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Abstract: This paper investigates the application of feature tracking algorithms as an alternative data
processing method for laser speckle instrumentation. The approach is capable of determining both
the speckle pattern translation and rotation and can therefore be used to detect the in-plane rotation
and translation of an object simultaneously. A performance assessment of widely used feature
detection and matching algorithms from the computer vision field, for both translation and rotation
measurements from laser speckle patterns, is presented. The accuracy of translation measurements
using the feature tracking approach was found to be similar to that of correlation-based processing
with accuracies of 0.025–0.04 pixels and a typical precision of 0.02–0.09 pixels depending upon the
method and image size used. The performance for in-plane rotation measurements are also presented
with rotation measurement accuracies of <0.01° found to be achievable over an angle range of ±10°
and of <0.1° over a range of ±25°, with a typical precision between 0.02 and 0.08° depending upon
method and image size. The measurement range is found to be limited by the failure to match
sufficient speckles at larger rotation angles. An analysis of each stage of the process was conducted to
identify the most suitable approaches for use with laser speckle images and areas requiring further
improvement. A quantitative approach to assessing different feature tracking methods is described,
and reference data sets of experimentally translated and rotated speckle patterns from a range of
surface finishes and surface roughness are presented. As a result, three areas that lead to the failure of
the matching process are identified as areas for future investigation: the inability to detect the same
features in partially decorrelated images leading to unmatchable features, the variance of computed
feature orientation between frames leading to different descriptors being calculated for the same
feature, and the failure of the matching processes due to the inability to discriminate between different
features in speckle images.

Keywords: laser speckle; feature tracking; feature matching; translation measurement; rotation
measurement; laser speckle velocimetry

1. Introduction

Laser speckle pattern correlation is a measurement technique using the translation and
decorrelation of recorded laser speckle patterns to infer information about the motion of the
illuminated object. This approach can be used to measure object translation, rotation, and strain [1,2],
and recently there has been increased interest in the technique for practical applications in industry
and robotics [3–8]. Laser speckle has been applied to robotic tool speed sensing [6] and positioning [8],
offering potentially higher accuracies (<0.1 mm) than using the robot joint encoders alone (typically
0.5–3 mm). Here, it offers a potentially lower cost and more widely applicable solution than the use
of expensive external laser trackers/interferometers, which can offer similar levels of positioning
performance ( 0.1 mm) but require a continuous line-of-sight [9]. In both industrial robotics and robotic
navigation using speckle odometry [4,7], the ability to simultaneously measure the in-plane rotation,
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something that is not currently possible using conventional correlation processing, would allow greater
positioning accuracy via reduction of Abbe errors, as well as additional capability. Hence, there is
interest in new approaches offering the potential for simultaneous measurement of both the translation
and rotation of the speckle pattern, and in the measurement performance achievable.

Practical implementations of in-plane rotation measurement utilising the rotation of laser speckle
patterns for the detection of in-plane rotation are few. Saleh [10] used the value of the correlation
coefficient to determine rotation; however, this is not practical in situations where decorrelation can
occur due to other factors such as translations. While Wang et al. [11] proposed an interferometric
speckle approach to in-plane rotation measurement, this is too complex and bulky for many
applications. The Fourier–Mellin transform image processing technique [12] can been used to detect
in-plane image translation and rotation simultaneously, and has been reported for use in robotic
vehicle odometry [13]. However, this approaches uses imaged surface features rather than laser
speckle patterns and hence requires features to be present, unlike laser speckle, which can be formed
from most surfaces. The Fourier–Mellin transform is also relatively slow, requiring a 2D FFT to ensure
translation invariance followed by image re-sampling to log-polar coordinates to find rotation angles
and a further transformation to remove the rotation before finding translation by correlation.

This paper investigates the application of an alternative data processing method for laser speckle
instrumentation that mirrors the human approach used in viewing speckle patterns, i.e., identifying
and tracking characteristic speckles present in both images to determine the speckle shift and rotation.
Although such feature detection and tracking is a well-developed concept in computer vision, their
application in laser speckle sensing is limited. To our knowledge, the only prior application of
feature matching with laser speckle patterns is the use of the scale invariant feature transform (SIFT)
algorithm [14] for personal identification card recognition [15,16] and a preliminary study of the
techniques presented here [17]. For application to identification card recognition [15,16], a feature
matching approach was used to ensure that speckle patterns can be matched to a database of speckle
patterns even in the presence of translations and rotations; however, no quantitative measurements
of these was necessary. While in [17] we presented preliminary quantitative measurements, we did
not explore fully the performance limitations in depth. Such feature tracking approaches are also
potentially well suited to speckle positioning sensing for industrial and robotics applications, allowing
not only the speckle translation to be determined but also the object rotation to be computed. A further
benefit is the potential for allowing data reduction, in approaches utilising a database of laser speckle
patterns, with the storage of these reference speckle patterns as a sequence of speckle descriptors rather
than full image data.

The remainder of this paper is structured as follows: Section 2 gives an overview of the feature
matching process. Section 3 details the methods used in this study, with a description of the some
common feature detection and description methods and the implementations that are used in this study
in Sections 3.1 and 3.2. In Section 3.3, the acquisition of the experimental laser speckle patterns used to
assess the methods is described, including a set of reference speckle patterns from different surface
finishes with applied translations and rotations. In Section 4, the applicability of the feature tracking
approaches to the processing of laser speckle images is investigated. The translation performance is
compared with conventional correlation-based speckle processing and rotation performance assessed.
Finally, in Section 5, an in-depth investigation is presented in which each stage of the feature tracking
process is examined individually with the aim of identifying the approaches most suited to laser
speckle pattern processing and areas requiring improvement and further development.

2. Overview of Feature Matching Process

The feature tracking process can be divided into three stages: feature detection, feature description
and matching, and calculation of the transformation describing the translation and rotation of the
speckle pattern between the two images. In the first stage, feature detection, points of interest are
automatically determined within the images to be matched. This is then followed by a feature
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description stage where some form of descriptor/identifier for each feature is calculated using the
surrounding pixels. As a preliminary step, in many methods it is often necessary to define a feature
orientation that is used to guide this descriptor calculation. These descriptors are then used to match
features between the images via the calculation of a distance measure. The final stage in the processing
is to use the features/speckles that have been matched between two images to determine the translation
and rotation of the speckle pattern, i.e., to find the transform, T, that relates a set of points P detected
in the first image to a set P′ in the second, given by [18]:

TP = P′ (1)[
cos θ, − sin θ, Ax

sin θ, cos θ, Ay

] x
y
1

 =

[
x′

y′

]
(2)

where Ax, Ay is the speckle translation, and θ is the rotation. This can be solved provided there are
sufficient matched points using the least squares approximation of the system to find the rotation angle
and translation at the (0, 0) image position, i.e., top-left corner:

x1, −y1, 1, 0
y1, x1, 0, 1
x2, −y2, 1, 0
y2, x2, 0, 1
...

...
...

...
xn, −yn, 1, 0
yn, xn, 0, 1




cos θ

sin θ

Ax

Ay

 =



x′1
y′1
x′2
y′2
...

x′n
y′n


. (3)

3. Methods

3.1. Feature Detection Methods

The first stage of the processing involves the identification of the speckles or features to be tracked.
In this work, some common feature detectors, with implementations available in the OpenCV [19]
library, were selected for investigation. These can be grouped into three related families of approaches:
intensity gradient approaches such as Harris corners [20], so-called accelerated segment tests (AST)
methods [21,22], and blob detection algorithms using difference of Gaussians [23]. A summary of the
feature detection methods used is shown in Table 1 along with the parameters used and details of their
implementation using the OpenCV python bindings. These values were determined by a trial and
error approach using example speckle patterns or by using suggested or typical values found in the
OpenCV documentation.

