P value.

Nucleosome Profiling of ctDNA
Griffin is a method for profiling nucleosome protection and accessi-

bility on predefined genomic loci (52). For this study, Griffin (v0.1.0) was 
used and can be found on GitHub (https://github.com/adoebley/Grif-
fin/releases/tag/v0.1.0). The analysis was performed as follows: First, GC 
bias was quantified for each sample using an approach described previ-
ously (100). Briefly, for each possible fragment length and GC content, 

the number of reads in a bam file and the number of genomic positions 
with that specific length and GC content were counted. The GC bias for 
each fragment length and GC content was calculated by dividing the 
number of observed reads by the number of observed genomic positions 
for that fragment length and GC content. The GC bias for all possible 
GC contents at a given fragment length was then normalized to a mean 
bias of 1. GC biases were then smoothed by taking the median of values 
for fragments with similar lengths and GC contents (k nearest neighbors 
smoothing) to generate smoothed GC bias values.

After GC correction, nucleosome profiling was performed in each 
sample. For each mappable site of interest, fragments aligning to the 
region ± 5,000 bp from the site were fetched from the bam file. Frag-
ments were filtered to remove duplicates and low-quality alignments 
(<20 mapping quality) and by fragment length. Nucleosome size 
fragments (140–250 bp) were retained and used in all downstream 
Griffin analyses. Fragments were then GC corrected by assigning each 
fragment a weight of 1/GC_bias for that given fragment length and 
GC content. The fragment midpoint was identified, and the number 
of weighted fragment midpoints in 15 bp bins across the site was 
counted. For composite sites, all sites of a given type (such as all sites 
for a given transcription factor) were summed together to generate 
a single coverage profile. Individual or composite coverage profiles 
were normalized to a mean coverage of 1 in the  ±5,000 bp region 
surrounding the site. Finally, sites were smoothed using a Savitzky–
Golay filter with a window length of 165 bp and a polynomial order 
of 3. The window ±1,000 bp around the site was retained for plotting 
and feature extraction when plotting sites; shading illustrates the 
95% confidence interval within sample groups. Features extracted 
from individual or composite sites included:

a. “mean central coverage,” the mean coverage between  −30 and 
30 bp relative to the site center,

b. “mean window coverage,” the mean coverage between −990 and 
990 bp relative to the site center, and

c. “max wave height,” the absolute difference between the mini-
mum coverage within the window from  −120 to 30 bp and 
maximum coverage in the window from 31 to 195 bp relative to 
the TSS.

TFBS Selection from GTRD
TFBS identified using ChIP-seq were downloaded from the GTRD 

database version 19.10 (https://gtrd.biouml.org/downloads/19.10/
chip-seq/Homo%20sapiens_meta_clusters.interval.gz). This database 
contains binding sites (meta-clusters) that were observed in one or 
more ChIP-seq experiments. Low mappability sites were excluded 
by examining the mean mappability score in a window around each 
site (±5,000 bp). Mappability information (hg38 Umap multiread 
mappability for 50 bp reads) was obtained from the UCSC genome 
browser (ref.  101; https://hgdownload.soe.ucsc.edu/gbdb/hg38/
hoffmanMappability/k50.Umap.MultiTrackMappability.bw). Highly 
mappable sites (>0.95 mean mappability) were retained for further 
analysis. 338 TFs were selected for analysis using three criteria: (i) 
TF was contained in GTRD, (ii) had at least 10,000 highly mappable 
binding sites on autosomes (chr1–22) in GTRD, and (iii) TF was pre-
sent in the CIS-BP database (ref. 102; CIS-BP v2.00 downloaded from 
http://cisbp.ccbr.utoronto.ca/bulk.php) and had a known binding 
motif (“TF_status” is not N). Unless otherwise noted, analyses uti-
lized the top 1,000 TFBSs ranked by the highest “peak.count” across 
all experiments as computed by GTRD (71). In addition, in the case 
of AR and ASCL1, we also compared the top 1,000 with the top 
10,000 sites chosen with the same “peak.count” criterion.