The Harris corner detector [20] and related Shi–Tomasi method [22] (also known by the acronym
GFTT—Good Features To Track) are based on a calculation of the local intensity gradients within
a neighbourhood of every pixel. Here the term corner is used to represent a feature with large intensity
gradients which for this application can be viewed as individual speckles provided the speckle size is
small, typically around 2–3 pixels in diameter. The intensity gradients within the neighbourhood of
a pixel can be described by the matrix:

M =

[
I2
x Ix Iy

Ix Iy I2
y

]
(4)

where Ix,Iy are partial derivatives of the pixel intensity in the x and y directions, and the summation is
performed over a circular window in the pixel neighbourhood that has been smoothed with a Gaussian
kernel. If both eigenvalues λ1 and λ2 of the matrix M are high, then the point is classified as a corner.



Sensors 2019, 19, 2389 4 of 24

However, calculation of the eigenvalues is computationally expensive, so the following is used as
a measure of the corner response [20]:

R = det(M)− κtrace(M)

R = λ1λ2 − κ(λ1 + λ2)

R = (I2
x I2

y − I2
x I2

y)− κ(I2
x + I2

y)

(5)

κ is the Harris free parameter, the value of which has to be determined empirically and is typically
0.04–0.15. R is positive in the corner region, negative in the edge regions, and small in flat regions [20].
Alternatively, Shi and Tomasi [22] proposed the criteria:

R = min(λ1, λ2) > λmin (6)

where λmin is a threshold determining whether a pixel is a flat region, an edge, or a corner.

Table 1. Summary of feature detection methods, OpenCV python implementation, and parameters used.

Detector Method Arguments

Harris corners
/Good features to Track (GFTT)
Implementation:
cv2.GFTTDetector

qualityLevel = 0.01
maxCorners = 5000
minDistance = 1
blockSize = 3
useHarris = True (Harris corners) False (GFTT)
Harris_k = 0.04

FAST
Implementation:
cv2.FastFeatureDetector

threshold = 70% image mean intensity
nonmaxSuppression = True
type = cv2.FastFeatureDetector_TYPE_9_16

AGAST
Implementation:
cv2.AgastFeatureDetector

threshold = 70% image mean intensity
nonmaxSuppression = True
type = cv2.AgastFeatureDetector_OAST_9_16

Difference of Gaussians (DoG)
(USURF detector stage)
Implementation:
cv2.xfeatures2d.SURF

hessianThreshold = 20
nOctaves = 1 (No image scaling)
nOctaveLayers = 3 (default)
upright = True (do not compute orientation of feature)

Orientated FAST
(ORB detector stage)
Implementation:
cv2.ORB

fastThreshold = 70% of image mean
edgeThreshold = 32 pixels
nFeatures = 5000 (set high to prevent capping)
scoreType = FAST_SCORE

Orientated FAST
(BRISK detector stage)
Implementation:
cv2.BRISK

thresh = 70% of image mean
octaves = 0 (single scale)

Orientated DoG
(SURF detector)
Implementation:
cv2.xfeatures2d.SURF

hessianThreshold = 20
nOctaves = 1 (No image scaling)
nOctaveLayers = 3 (default)
upright = False (compute orientation of feature)

The second class of detectors are the accelerated segment tests (AST) methods include the
FAST (Features from Accelerated Segment Test) detector [21] and the AGAST (Adaptive and Generic
Accelerated Segment Test) corner detector [24]. These operate using a simple concept based upon the
examination of pixels on a ring around the point of interest with a corner detected when more than
n contiguous pixels on the ring are all either significantly darker or brighter than the central point.
The ring can be a circle of 8, 12, or 16 pixels, and typically n = 9 for a 16 pixel ring [21]. Here both
methods were used with a 16 pixel ring. This process is then optimised using a machine learning
approach to generate an efficient decision tree [21]. The AGAST (Adaptive and Generic Accelerated
Segment Test) corner detector [24] modifies the decision trees to provide high performance for arbitrary
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environments without training. For both methods, the optional non-maximal suppression [21] was
applied to remove points describing the same corner, as this was found to have minimal impact on the
processing time of the feature detection stage whilst limiting the detected corners to those with the
best corner response. Many widely used combined feature detection and description algorithms, such
as ORB [25] and BRISK [26], use FAST-like detectors. The ORB algorithm uses an orientated version of
the FAST (oFAST) in the detection stage using the vector between the feature position and the intensity
centroid of the surrounding image patch to define the orientation. In BRISK, comparisons between the
gradients between long range pairs of points surrounding the feature are used.

An alternative to seeking corner features is to look for so-called blobs where the image is
segmented based upon intensity, colour, or texture. The commonly used combined feature detection
and matching algorithms Scale-Invariant Feature Transform (SIFT) [14] and Speeded-Up Robust
Features (SURF) [27] both use a Difference of Gaussians (DoG) approximation to detect blobs. However,
SURF uses a more efficient algorithm where the DoG can be approximated directly using a set of box
filters instead of repeatedly filtering the image with Gaussian filters at different scales. This together
with the use of integral images in the application of the box filters yields significantly lower processing
times. The SURF method also computes the orientation of feature using a pair of Haar wavelets [27].
This can be skipped for the so-called Upright SURF (USURF) method and both methods where tested.

3.2. Feature Description and Matching Methods

In the feature matching stage, the detected features must be identified and matched between
images by some form of feature descriptor. In this work, four combined detection and description
methods with available implementations in the OpenCV library were investigated for use with speckle
patterns: USURF [27], SURF [27], ORB [28], and BRISK [26]. A summary of the feature matching
methods used is shown in Table 2 along with the parameters used. Methods including options for
detecting features of different scales were disabled to speed computation, as no speckle scale change
detection is anticipated or required.

The SURF and USURF methods [27] use a descriptor calculated using an image patch
(20 × 20 pixels), rotated accordingly to the computed orientation for the SURF method. This square is
divided into a 4 × 4 grid of sub-regions, and in every sub-region the horizontal (dx) and vertical (dy)
Haar wavelet responses at 5 × 5 regularly spaced sample points are calculated. For each sub-region
a 4D descriptor vector v = (∑ dx, ∑ dy, ∑ |dx|, ∑ |dy|) is constructed based upon the underlying region,
giving a total feature descriptor length of 64 values. The USURF method omits the orientation step
and can maintain a robustness to rotation of about ±15° [27]. An extended form computes additional
sums by dividing the above sums into cases when dx,y < 0 and dx,y ≥ 0, giving an 8D vector for each
sub-region and a total feature descriptor length of 128 values.

The ORB (Orientated FAST and Rotated BRIEF) algorithm uses a BRIEF [28] (Binary Robust
Independent Elementary Features) like descriptor that constructs a bit string description of an image
patch using a series of binary intensity tests between pixels pairs in the neighbourhood of the feature.
The Rotated BRIEF descriptor introduced in ORB uses orientation information from the feature
detection stage to “steer” the pairs used and produces a bit string of 256 point comparisons taken from
an image patch size around the feature (default patch size of 64 × 64 pixels).

The final feature descriptor method investigated was BRISK (Binary Robust Invariant Scalable
Keypoints) this uses a modified BRIEF descriptor where the random pixel-pair selection has been
changed to an organised procedure with points positioned on concentric circles around the feature.
Long-range pairing are used for defining the orientation of features, and short-range pairings are
used for descriptor encoding, producing a bit string of 512 point comparisons from an image patch
surrounding the feature.

After the feature descriptors have been computed, a brute force matching algorithm that finds the
closest matching key-point descriptor in the second set is employed by trying each one and computing
the distance based upon either the L1-norm (sum of the absolute differences Σ|d1− d2|) or the L2-norm
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(sum of the squared differences Σ(d1 − d2)
2), where d1 and d2 represent the descriptor vectors to

be compared. Methods that use a binary descriptor, such as ORB and BRISK, use the Hamming
distance (the number of ones in the bitwise XOR comparison d1 ⊕ d2) for fast comparison between the
descriptors. It should be noted that the ORB and BRISK implementations in OpenCV use different bit
length descriptors as specified by the authors of these algorithms; the ORB algorithm uses a 256 bit
descriptor [25], while BRISK uses a 512 bit descriptor [26]. An additional filtering step can then be
used in an attempt to remove incorrect matches before the calculation of the transform by application
of a distance threshold above which matches are excluded. The level of this threshold was determined
by trial and error; however, appropriate thresholds can be chosen using the approach proposed later
in Section 5.5.3.

Table 2. Summary of feature description methods, OpenCV python implementation, and parameters used.

Matching Method Arguments

USURF

Detection: Difference of Gaussian
Description: 4D/8D Vector of Haar wavelet
sums
Implementation: cv2.xfeatures2d.SURF

hessianThreshold = 30–300
nOctaves = 1
nOctaveLayers = 3 (default)
extended = False (64 element descriptor)
extended = True (128 element descriptor)
upright = True
Distance measure = L1-norm
Distance threshold = 0.5

SURF

Detection: Difference of Gaussian
Description: 4D/8D vector of Haar wavelet
sums
Implementation: cv2.xfeatures2d.SURF

hessianThreshold = 30-300
nOctaves = 1
nOctaveLayers = 3 (default)
extended = False (64 element descriptor)
extended = True (128 element descriptor)
upright = False
Distance measure = L1-norm
Distance threshold = 0.5

ORB

Detection: orientated FAST
Description: rotated BRIEF (Binary 256bit)
Implementation: cv2.ORB

fastThreshold = 70% of image mean
edgeThreshold = 32 pixels
nFeatures = 5000 (set high to prevent capping)
scoreType = FAST_SCORE
nLevels = 1 (single scale)
scaleFactor = 1.2 (default)
firstLevel = 0 (default)
patchSize = 16, 32, 48, 64 (pixels)
WTA_K = 2 points
Distance measure = Hamming
Distance threshold = 30

BRISK

Detection: orientated FAST
Description: rotated BRIEF (Binary 512bit)
Implementation: cv2.BRISK

thresh = 70% of image mean
octaves = 0 (single scale)
patternScale = 0.43, 0.86, 1.29, 1.73 (16, 32, 48 & 64 pixels)
Distance measure = Hamming
Distance threshold = 60

3.3. Experimental Methods

To investigate the performance of the feature tracking approaches, experimental speckle patterns
were acquired using a speckle velocimetry sensor [6], consisting of a 658 nm fibre coupled diode laser
(FibreTec II FTEC2658) together with a camera (Ximea MQ013CG-ON, 1280 × 1024 pixels, 4.8 µm
pixel size) positioned at a distance of 150 mm from the illuminated surface. The laser output was
expanded to a spot of∼8 mm diameter, and as no imaging lens was used the resulting objective speckle
patterns had a speckle size diameter of∼4 pixels. The surface was mounted on a six degree-of-freedom
translation stage (ALIO Hybrid-Hexapod AI-HYBRID-HEX-60XY-15Z-56R) that could be used to apply
controlled translations and rotations.
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As different materials and surface finishes can result in speckle patterns with significantly
different appearances, the surface material used was varied. A cast aluminium plate (approximately
220 × 220 mm in dimension) was used to test continuous translations requiring longer displacements,
and additional data sets were acquired from samples prepared with different surface finishing
techniques and finished to different surface roughnesses. These samples consisted of a composite
set of surface roughness specimens (Robert & Co., Ltd., England). Each sample was 25 × 10 mm in
dimension, and the surfaces and resulting speckle patterns can be seen in Figure 1. Data sets consisting
of a stepped translation between 0 and 2.8 mm in 50 µm steps and stepped rotations between 0 and
360° in 5° steps were acquired for each sample. A summary of the experimental data sets acquired is
shown in Table 3 and are available from the Cranfield University data repository.

Rz =50μm

Turning Vertical
milling

Horizontal
milling

Rz =16μm

Rz =2.5μm

Rz =10μm

Rz =1.6μm

Rz =0.55μm

Lapping Grinding

Figure 1. Surface finish samples with various surface roughnesses Rz used together with a 250× 100 pixel
sub region of the resulting speckle pattern for each sample.

Table 3. Summary of experimental data sets.

Data Set Description

1: Continuous translation A set of 100 512 × 512 pixel speckle patterns from a cast aluminium
plate during a continuous linear translation with a velocity of
∼5 mm/s applied in the x-direction.
Used to assess translation performance.

2: Uncorrelated speckle patterns A set of 100 uncorrelated speckle patterns 512 × 512 pixel in size
from a cast aluminium plate with no translation or rotation applied.
Used for simulated translation/rotation tests.

3: Stepped rotation A set of 512× 512 pixel speckle patterns from a cast aluminium plate
with in-plane rotations applied between 0 and 360° in 0.5° steps.
Used to assess rotation performance.

4: Surface finishes: stepped translation A set of 1280 × 1024 pixel speckle patterns from the different surface
preparation samples shown in Figure 1 with a linear translation
between 0 and 2.8 mm in 50 um steps applied in the x-direction.
Used to assess detector and descriptor robustness.

5: Surface finishes: stepped rotation A set of 1280 × 1024 pixel speckle patterns from the different surface
preparation samples shown in Figure 1 with in-plane rotations
applied between 0 and 360°.
Used to assess detector and descriptor robustness.
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4. Initial Performance Assessment of Feature Tracking Approaches

An initial assessment of the performance achievable was conducted using the feature detection
and matching algorithms USURF, SURF, ORB, and BRISK, described in Section 3.2. These are combined
feature detection and description methods that were implemented in Python using the OpenCV
library [19], and the details are summarised in Table 2. In this initial assessment, the methods were
compared with the normalised cross-correlation approach commonly used for translation measurement.
Processing times and image size requirements were investigated, and the achievable rotational accuracy
and measurement range were assessed.

4.1. Translation Performance

In the first experiment, the cast aluminium plate was used as a surface with a continuous
translation in the x-direction at ∼5 mm/s applied. A set of 100 512 × 512 images were acquired
at 500 fps (Data Set 1, Table 3), and the resulting images were then processed using the methods
described in Table 2 to find the translation and rotation between consecutive frames. This was
compared to processing using a normalised cross-correlation to determine the translation between
frames, as is currently done in speckle velocimetry [4]. The results are shown in Figure 2, with the
x and y speckle shift for the feature tracking methods shown by the data points, and those using
the normalised cross-correlation method are shown by the solid and dashed lines for the x and y
components, respectively. In Figure 3, the difference between these two methods is shown. It can be
seen that there is good agreement between the normalised cross-correlation and feature tracking results
with the BRISK method performing best with differences of <0.02 pixels between the two. This is likely
due to the larger number of features matched using this method (see Table 4 for a comparison of the
number of matched features for each method).