After intersecting these 338 TFs with the 404 differentially expressed 
TFs identified through RNA-seq, 108 remained. On both the 108 and 
prostate-specific 41 TFs (described below) we performed unsupervised 
hierarchical clustering of central window mean values (see Griffin analy-
sis). Hierarchical clustering was performed using the Ward.D2 method 

https://zenodo.org/record/3668336
https://bioconductor.riken.jp/packages/3.0/bioc/html/DiffBind.html
https://bioconductor.riken.jp/packages/3.0/bioc/html/DiffBind.html
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https://gtrd.biouml.org/downloads/19.10/chip-seq/Homo%20sapiens_meta_clusters.interval.gz
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with Euclidean distance and complete linkage settings; the groupings 
were determined using cutree_cols  =  2 for columns (LuCaP CRPC 
phenotypes) and cutree_rows = 13 for rows (TFs) on the dendrograms.

To generate a prostate lineage-specific TF set, we first merged 
GTRD metadata (file; http://gtrd.biouml.org:8888/downloads/
current/metadata/ChIP-seq.metadata.txt and http://gtrd.biouml.
org:8888/downloads/current/metadata/cell_types_and_tissues.
metadata.txt). We identified human prostate lineage-specific experi-
ments by restricting the “species” field to “Homo sapiens” and the 
“title” (tissue or cell type) field by performing a string match of the 
following {“Prostate,” “prostate,” “LNCaP,” “DU145,” “PrEC”}. This 
resulted in a list of 1,086 prostate lineage ChIP-seq experiments. 
Then, we selected metapeaks from the “Homo_sapiens_meta_clus-
ters.interval” file that had been observed in at least one of the pros-
tate lineage experiments using the “exp.set” field. This resulted in a 
set of 82 TFs. We then filtered the peaks by mappability and kept 
only highly mappable peaks (as described above). We excluded any 
TF that was not in the initial set of 338 TFs (this removed ChIP tar-
gets that were not true TFs, lacked a known binding site, or did not 
have 10,000 total autosomal peaks in GTRD). Of the remaining TFs, 
we analyzed those with 1,000 highly mappable peaks on autosomes 
in prostate lineage experiments, resulting in 41 TFs. Twenty out of 
these 41 TFs overlapped the list of 108 differentially expressed TFs by 
RNA-seq of the PDX tumors. Note that the top 1,000 sites for each of 
the 41 TFs were different than in the same TFs of the 338 set because 
sites must meet the criteria of being derived from at least one experi-
ment involving prostate tissue or cell lines.

TFBS Selection from Other Sources
For AR we further considered 17,619 sites identified through ChIP-

seq by Pomerantz and colleagues (ref. 57; which overlapped 10.9% of 
the GTRD top 1,000 using bedtools), and 41,633 sites identified by 
Severson and colleagues (58) across four metastatic tumors (which 
overlapped 99.4% of the GTRD top 1,000). For ASCL1, we obtained 
11,124 ChIP-seq sites from Cejas and colleagues (ref. 9; which over-
lapped 60.9% of the GTRD 1,000). All of these site lists were lifted 
over from genome build GRCh37 to GRCh38. No mappability filter-
ing was applied so that all possible sites from these prostate experi-
ments and studies were considered.

Phenotype Lineage-Specific Gene Marker Selection
We selected 47 genes comprising 12 ARPC and 35 NEPC lineage 

markers established previously (4, 5, 59, 60) and confirmed by dif-
ferential expression analysis from PDX tumor RNA-seq data (Sup-
plementary Table S3). In tissues, AR and NE activities were measured 
on lineage-determinant signature gene’s mRNA expression (GSVA 
score; ref.  88). The 47 selected gene list comprises the majority of 
these signature sets of genes defining mPC characteristic phenotypes 
or phenotypic activities.

Gene Body and Promoter Region Selection
For individual gene body and promoter analyses, Ensembl BioMart 

v104 (hg38; ref.  103) was used to directly retrieve protein-coding 
transcript start (TSS) and end (TES) coordinates. For promoter region 
analysis, the window  ±1,000 bp relative to the TSS was considered. 
For gene body analysis, the region between the TSS and TES was 
considered. In the case of genes with multiple transcripts, analyses 
were limited to the longest transcript, resulting in 19,336 regions. In 
a downstream analysis of LuCaP PDX cfDNA, if any lines did not 
meet specific criteria in a region (including differentially open histone 
modification regions), that feature/region combination was excluded 
from analysis, leading to a variable lower number of regions considered 
based on the feature. These criteria included requiring at least 10 total 
fragments in a region for all fragment size analysis (see below) and a 
nonzero number of “short” and “long” fragments for the short-long 

ratio; short-long ratios less than 0.01 or greater than 10.0 were also 
excluded as outliers. For phasing analysis (see below), we also excluded 
amplitude components and thus NPS where individual components 
were 0, or where the ratio was less than 0.01 or greater than 10.0, indic-
ative of insufficient coverage. In the case of mean phased nucleosome 
distance, if no peaks were identified or the value in a region exceeded 
500 (indicative of highly irregular/sparse pileups also from low cover-
age), those regions were also excluded. Any region with no coverage in 
a line was excluded from all analyses. This resulted in gene lists that 
differed in numbers between genomic contexts and feature types.

cfDNA Fragment Size Analysis
Fragments were first filtered to remove duplicates and low-quality 

alignments (<20 mapping quality) and by fragment length (15–500 
bp). In individual genomic loci/windows, we computed the frag-
ment short–long ratio (FSLR) as the ratio of short (15–120 bp) 
to long (140–250 bp) fragments. We also calculated the mean, 
median absolute deviation (MAD; median median(| ( ) |)X Xi − ), and 
coefficient of variation (CV; � �/ , where σ  =  standard deviation, 
μ  =  mean) of the fragment length distribution for each selected 
window. The fragment size analysis code and implementation used  
in this study can be accessed at https://github.com/GavinHaLab/ 
CRPCSubtypingPaper/tree/main/FragmentAnalysis.

Nucleosome Phasing Analysis (TritonNP)
Fragments were first filtered to remove duplicates and low-quality 

alignments (<20 mapping quality) and by fragment length (nucle-
osome-sized: 140–250 bp). Next, we performed fragment-level GC 
bias correction utilizing the same preprocessing method defined in 
Griffin. A band-pass filter was then applied to the corrected cover-
age in each region of interest by taking the fast Fourier transform 
(FFT; scipy.fft v1.8.0; ref. 104) and removing high-frequency com-
ponents corresponding to frequency components  <146 bp before 
reconstructing the signal. This cutoff was chosen to ensure that 
periodic fit signal for downstream evaluation must come from the 
minimum possible internucleosome distance, thus excluding peak 
pileups that would not indicate an overall trend in nucleosome 
phasing. Local peak calling was then done on the smoothed signal 
to infer the average internucleosome distance or “phased nucleo-
some distance” by finding maxima directly. To quantify the clarity 
of overall phasing, we took the average frequency amplitude in two 
bands corresponding to stably bound, well-phased nucleosomes 
(180–210 bp) and a baseline (150–180 bp), with the former meas-
uring the strength of typically aligned nucleosomes and the latter 
giving a measure of the underlying signal strength not coming 
from either high-frequency noise or low-frequency shifts in total 
coverage. The ratio of these two amplitude averages forms the 
NPS. Because peak locations are assumed to be independent of 
copy-number alterations (CNA) or depth, and the NPS by virtue 
of being a ratio divides out any confounding DNA/depth variation 
between sites, both features are taken as agnostic of CNAs or vari-
able depth. Code and implementation of the method can be found 
at https://github.com/denniepatton/TritonNP.

ctDNA Tumor–Normal Admixtures and Benchmarking
Admixtures for evaluating benchmarking performance were con-

structed using 5 ARPC (LuCaP 35, 35CR, 58, 92, and 136CR) and 
5 NEPC (LuCaP 49, 93, 145.2, 173.1, and 208.4) lines mixed to 1%, 
5%, 10%, 20%, and 30% tumor fraction with a single healthy donor 
plasma line (NPH023, EGAD00001005343) for use in binary clas-
sification (50 admixes), and in mixtures of 1%, 3%, 5%, 10%, 20%, 
and 30% tumor fraction at ARPC:NEPC ratios, of 0.0, 0.1, 0.3, 0.5, 
0.7, 0.9, and 1.0 in all possible combinations (810 admixes) for 
mixture model evaluation. All admixes were mixed at  ∼25×  mean 
coverage, assuming 100% tumor fraction in post-mouse subtracted 
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PDX sequencing data. After extracting chromosomal DNA (chr1–22, 
X, Y) with SAMtools v1.14 (105) and removing duplicates with Pic-
ard (https://broadinstitute.github.io/picard/), SAMtools was used to 
merge BAM files. To evaluate the ULP-WGS performance, admixtures 
were then downsampled using SAMtools to the number of reads 
corresponding to 1× or 0.2×. During unsupervised benchmarking of 
each admixture, the healthy donor and the LuCaP line used in the 
admixture were excluded from the generation of feature distribu-
tions to ensure the model would not learn from the lines being inter-
rogated. The admixture pipeline used in this study can be accessed 
at https://github.com/GavinHaLab/Admixtures_snakemake.