0 10 20
frame number
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6

Pi
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hi

ft

USURF

Feature matched Ax Feature matched Ay NCC Ax NCC Ay

0 10 20
frame number

SURF

0 10 20
frame number

ORB

0 10 20
frame number

BRISK

Figure 2. Comparison between experimental speckle velocimetry data processed using the normalised
cross-correlation (NCC) and feature tracking methods. The speckle shift found using the NCC method
is shown by the solid and dashed lines for the x and y components, respectively. The feature tracking
results are shown as the data points, crosses, and dots for the x and y components, respectively.
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Figure 3. Difference between experimental speckle velocimetry data processed using the normalised
cross-correlation (NCC) and each of the feature tracking methods. Here the crosses and dots represent
the x and y components, respectively.
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To further assess the accuracy of the feature tracking approach, artificially shifted patterns where
generated using a set of uncorrelated speckle patterns (512 × 512 pixels) captured from different
physical positions on the aluminium plate (Data Set 2, Table 3). A window in each image of this set was
artificially translated by sub-pixel shifts, and the translation was calculated using the feature tracking
methods as above. Sub-pixel translations in 0.1 pixel increments was achieved by first magnifying the
image by a factor of 10, shifting the window and then de-magnifying via binning of the pixel intensities.
The results are shown in Figure 4, where the bias error or accuracy (calculated as the mean calculated
translation minus the applied translation) is shown for a range of simulated translations for the
feature tracking methods, together with those for the normalised cross-correlation (NCC) with 3-point
Gaussian peak fitting method for comparison. It can be seen that all methods including the normalised
cross-correlation exhibit pixel-locking effects [29]. The BRISK algorithm has pixel-locking effects of
∼1/20 of a pixel similar to those exhibited by the NCC reference method and to those previously
reported for correlation-based methods [29]. However, both SURF and USURF perform better than the
NCC in this respect with bias errors of <∼0.025 vs. ∼0.033 pixels for the NCC method. Both SURF
and USURF methods perform similarly as expected as they are essentially the same when there is zero
rotation present. The ORB method performs significantly worse than the other methods with large
bias errors of up to 0.2 pixels, suggesting a cause for the larger difference seen when comparing this
method with the NCC results in Figure 3. This may be due to the integer pixel location of key points in
the method as opposed to sub-pixel locations used in the other methods.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Simulated translation [px]

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

Bi
as

 e
rro

r [
px

]

USURF
SURF

ORB
BRISK

NCC

Figure 4. Accuracy of translation measurements made using the ORB, BRISK, USURF, and SURF
feature tracking methods, using artificially translated speckle patterns to show the remaining pixel
locking effect. The normalised cross-correlation with a 3-point Gaussian peak fitting results are shown
for comparison.

4.2. Rotation Performance

Next, the accuracy achievable for measurements of speckle pattern rotation was assessed
in a similar way using a sequence of speckle patterns recorded from the cast aluminium plate
(Data Set 3, Table 3). The surface was rotated at angles between 0 and 360 degrees in 0.5 degree
steps using the rotation capabilities of the stage (repeatability ±0.5 arc-second and 0.04 arc-second
resolution). The captured images were then processed as before, and the results are shown in Figure 5.
Here, (a) shows the measured versus applied rotation for the angles between 0 and 30°, (b) shows
the number of features matched versus the rotation angle for each of the methods. The final plots in
Figure 5c,d show the error in measured angle (i.e., the difference between the applied and measured
angles of rotation) plotted with differing y-axis limits. From this, it can seen that feature tracking
methods can be successfully used to measure rotation; however, there are significant differences in
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the performance of the different matching techniques. The SURF descriptors can be seen to perform
the worst, with the non-orientated version (USURF) failing first after ±5°. This could be expected,
as this method includes no orientation of the feature descriptor; however, it appears to fail much
sooner than the ±15° suggested in [27]. The orientated version (SURF) performs slightly better but
again fails after ±10°, while the BRISK method performs slightly better with measurements possible
up to ± 20°, and the ORB method is the best performing with reliable calculations of rotation over the
range ±25°. This can be explained by the number of successfully matched features, where the ORB
method has significantly more matches than the other methods at larger angles, as shown in Figure 5b.
At larger angles, with fewer matching features, the error can be seen to increase. The error in the
rotation angle increases from <0.02° at angles <5° to 0.2° at ∼20° before finally there are insufficient
points to solve the transform (Equation (3)) and no measurement is possible. In this measurement,
a distance threshold was applied as shown in Table 2 to remove incorrect matches and prioritise the
integrity of the results over potentially spurious measurements. At angles >30°, too few matches were
made, and no measurement could be made; however, relaxing the distance threshold measure led
to incorrect matches and spurious measurements and increased error even at lower rotation angles.
This suggests that higher accuracies at larger angles are possible if sufficient high-quality feature
matches can be found.
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Figure 5. Accuracy of rotation measurements made using the USURF, SURF, ORB, and BRISK feature
tracking methods, using experimentally rotated speckle patterns. (a) Measured rotation versus applied
rotation. (b) The number of matched features after application of distance threshold, described in
Section 4.2 and Table 2. Missing data points are where too few features were matched to successfully
calculate the transform. The remaining plots (c,d) show the measurement error, with (d) having the
vertical scale changed to show achievable accuracy.

4.3. Processing Time, Measurement Precision, and Image Size

In many applications, it is necessary to process the speckle patterns rapidly [4,6]; hence, often
only a small area or window of the available speckle pattern is processed. Similarly, to ensure
maximum correspondence between the speckle patterns to be matched, a smaller window is often
used with an offset between the window position in the two images [6]. The influence of changing
the size of this processed window on the processing time is summarised in Table 4, where the
results of processing Data Set 1 (continuous translation) and Data Set 3 (stepped rotations) are shown
using different size windows in the images. The processing times, especially at small window sizes,
are acceptable for many applications; for example, for speckle velocimetry an update rate of 50 Hz or
20 ms per frame pair is acceptable. For comparison an optimised implementation of the normalised
cross-correlation has processing times on the same CPU of 0.25 ms for a 128 ×128 pixel window and
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6.3 ms for a 512 × 512 pixel window; however, this provides no rotation information. Also shown
in Table 4 is the influence on the achievable measurement precision. Here the σAx , σAy , and σθ are
the standard deviations of the errors calculated via comparison with normalised cross-correlation
results and zero rotation for the translation measurements and by comparison with applied stage
rotation for the rotation measurements. It can be seen that, even at small window sizes, the methods
show good agreement; however, with significantly larger errors, especially for the ORB method.
This may be explained by the low number of matched speckles compared to the other methods.
However, the SURF method has a similar number of matches but only shows a slight increase in
the errors, perhaps suggesting a higher percentage of good or valid matches. For the rotating data
set, changing the window size had a significant impact due to fewer matches; with the ORB method,
using a 128 ×128 pixel window limits the measurement range to ±15° and increases the error in the
calculated rotation angle ∼×10 to ±0.2°, compared to the results shown in Figure 5 for a 512 × 512
image. Again, these results suggest that further investigation into optimising the number of matched
speckles and the number of valid matches is required to make performance improvements.

Table 4. Comparison of the measurement precision, the number of features matched (Nm),
and processing times using an Intel i5-4590 CPU (dt) for different window sizes. One standard
deviation errors (σAx , σAy , and σθ) are calculated for translation measurement via comparison with
normalised cross-correlation results and zero rotation, and for rotation measurements (σθ only) by
comparison with applied stage rotation.