Supervised Binary Classification of ARPC and NEPC
Binary classification of ARPC and NEPC subtypes using individual 

region and feature combinations was conducted using XGBoost 
v1.4.2 “XGBClassifier” implemented in Python with default param-
eters. Features included NPS and mean phased nucleosome distance 
(see Phasing analysis) in histone modification regions, promoters, 
and gene bodies; fragment size mean, short-long ratio, and CV (see 
Fragment size analysis) in histone modification regions, promoters, 
and gene bodies; central and window coverage (see Griffin analysis) in 
promoters, composite TFBSs, and composite differentially open chro-
matin regions identified through ATAC-seq; and max wave height 
(see Griffin analysis) in promoters. We applied stratified 6-fold cross-
validation where two ARPC samples and one NEPC sample were held 
out in each fold. This was repeated 100 times and performance was 
computed using AUC and 95% confidence intervals for each indi-
vidual feature and region combination. Code and implementation 
of the method can be found at https://github.com/GavinHaLab/ 
CRPCSubtypingPaper/tree/main/SupervisedLearning.

Tumor Fraction Estimation
Tumor fractions from patient plasma samples were assessed using 

ichorCNA (81) with binSize 1,000,000 bp and both GRCh37 and 
GRCh38 reference genomes. Default tumor fraction estimates reported 
by ichorCNA were used. See https://github.com/GavinHaLab/ 
CRPCSubtypingPaper/tree/main/ichorCNA_configuration for com-
plete configuration settings.

Phenotype Class Prediction Model (ctdPheno)
We developed a probabilistic model to classify the mCRPC phe-

notype (ARPC or NEPC) in an individual patient plasma ctDNA 
sample. This is a generative mixture model that is unsupervised—it 
does not train on the patient cohort of interest. However, the model 
accepts the preestimated tumor fraction from ichorCNA for the 
given patient ctDNA sample, as well as the precomputed ctDNA 
features values from the LuCaP PDX ctDNA and healthy donor 
ctDNA as prior information. For each patient ctDNA sample, it fits 
specific feature values against the pure PDX LuCaP models, shifted 
toward healthy based on the estimated tumor fraction. The expected 
feature values (mean μ and standard deviation σ) from each pheno-
type k for feature i were taken from the mean of LuCaP PDX samples  
(μi k, ) or taken from the mean of a panel of normals H (μi H, , male 
only, n = 14; see Human subjects: Healthy donor samples). Assuming 
a Gaussian distribution, feature values were shifted such that the 
shifted ��i k, , �� i k,  took the form:

� � � �� � �� �i k i k i H, , ,( )1  

� � � �� �� � �i k i k i H, , ,( )2 21

where α is the tumor fraction estimate for each test sample. In the 
final model, four features were used: composite open chromatin 
regions (central and window mean coverage) for specific pheno-
types (ARPC and NEPC) identified from the LuCaP PDX ATAC-seq 
analysis using Griffin (see Griffin analysis). For each feature i, we then 

found the probability that the observed sample came from a mixture 
of the tumor fraction–corrected Gaussian distributions, where θ  is 
the NEPC mixture weight:

p x p x k x ki ( | ) ( | ( | )� � �� � � �NEPC) + (1 ) ARPCp

The θ  parameter is estimated by maximizing the joint log-likeli-
hood L for a given patient sample:

� � �� � �
�

argmax ( | )L x

whereL x p x
i

i( | ) [ ( | )]� ��� ln

θ  has range [0,1], where higher values indicate an increased prob-
ability of the sample having an NEPC phenotype and was used 
as the NEPC prediction score metric. Code and implementation 
of the method can be found at https://github.com/GavinHaLab/ 
CRPCSubtypingPaper/tree/main/ctdPheno.