Method Translation Rotation

(Image Size) σAx σAy σθ Nm dt σθ Nm dt
(px) (px) (°) (-) (ms) (°) (-) (ms)

USURF (128, 128 px) 0.06 0.08 0.04 52 3.7 0.22 22 5.0
SURF (128, 128 px) 0.08 0.09 0.05 25 6.8 0.09 16 7.1
ORB (128, 128 px) 0.27 0.28 0.16 28 1.0 0.37 12 1.0

BRISK (128, 128 px) 0.06 0.06 0.04 81 5.4 0.22 25 5.3

USURF (256, 256 px) 0.02 0.03 0.01 310 25.0 0.02 104 20.5
SURF (256, 256 px) 0.03 0.04 0.01 149 43.7 0.05 48 36.4
ORB (256, 256 px) 0.06 0.09 0.02 267 8.1 0.08 58 7.8

BRISK (256, 256 px) 0.02 0.02 0.01 504 36.9 0.06 141 35.4

USURF (512, 512 px) 0.01 0.01 0.00 1361 317.1 0.03 385 153.8
SURF (512, 512 px) 0.02 0.02 0.00 649 445.0 0.05 145 230.3
ORB (512, 512 px) 0.04 0.06 0.00 1384 191.6 0.08 255 104.1

BRISK (512, 512 px) 0.01 0.01 0.00 2333 430.0 0.03 472 280.2

5. Analysis of Individual Feature Tracking Stages

The initial investigations above suggest that the feature tracking method could potentially be
improved by optimisation of the number of features successfully matched. This would provide a larger
angular measurement range and lower errors, and potentially allow for smaller image sizes to be
used and reduced CPU processing load. To investigate this, an analysis of each individual stage of
the matching process was performed to determine the most appropriate methods for use with laser
speckle patterns and identify areas requiring improvements.

5.1. Analytical Methods

To allow a systematic investigation of the performance of the different feature tracking algorithms,
several methods are used throughout this analysis. To enable the investigation of the influence of
translation on the performance of the different methods, a process was developed to extract a set of
translation-corrected windows from a data set. In this way, any translation is removed and the same
speckles should be present in all windows, at the same location, with only inter-frame changes such
as decorrelation and sampling differences remaining. The procedure, shown in Figure 6a, was to
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initially extract a reference window from the first image in the set. Normalised cross-correlation [30]
together with Gaussian peak fitting [29] is then used to find the position of the same window in each
subsequent frame. This translation-corrected window is then extracted from the image to the nearest
whole pixel. The pattern translation in x and y is also recorded together with the correlation co-efficient
of the two windows overlaid, providing a measure of the speckle pattern decorrelation or change
with translation.

To similarly enable the investigation of the influence of rotation, a process was developed to
extract a set of translation-corrected windows from a rotating data set, as shown in Figure 6b. These
windows are centred upon the rotation and contain a consistent set of speckles, again with only
inter-frame changes such as decorrelation effects and sampling variations present. To achieve this,
each frame was first rotated digitally about an approximate centre-of-rotation by its known rotation
with respect to a reference frame as determined by the commanded stage rotation. Any remaining
translation or error in the centre-of-rotation estimate was then found using normalised cross-correlation
and Gaussian peak fitting, and finally a window about this refined centre-of-rotation in the original
frame was then extracted. Videos of these translation corrected windows for both translating and
rotating speckle patterns are available in the Supplementary Materials.

The third method used throughout is the use of proximity testing to find a set of matching
features between the translation-corrected windows generated using the methods described above.
In this proximity test, shown in Figure 6c, the positions of features between the reference window
and subsequent windows are compared, with a matching feature said to be found if there is a feature
within a ±1.5 pixel radius. This ensures that the same features in the two images are being compared
and allows features to be matched in a way that is independent of the performance of any of the
matching scheme described in Section 3.2. The small radius used allows features to be matched
even if the feature detector has marked a slightly different position due to camera pixel sampling
variations or image noise and allows for consideration of sub-pixel errors introduced due to the integer
pixel limitation in locating the window. A similar approach is used to match features in the rotating
windows, although here the features will not have the same positions in the windows due to the
rotation. Hence, the feature positions are first rotated by the known angle around the centre of the
window to find their position in the reference window frame before the proximity test above is applied.
Additionally, a circular mask is implemented to remove features in the corners of the windows, which
are not always present due to the rotation. This is implemented by excluding features lying outside of
a defined radius from the centre of the window from the analysis.

a) Translation-corrected 
window generation 
(Translating data sets)

Select reference
window (win0)

For each translated
frame (1..N):

Set of translation corrected
windows containing same 
speckles

Normalised
cross-correlation

Guassian peak fit

Extract shifted
window (winN)

b) Translation-corrected window
generation (Rotating data sets)

Select reference window (win0)

For each rotated frame (1..N):

Set of translation corrected
windows centred on rotation

Extract window around CoR

Rotate by applied angle to 
reference coordinate frame

Rotate CoR location to original
 coordinate frame

Find centre of rotation (CoR):
(Normalised cross-correlation
 & Gaussian peak fit)

c) Proximity test matching

For each feature in win0:

Calculate distance to
test features

Reference features
from win0

Test features
from winN

Find closest feature

Rotate test feature positions 
to reference frame

(Rotating windows only)

Check distance ≤1.5 pixels

Set of proximity
matched features

Figure 6. Flow diagrams showing the analytical methods used to investigate the performance of feature
tracking algorithms. (a) The generation of translation correction windows containing common speckles
for translating data sets. (b) The generation of translation correction windows from rotating data sets.
(c) The proximity test method of matching speckles between windows.
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5.2. Feature Detection Speed

Initially the speed of the detectors was investigated, as this is the critical parameter for application
in manufacturing and robotics, where high speed processing is essential. Data Set 2 (Table 3) was
processed using the different feature detection methods described above, and the results are shown
in Table 5. Here it can be seen that the accelerated segment test type detectors, such as the FAST and
AGAST, are the fastest. The additional orientation calculations in methods such as the orientated FAST
methods used in ORB and BRISK, and the DoG/SURF detectors, can be seen to increase the processing
time significantly, with the ORB detector approach performing the best in terms of processing speed.

Table 5. Average processing time per frame on an Intel core i5-4590 CPU for various methods of feature
detection together with mean number of features detected for different image sizes.

Method Mean Processing Time Mean Number of Features

(Image Size) (ms/frame) (-)
(128 × 128) (256 × 256) (512 × 512) (128 × 128) (256 × 256) (512 × 512)

Harris corners 0.39 1.95 8.51 181 547 1552
GFTT 0.55 2.63 11.44 648 2537 5000
FAST 0.11 0.41 1.84 274 1138 4636

AGAST 0.29 1.15 5.16 294 1220 4965
Difference of Gaussian (DoG) 0.68 3.14 14.24 98 499 2230

Orientated FAST (ORB) 0.22 0.78 3.13 274 1138 4558
Orientated FAST (BRISK) 1.33 7.81 43.44 67 681 3826
Orientated DoG (SURF) 1.32 6.25 26.91 98 499 2230

5.3. Feature Detection Robustness

The second measure used to assess the suitability and performance of the different feature
detection methods is the robustness—the ability to detect the same feature/speckle in multiple frames
despite frame-to-frame variations in the recorded speckle pattern. Such variations may exist due to
a number of reasons: changing speckle shapes/intensities due to the decorrelation of the speckle field
due to object translations and rotations, differences in the sampling of the speckle pattern at the detector,
changing illumination intensity due to laser power fluctuations, and the addition of random camera
noise. The robustness Rdetect can be described by the ratio, Rdetect = Nm/N0, i.e., the proportion of
features that are detected in both frames, where Nm is the number of feature detected/matched in both
windows, and N0 is the number originally detected in the reference image/window. The robustness
of the detector will be important to ensure that the maximum number of features can be matched
for a given image size, allowing for increased measurement range and accuracy, and to minimise
computation cost in the description and matching stage where excess calculations will be required if
features are not detected similarly between frames.

The detector robustness to translation was assessed using Data Set 4 in Table 3—a sequence of
50 µm stepped translations between 0 and 2.8 mm for various surface finishing techniques and surface
roughness resulting in speckle translations in the x (horizontal) image direction of 0 to ∼1200 pixels.
Initially, a set of translation-corrected windows are extracted from each data set using the method
described in Section 5.1. A window size of 128 × 960 (width, height) pixels was used to maximise the
number of features present in the windows, while also allowing the full range of translations in the
horizontal direction to be investigated. Next, features are detected in each window using the methods
shown in Table 1, and these are then compared to the features found in the reference window using
the proximity matching approach (see Section 5.1) to determine if the same feature is detected in both.
The detection ratio for a given pattern translation can then be calculated.