Phenotype Heterogeneity Prediction and Quantification 
(Keraon)

We developed an analytic model to directly estimate the contribut-
ing fractions of ctDNA from different mCRPC phenotypes (ARPC 
and NEPC) in individual patient plasma ctDNA samples. Like ctd-
Pheno, this model is unsupervised and does not require training on 
the patient cohort of interest. However, the model accepts the prees-
timated tumor fraction from ichorCNA for the given patient ctDNA 
sample, as well as the precomputed ctDNA features values from the 
LuCaP PDX ctDNA and healthy donor ctDNA as prior information 
(see Class phenotype prediction model).

As a preprocessing step, the model first computes the mean vector 
μi  and covariance matrix Σi for each anchor class i in K, under the 
assumption that each subtype (including healthy) fits a multivariate 
Gaussian distribution. Based on model constraints, K − 1 noncorre-
lated features fully specify the system, and so for ARPC:NEPC:healthy 
(K = 3) fraction estimation, we limited analyses to sets of two features 
of interest (F = 2).

Next, for each sample defined by some location in feature space v 
and estimated tumor fraction t, we first performed a change of basis 
to translate the sample’s location from feature space to class space, 
where each (not necessarily orthogonal) axis defined a single pheno-
type, and the origin represented pure healthy. If F = K − 1, this was 
accomplished by solving the determined, linear matrix equation for 
the shifted basis components X:

BX = S

where B = [�i HD�  − μHD] is the matrix defining all basis vectors from 
the healthy mean anchor to each phenotype mean anchor, and S is 
the vector from the healthy mean anchor to the sample of interest, 
S = v − μHD. If the system is overdetermined (F > K − 1), least squares 
was used to estimate the approximate solution. This step allows us to 
learn where in the class space the sample lies, which determined how 
estimates were evaluated:

1. Anchor space: If all basis components are positive, then the sample 
lies within the volume of order K − 1, which has vertices defined by 
the class means. The relative ratio of basis component magnitudes 

in the direction of each class is corrected by estimated tumor frac-

tion directly: BC X
X
ti HD

i
� �

�
.

2. Contra space: If all basis components are negative, then the sample 
lies within the volume of order K − 1, which forms a reflection of 
that formed by the class vertices about healthy. Component frac-
tions for each basis are computed to capture the inverse distance 

from the healthy anchor, such that BC X
X

ti HD
i

� �
�
��
1

1( )
.

https://broadinstitute.github.io/picard/
https://github.com/GavinHaLab/Admixtures_snakemake
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/SupervisedLearning
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/SupervisedLearning
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/ichorCNA_configuration
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/ichorCNA_configuration
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/ctdPheno
https://github.com/GavinHaLab/CRPCSubtypingPaper/tree/main/ctdPheno
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3. Extra space: If some basis components are positive but others are 
negative, the sample lies in some space outside of the anchor or 
contra space. In this case, only positive contributions are consid-

ered, such that BC X
X
ti HD

i
� �

�
 for all i such that Xi > 0.

The tumor fraction–normalized basis component estimates BC 
have a range [0,1], where values directly correspond to the total frac-
tion of each class in the sample.

The code and implementation of the method can be found 
at https://github.com/denniepatton/Keraon.

Analysis and Classification of Clinical Patient Samples
After establishing feature distributions using the LuCaP PDX 

lines and normal panel as described above, both models were 
applied to three clinical patient cohorts (see Human subjects for 
cohort information).

Binary Class Prediction. Initial scoring using ctdPheno was run on 
DFCI cohort I, consisting of 101 ULP-WGS samples with paired-end 
reads. Tumor fraction estimates predicted by ichorCNA and tumor 
phenotype classifications were obtained from the original study (25). 
A prediction score threshold of 0.3314 for calling NEPC was chosen 
because it offered an optimal performance for sensitivity (90%) and 
specificity (97.5%), where sensitivity is the true positive rate for iden-

tifying NEPC samples TP
TP FN�
�
�
�

�
�
� and specificity is the true negative 

rate for identifying ARPC samples TN
TN FP�
�
�
�

�
�
�. Alternative thresholds 

maximizing sensitivity and specificity were 0.1077, at which 95% 
sensitivity was achieved with a lower specificity of 93.8%, and 0.3769 
with a lower sensitivity of 81.0% but higher specificity of 98.8%. To 
compare these predictions with cfDNA methylation (cfMeDIP-seq) 
classification on the same plasma samples in DFCI cohort I, the 
concordance was computed between the ctdPheno NEPC prediction 
score and the cfMeDIP NEPC score obtained from the original study 
using a 0.15 threshold (25).

We then validated the model on two cohorts, beginning with the 
already published DFCI cohort II (76, 77, 81). We restricted our 
analysis to 11 samples from 6 patients with matched ULP-WGS and 
WGS data with paired-end reads. Tumor fraction estimates from 
ichorCNA were obtained from the original study (81). All samples 
were considered adenocarcinoma (ARPC) based on clinical histories 
(see Human subjects). The scoring threshold of 0.3314, determined 
from DFCI cohort I, was used for phenotype classification.

For the UW cohort, consisting of 47 samples from 27 patients 
(average 22.13× depth of coverage sequencing), ichorCNA was used 
to estimate sample tumor fractions as described above (GRCh38), 
whereas clinical phenotype was determined from clinical histo-
ries and expert chart review. We evaluated model performance on 
matched ULP-WGS and WGS data for unambiguous clinical pheno-
types of ARPC and NEPC. The chosen scoring threshold of 0.3314 
was used, and the fraction of correctly predicted ARPC (n = 26) and 
NEPC (n = 5) was computed. The remaining 16 samples with mixed 
histologies were not evaluated for performance in ctdPheno.

Phenotype Prediction and Proportion Estimation. Keraon does not 
require de novo threshold selection, so all clinical cohorts were treated 
as validation sets. Based on the MAE of 2.8% for estimating NEPC 
fraction garnered in the heterogeneous mixture benchmarking, this 
value was chosen as the minimum NEPC fraction threshold for call-
ing the presence of NEPC in WGS cohorts. The same tumor fraction 
estimates used by ctdPheno in ULP were utilized by Keraon, with 
standard classification conducted on pure clinical phenotypes. The 
16 samples with mixed phenotypes in the UW cohort were evaluated 
both qualitatively and based on the 2.8% threshold in the absence of 
quantifiable burden estimates from histories.

Statistical Analysis
Quantification of and statistical approaches for high-throughput 

sequencing data analysis are described in the Methods. When nonpara-
metric distributions (not normally distributed) of numerical values 
of a particular parameter in a population were compared (using box-
plots or in tables), the two-tailed Mann–Whitney U test (also known as 
the Wilcoxon Rank Sum test; scipy.stats.mannwhitneyu; ref. 104) was 
used to test if any two distributions being compared were significantly 
different, with Benjamini–Hochberg (statsmodels.stats.multitest. 
fdrcorrection; https://www.statsmodels.org) correction applied in 
multiple testing scenarios. All boxplots represent the median with a 
centerline, interquartile range (IQR) with a box, and first quartile –1.5 
IQR and third quartile + 1.5 IQR with whiskers. PCA was conducted 
in Python (sklearn.decomposition.PCA; https://scikit-learn.org).

Data Availability
The LuCaP PDX plasma ctDNA-seq data generated in this study  

can be accessed under NCBI BioProject accession PRJN900550  
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA90055). The pro-
cessed patient plasma data can be accessed at https://github.com/ 
GavinHaLab/CRPCSubtypingPaper/tree/main/Data. The raw sequenc-
ing data generated for the UW cohort are not publicly available 
because patients did not consent to genomic data sharing but are 
available upon reasonable request from the corresponding authors. 
This paper also analyzes existing, publicly available data, including 
LuCaP PDX RNA-seq (GSE199596) and ATAC-seq data (GSE156292). 
The CUT&RUN processed data can be accessed at https://github.
com/nielOnav/LuCaP_nucleosome_profile. Published data for DFCI 
cohort I was obtained from the authors (25) after establishing a data 
use agreement with the Dana-Farber Cancer Institute.

Any additional information required to reanalyze the data reported 
in this paper is available from the corresponding authors upon request.
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