The results are shown in Figure 7 plotted versus speckle translation for a subset of the surfaces
shown in Figure 1. Here, the ORB, Brisk, and SURF detectors have been omitted for clarity, as these
are essentially orientated versions of the FAST and DoG methods and give similar or identical results.
All of the surfaces showed similar results (see Supplementary Materials for plots for all surfaces) with
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a large drop in the number of features being detected in both windows as the translation and pattern
decorrelation increases. The AST-like detector methods (FAST and AGAST) consistently perform the
best throughout all samples with the exception of surfaces finished by turning where all methods
performed comparably. Typically the detector robustness drops to 25–30% after a ∼500 pixel shift,
which represents a pattern correlation co-efficient of C ≈ 0.6 (where C = 1 is a perfect correlation and
C = 0 indicates a completely decorrelated speckle pattern).
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Figure 7. Detector translational robustness plotted against measured speckle translation for a selection
of surface treatments shown in Figure 1. (a) Turning Rz = 50µm, (b) horizontal milling Rz = 16µm,
(c) flat lapping reaming Rz = 1.6µm, and (d) vertical milling Rz = 16µm.

A similar approach was used to investigate the robustness of the detector to rotating speckle
patterns. This was assessed using Data Set 5 (Table 3) consisting of stepped rotations of 5° from 0 to
360° for each of the surfaces in Figure 1. This data was processed in a similar way to the translating
speckle patterns above, using circularly masked windows centred upon the rotation and the modified
proximity test, where the image coordinates of each detected feature are first rotated to the reference
image’s coordinate-frame before matching. The results, as shown in Figure 8, show that, as with
translation, the fraction of features detected in both frames drops rapidly with rotation of the pattern,
reaching 50% by ∼12° and 10–20% by 90°. Again, the AST-like detectors appear most consistent
in detecting the same features. Interestingly, there is a slight peak in the detection at 180° rotation,
suggesting that the sampling grid of the camera pixels may have some influence on which features are
identified in the speckle pattern. Similar plots of detector robustness to translations and rotations for
the other surface samples shown in Figure 1 can be found in the Supplementary Materials.
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Figure 8. Detector rotational robustness plotted against rotation angle for a selection of surface
treatments shown in Figure 1. (a) Turning Rz = 50µm, (b) horizontal milling Rz = 16µm, (c) flat
lapping reaming Rz = 1.6µm, and (d) vertical milling Rz = 16µm.

Figure 9 shows some examples of a translation- and rotation-corrected speckle pattern taken
from the horizontal milling Rz = 2.5µm sample, to illustrate the changes in the pattern with rotation.
From this, it can be seen that some features/speckles are present throughout the rotation (indicated
by Label A and dashed connecting lines in Figure 9). However, some speckles also appear to change
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significantly, e.g., the cluster of speckles highlighted by the ellipse/Label B, where some speckles
fade/vanish at higher rotations. Some of these differences may be explained by the different sampling
of the pattern and the interpolation used to remove the pattern rotation to make this comparison.
However, an optimised feature detection stage would ideally select these stronger features to ensure
robustness to rotational changes. Clearly, an improved form of feature detection that is robust to
decorrelation of the speckle pattern due to translations and rotations is required.
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Figure 9. Rotation- and translation-corrected speckle patterns taken from the horizontal milling
Rz = 2.5µm sample at various rotation angles showing the change in the pattern with rotation. Label
A (shown by connecting lines) shows a fixed pattern of speckles identifiable throughout, and B (ellipse)
shows a group of speckles that appear fade/vanish at higher rotations.

5.4. Feature Description Speed

The processing time required for the calculation of the descriptor for each of the different feature
matching methods described in Table 2 was investigated using Data Set 2 (Table 3). The results are
shown in Table 6, where the average times taken to compute descriptors for 1000 features are listed.
Here it can be seen that the computation of the ORB descriptor is significantly faster than for the
other methods. Both USURF and BRISK have comparable processing times; however, USURF takes
no account of the feature orientation. SURF is the slowest descriptor to compute due to the need to
compute a rotated grid around the feature. It can also be seen that the descriptor options (see Table 2),
descriptor length (USURF and SURF), and patch size (ORB and BRISK) have relatively little influence
on the processing time requirements.

Table 6. Average processing time per feature on an Intel core i5-4590 CPU for various methods of
feature description.

Method Description Time
(ms per 1000 Features)

USURF (length 64 descriptor) 14.9
USURF (length 128 descriptor) 15.7

SURF (length 64 descriptor) 34.1
SURF (length 128 descriptor) 34.8

ORB (patchSize = 16) 1.5
ORB (patchSize = 32) 1.5
ORB (patchSize = 48) 1.5

BRISK (patchSize = 16) 12.2
BRISK (patchSize = 32) 13.8
BRISK (patchSize = 48) 15.8
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5.5. Feature Matching Robustness

Similar to the above analysis for detectors, the robustness of the different feature matching
methods was investigated. This will again be important to minimise computation cost and allow
reliable measurement with smaller images and hence fewer features. However, when considering the
overall robustness, there are three issues: (1) the robustness of the orientation calculation used to guide
the descriptor calculation, (2) the robustness of the calculated descriptor to changes in the recorded
speckle pattern, and (3) the discrimination between valid matches and random feature pairs. These
will result in either a failure to match or incorrect matches and will reduce the measurement range and
accuracy achievable. These are discussed in the following sections.

5.5.1. Orientation Robustness

The first factor that will influence the overall performance of the description and matching
stage is the robustness of the orientation calculation used to guide the descriptor. If the orientation
angle is not repeatably calculated as the speckle pattern translates, rotates, and decorrelates, then the
descriptors calculated will be different even for an identical speckle, resulting in unsuccessful matching.
To investigate this, a set of matching features present in two translation-corrected windows can be
found using the proximity test method described in Section 5.1. The descriptors are then calculated for
these points using the different approaches detailed in Table 2, before being matched using the brute
force matching method [19] and the appropriate distance measure. The results of this process can then
be divided into three subsets: features matched successfully (‘good’), features matched incorrectly
(‘bad’), and features that failed to match (‘failed’), as determined using the proximity test described in
Section 5.1. The differences between the orientation angles calculated for the same feature in different
windows (after correcting for any known image rotation) can then be examined. The results can be
seen in Figure 10, where the differences in calculated orientation for the same feature between the
two windows are shown as histograms for the different methods (excluding the USURF method in
which no orientation calculation is performed) and the flat lapping reaming (Rz = 1.6µm) stepped
rotation data set. Here, the number of features that failed to match or that matched incorrectly are
shown stacked as red and orange bars, while successfully matched features are shown in green. Similar
results are seen for the other surface finish samples and for translating samples.
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Figure 10. Histogram showing the numbers of features successfully matched (good), those incorrectly
matched (bad), and those that failed to match (failed) versus the difference in the calculated feature
orientation (after correction for applied rotation). Results shown here are for the stepped rotation data
set using the flat lapping reaming (Rz = 1.6µm) surface finish; however, similar results are found for
other surfaces.

From these results it can be seen that features that matched successfully all have differences in the
calculated orientation of <25°, while bad or unmatched features have orientation differences that are
more widely distributed. Although the histograms show the combined results of all rotation angles
and hence show large numbers of bad and failed matches, it was also observed that even at small
translations and rotations a significant number of features are failing to match. This is shown in Table 7
where the percentages of features that were successfully matched, incorrectly matched and failed to
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matched are shown for a 100 pixel translation and 10° rotation. Not all of these failures can be attributed
to the miscalculation of the orientation angle; however, as no features are successfully matched when
the difference in the calculated feature orientation is >25°, the robustness of the orientation calculation
can be defined by the ratio Rorient. = N<25°/N0, where N<25° is the number of features with the
difference in calculated orientation between the two windows of <25°, and N0 is the number of
matching features found by the proximity test. The values of Rorient. are shown in Table 7. Also included
are similar results for the USURF method, which does not perform any orientation calculation but
rather assumes a fixed feature orientation, so Rorient. = 1. However, it can be seen that USURF matches
significantly more features than the SURF method, and this highlights the influence of this failure
mode and suggests that, in applications where only small rotations are expected, using an unorientated
method may be preferable. However, for larger rotations, the calculation of the orientation will be
an essential step (see Section 5.5.2 on descriptor robustness below). Figures 11 and 12 show the change
in Rorient. with the translation and rotation of the speckle pattern, respectively. Similar plots for the
other surfaces can be found in Supplementary Materials. From this it can be seen that the number of
matchable features will drop rapidly and that the three methods of calculating the orientation perform
generally similarly with some differences between the speckle patterns recorded from different surface
finishes. Methods of improved orientation calculation, as defined by Rorient., would allow greater
numbers of matching features and an extended measurement range and is the second area identified
for future improvement.

Table 7. Percentage of features matching successfully (good), those incorrectly matched (bad),
and those that failed to match (failed) for the different descriptor methods, a 100 pixel translation,
and a 10° rotation. Results shown here are for the flat lapping reaming (Rz = 1.6µm) surface finish.

Method Translation 100 Pixels Rotation 10°

%good %bad %failed Rorient %good %bad %failed Rorient

USURF 1 89 2 9 1.0 40 23 38 1.0
SURF 46 21 33 0.77 26 30 44 0.62
ORB 56 13 31 0.81 48 18 34 0.76

BRISK 68 9 23 0.79 49 18 33 0.72
1 No orientation calculation in the USURF method, hence Rorient = 1.0.
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Figure 11. Orientation robustness plotted against measured speckle translation for a selection of surface
treatments shown in Figure 1. (a) Turning Rz = 50µm, (b) horizontal milling Rz = 16µm, (c) flat
lapping reaming Rz = 1.6µm, and (d) vertical milling Rz = 16µm.
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Figure 12. Orientation robustness plotted against rotation angle for a selection of surface treatments
shown in Figure 1. (a) Turning Rz = 50µm, (b) horizontal milling Rz = 16µm, (c) flat lapping reaming
Rz = 1.6µm, and (d) vertical milling Rz = 16µm.

5.5.2. Descriptor Robustness

The second issue to consider is the robustness of the calculated descriptor, i.e., the ability of the
descriptor to match features even in the presence of small changes to the speckle pattern. Such changes
may result from rotations, translations, and the associated decorrelation of the pattern along with
changes in the spatial sampling of the speckle field. To investigate the descriptor robustness to
translational changes, a set of translation-corrected windows was again extracted from the stepped
translation data (Data Set 4, Table 3). Features were then detected in the reference window with
all features within a 32 pixel border region discarded to ensure descriptors using image patch sizes
surrounding the feature of up to 64× 64 pixels could be calculated. The descriptors were then calculated
at the same positions and with the same orientation, in the reference window and subsequent shifted
windows, using the different approaches detailed in Table 2. The brute force matching method [19]
was then applied using an appropriate distance measure. This method ensures that the descriptor
comparison is independent of orientation calculation and that there are sufficient matchable features
present between windows. The resulting matches are then validated by a proximity test, and the

descriptor matching robustness is calculated as Rdescrip. =
Nm

N0
, where Nm is the number of successfully

matched features, and N0 is the number of features originally found. The results are shown in Figure 13
for a selection of surface finishes (see Supplementary Materials for other surfaces). Here it can be seen
that the robustness reduces with increasing translation, with the best performing method ORB having
only approximately 50% of features matched after 500 pixels translation. The USURF method is the
next best performing, and both BRISK and SURF perform similarly. The cause of the unorientated
version of the SURF descriptor performing better than the orientated version is probably due to the
influence of ‘bad’ matches, which is discussed further in Section 5.5.3.

A similar method was applied to investigate rotational robustness. A set of circularly masked
translation-corrected windows centred upon the rotation were extracted from the stepped rotation data
(Data Set 5, Table 3). Features are then detected in the reference windows inside a circular region of
radius 360 pixels, and the descriptors are calculated. The co-responding features and their descriptors
in the rotated windows are then found by first rotating the key-point coordinates by the known stage
rotation and adjusting the key-point orientation value accordingly, before calculation of the descriptor.
These are then matched and validated, and the robustness is calculated as before, with the results
shown in Figure 14 for a selection of surface finishes (see Supplementary Materials for other surfaces).
Again, the ORB method performs the best; however, the proportion of successfully matched features
drops rapidly with an increasing rotation angle. There is a slight increase at 180° rotation when the
spatial sampling of the speckle is effectively the same but flipped. The asymmetry in the robustness
for some samples can be explained by lower levels of in-plane error motion of the stage at these
rotations, as observed in the process of extracting the translation-corrected windows. This leads to less
decorrelation in the pattern and hence better matching performance. The SURF and BRISK methods
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again both perform similarly, while the USURF method, having no feature orientation calculation,
unsurprisingly performs the worst, with the proportion of matched features falling to ∼10% by the 15°
operating angle quoted by the authors [27].
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Figure 13. Descriptor translation robustness plotted against measured speckle translation for a selection
of surface treatments shown in Figure 1. (a) Turning Rz = 50µm, (b) horizontal milling Rz = 16µm,
(c) flat lapping reaming Rz = 1.6µm, and (d) vertical milling Rz = 16µm. Here, the USURF & SURF
methods use the standard descriptor length of 64 values, and ORB and BRISK are using 32 × 32 pixel
patch sizes.
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Figure 14. Descriptor rotational robustness plotted against applied rotation for a selection of surface
treatments shown in Figure 1. (a) Turning Rz = 50µm, (b) horizontal milling Rz = 16µm, (c) flat
lapping reaming Rz = 1.6µm, and (d) vertical milling Rz = 16µm. Here, the USURF & SURF methods
use the standard descriptor length of 64 values, and ORB and BRISK are using 32× 32 pixel patch sizes.

5.5.3. Descriptor Discrimination

The final consideration is the discrimination of the descriptor, i.e., how the typical descriptor
distance (L1-norm, L2-norm, or Hamming distance) between a pair of matching features compares
to the distance between an incorrectly matched pair and can be used to explain the results above.
If the typical distance for such a ‘bad’ match is not far from or overlaps with that of a valid match,
then the matching process is likely to fail, reducing the usable information and hence requiring
more features/larger image sizes and more processing overhead. As the speckle pattern decorrelates
with displacement and/or rotation, the distances between valid matches are also likely to increase.
To investigate this, the distances of successfully matched pairs (as determined using the proximity
testing method above) were compared with the distances of ‘bad’ matches resulting from matching
1000 features with a set of uncorrelated features. The results are shown in Figures 15 and 16 for varying
translations and rotations, respectively. Here, the shaded bands show the 1σ (standard deviation) and
3σ bands around the mean distance of the ‘bad’ matches, and the lines show the 1σ and 3σ bands
around the mean distance of successfully matched features. The greater the separation between these
two bands, the greater the discrimination of the descriptor and the higher the proportion of successfully
matched features.
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These results help to explain the descriptor robustness results of Figures 13 and 14 and the initial
performance tests in Section 4. Methods having a greater numbers of matches with distances below
the shaded band will result in fewer bad matches and more successful matches. The ORB method
has the greatest separation/least overlap between the bands for both translations and rotations and
likewise has the best overall descriptor robustness and measurement range. The USURF method
performs similarly to the ORB method for translations, but poorly for rotations, where it can be
seen that the valid match band quickly increases to above that of a random match. The orientated
version SURF and the BRISK method show similar separations between the random and valid match
bands, and have a similar performance in terms of descriptor robustness. The selection of the distance
threshold described in Section 3.3 that is applied to remove incorrect matches can be guided by these
plots, with the threshold set to exclude 99.7% of ‘bad’ matches, i.e., the lower limit of the shaded 3σ

band in Figures 13 and 14. For example, a distance threshold of 0.5 was used for the USURF and SURF
methods, while the threshold found using this discrimination analysis would be 0.6.
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Figure 15. Descriptor discrimination for translation of the horizontal milling Rz = 16µm sample.
The shaded bands show the 1 and 3 standard deviation spread in the descriptor distances for ‘bad’
matches. The lines show the 1 and 3 standard deviation spread in the calculated distances for valid
matches after translation.

Also shown in Figures 15 and 16 are the results of using different descriptor options or variants.
For the USURF and SURF methods, the ‘extended’ option allows the calculation of a longer (128 versus
64 value) descriptor. Although the use of the 128 value descriptor increases the level of the ‘bad’ match
band, it does not appear to increase discrimination, as the valid match band also increases and the
intersection of the two remains approximately fixed. Therefore, there seems to be no advantage in
using the extended descriptor for speckle pattern processing. The ORB and BRISK methods both allow
the image patch used to calculate the descriptor to be varied in size (via the ‘patchSize’ option for
ORB and ‘patternScale’ option for BRISK). In Figures 15 and 16, the results of using a 16 ×16 and
32 × 32 pixel patch are shown. For the ORB method, moving from 16 ×16 to 32 × 32 pixels raises and
narrows the ‘bad’ match band, and it also narrows the valid match band, increasing the discrimination.
Larger patch sizes of 48×48 pixels and 64× 64 pixels led to further but less pronounced improvements,
but are not shown here for clarity. However, for small image sizes, using a large patch size leads to
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excessive feature loss in the image border regions where the descriptor can no longer be calculated;
hence, a patch size of 32 pixels is recommended. For the BRISK method, the influence of the patch size
was less pronounced, with only a slight narrowing of the bands but no increase in discrimination.
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Figure 16. Descriptor discrimination for rotation of the horizontal milling Rz = 16µm sample.
The shaded bands show the 1 and 3 standard deviation spread in the computed descriptor distances
for ‘bad’ matches. The lines show the 1 and 3 standard deviation spread in the calculated distances for
valid matches after rotation.

5.5.4. Assessment of Overall Feature Matching Robustness

The calculation of the three measures described above—orientation robustness, descriptor
robustness, and descriptor discrimination—offer a quantitative means of assessing the performance
of a feature matching algorithm for laser speckle processing. They also highlight the main failure
modes: failure in the orientation calculation stage and false or ’bad’ matches due to poor descriptor
discrimination. From this, it can be seen that an improved description method is desirable—especially
to improve the rotation measurement range, which is currently limited both by poor feature orientation
robustness and poor descriptor discrimination at angles > 25°.

6. Conclusions

The potential of feature tracking approaches for applications in laser speckle sensing has been
investigated, and the performance has been shown to be comparable to that of the cross-correlation
processing conventionally used in laser speckle instrumentation. Comparison of experimental speckle
images processed using normalised cross-correlation (NCC) and 3-point Gaussian peak fitting show
that feature tracking approaches have good agreement with the correlation-based processing with
errors between 0.01 and 0.2 pixels for the four methods investigated. An investigation of bias errors
also shows a translation accuracy similar to the normalised cross-correlation approach, with a peak
bias error/pixel-locking of ∼0.033 pixels for the NCC method, ∼0.04 pixels using the BRISK method,
and 0.025 pixels for the USURF and SURF methods, which is better than that of the NCC method.
The ORB method alone performs worse, with peak errors of 0.17 pixels due to the integer pixel location
of key points in the method, as opposed to sub-pixel locations for the other methods, something which
can easily be modified in a practical implementation. The image size used, and hence the number of
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features found, was shown to influence both processing time and precision, with a standard deviation
of the error between 0.02 and 0.09 pixels for a 256 × 256 image size and processing times from 8 ms
(ORB) to 37 ms (BRISK), which are acceptable for many applications.

The main advantage of the feature tracking approach in comparison to cross-correlation-based
processing is in the simultaneous measurement of image rotation. The achievable performance
was assessed with experimental speckle patterns acquired with a known stage rotation with
errors of <0.01° shown to be achievable over a limited angular range of ±10°. Of the feature
matching methods tested, the ORB method performed best, allowing for reliable measurements
over ±25°. The measurement range and error level was also shown to be limited by the number of
successfully matched features, with a typical standard deviation of the error between 0.02 and 0.08° for
a 256 × 256 image size.

The results of this initial investigation suggest that increasing the number of successfully matched
features is critical to allow increased measurement range and lower uncertainty as well as to allow faster
processing using smaller images. An in-depth analysis of the feature detection and description stages
was conducted (Section 5) to identify the most suitable feature tracking methods for use with laser
speckle patterns, and to identify areas requiring future improvement. As part of this, reference data
sets have been acquired with controlled rotation and translations applied by motion stages. Speckle
images were acquired from a variety of surface material finishes and different surface roughnesses
to allow performance assessment with a variety of different speckle pattern appearances. These are
available for the testing of new feature tracking algorithms tailored for laser speckle pattern processing.

Finally, quantitative approaches of assessing feature tracking algorithms have been described.
A quantitative means of assessing feature detection methods in terms of detector robustness, Rdetect,
has been described and used to assess the different methods investigated in this study. Here Rdetect.
is the proportion of features detected both before and after a speckle pattern translation or rotation
and the resulting pattern decorrelation and sampling differences. All methods tested show large
losses in features when undergoing translation or rotation, with the best performing feature detection
methods being those based upon accelerated segment tests (e.g., FAST and AGAST). These methods
show Rdetect. dropping to 25–30% after a ∼500 pixel translation and a pattern correlation co-efficient of
C = 0.6. For rotations, Rdetect. drops to 50% by ∼12° and 10–20% by 90°. Future work should look at
developing more robust feature detection methods to increase the proportion of features available for
matching. This will allow measurements without processing excessive numbers of features and/or
avoid the requirement for larger image sizes, allowing shorter processing times.

Similarly, three measures of assessing the feature description and matching methods have been
described. The feature orientation robustness Rorient. is the proportion of features whose orientation is
computed to within 25° despite speckle pattern translation or rotation and decorrelation. This feature
orientation angle is used in the calculation of the descriptor, and it was shown (Section 5.5.1) that
successful matching requires that this angle is computed to <25° for all methods tested. It was also
shown that the inability to compute the feature orientation reliably is a major source of bad or failed
matches, with Rorient. dropping to ∼50% for translations of 500 pixels and rotations of ∼90°. Feature
orientation methods that are more robust and tailored to laser speckle patterns are required, and this is
the second area identified for future work.

The descriptor robustness, Rdescrip., describes the proportion of features matched successfully
in the presence of pattern changes due to decorrelation, independently of the feature orientation
calculation. This, together with the descriptor discrimination, the ability to distinguish a ‘bad’ match
from a valid match, can be used to assess the performance of the feature description methods. Of the
methods tested, ORB was shown to be the most robust, matching ∼60% of features after a 500 pixel
translation or a∼45° rotation, and has the best discrimination between valid matches and ‘bad’ matches
of all the methods tested. However, there is still a significant loss of potential information in terms of
unmatched or incorrectly matched features; hence, improved description methods tailored to laser
speckle patterns require further investigation.
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