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Abstract: Oxidative stress is a common phenomenon in aquaculture, which can be induced by
nutritional or environmental factors. Generally, oxidative stress causes poor growth performance,
metabolic dysregulation, and even the death of aquatic animals. To identify a nutritional interven-
tion strategy, high-fat diet (HFD) feeding (Experiment I) and acute ammonia nitrogen challenge
(Experiment II) tests were carried out. In Experiment I, HFD feeding significantly decreased the
growth performance concomitantly with excessive fat deposition in the liver and abdomen. The
addition of 4-PBA in the diet improved the excessive fat accumulation. The activities of antioxidative
enzymes were suppressed, and the levels of lipid and protein peroxidation were increased, indicating
that HFD feeding induced oxidative stress. The endoplasmic reticulum stress (ERs) related genes
were downregulated in the HFD group. Under a transmission electron microscope (TEM), more
swollen and dilated ER lumen could be observed. These results indicated that the HFD induced ERs
activation. Although 4-PBA acted as a potent ERs inhibitor, as evidenced by the alleviated alterations
of ERs molecules and the ER ultrastructure, the oxidative stress was also attenuated by 4-PBA. In
Experiment II, dietary 4-PBA improved the tolerance to the acute ammonia nitrogen challenge, as
lower mortality and serum aminotransferase activity was found. Further results showed that 4-PBA
decreased the peroxidation content and attenuated ERs, thus confirming the correlation between
oxidative stress and ERs. Our findings showed that dietary 4-PBA supplementation can attenuate
oxidative stress induced by a HFD or acute ammonia challenge; the mechanism is related to its potent
inhibition effect for ERs.

Keywords: 4-phenylbutyric acid; endoplasmic reticulum stress; oxidative stress; high-fat diet;
ammonia nitrogen exposure

1. Introduction

Today, aquatic products are of significant nutritional interest for billions of people
worldwide [1]. Furthermore, aquatic foods are regarded as ideal sources of quality protein
and essential fatty acids, which could improve a range of human pathologies [2]. Over the
past few decades, Chinese aquaculture production has been steadily pursuing growth, and
it has become the fastest growing food production sector [3]; however, during the farming
process, oxidative stress damage is ubiquitous, and it often seriously affects the growth
performance, stress tolerance, and pathogen sensitivity of aquatic animals [4–6].

Oxidative stress occurs due to the disruptions between the generation of reactive
oxygen species (ROS) and antioxidant defenses in living organisms [7]. Oxidative stress
could cause damage to cells and tissues, and it mainly manifests as the peroxidation of
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biomacromolecules and cell apoptosis [8,9]. In general, many exogenous factors can induce
oxidative stress, including oxidized fat and high-fat diets, ammonia nitrogen, and so
on [10–13]. Fat plays a dominant role in energy storage and supply for animals, due to its
high energy density [14,15]; hence, the high-fat diet is extensively used in fish cultures for
its protein-sparing effect [14,16,17]. Ammonia is the main nitrogen-based catabolic product
that is released in the aquaculture system. Recently, a high-density pattern emerged in
the aquaculture industry, which has become the main trigger for the overproduction of
ammonia nitrogen [18]. The high-fat diet feeding, and the ammonia nitrogen compounds,
can induce oxidative stress by overproducing ROS, nitric oxide, and reactive nitrogen
species in fish [19]; therefore, there is a pressing need to reveal the underlying physiological
mechanisms of oxidative stress induced by high-fat diet feeding and ammonia nitrogen,
and to develop antioxidant strategies.

Spotted seabass (Lateolabrax maculatus) is a carnivorous species with a high growth
speed, flesh quality, and economic value [20]. It has become the second major cultured
marine fish in China, with 195,246 tons being produced in 2020 [21]. The high-fat diet
is widely used in its artificial rearing, which often leads to fat deposition and oxidative
stress [10]. Moreover, the stocking density of spotted seabass is often high, with a produc-
tion of >100 kg/m3; thus, it is a good model to study the oxidative stress caused by high-fat
or ammonia nitrogen. Furthermore, the stress of the endoplasmic reticulum (ERs) is often
found in fish that are exposed to high-fat diets or ammonia nitrogen [13,16,18,22]. The
ER is also an important source of ROS, which accounts for approximately 25% of all ROS
produced [23]. Recent findings showed that ERs-induced alterations in ROS production
and scavenging mechanisms contribute to the worsening of oxidative stress [24]. Based
on the above, the present study is conducted to evaluate the role of ERs in the process of
oxidative stress and the regulation of 4-PBA on the oxidative stress of cultured fish.

2. Materials and Methods
2.1. Animals

Juvenile spotted seabass were purchased from a fish hatchery (Zhangzhou, China).
Juveniles were first transported to the aquaculture system in Jimei University, and were
kept in a 1500-L tank so that they could adapt to the experimental conditions for two weeks.
In this period, fish were fed a Jia-kang brand commercial diet (Xiamen Jia-kang Foods Co.,
Ltd. Xiamen, China; 45% protein, 11% lipid) twice daily (8:00 and 17:00). The experimental
conditions were maintained at the optimal water temperature (25–27 ◦C), pH (7.0–7.2), and
level of dissolved oxygen (>6 mg/L).

2.2. Experimental Design
2.2.1. Experiment I: The High-Fat Diet Feeding Study

Two experimental diets were produced with an 11% or 17% lipid level, which is
regarded as normal fat diet (NFD) and high-fat diet (HFD), respectively. Moreover,
4-phenylbutyric acid (4-PBA) was added to the diet by adding 4-PBA to the HFD at a
dose of 50 mg/kg (regarded 4-PBA). The formulation and proximate composition of ex-
perimental diets are shown in Table S1. The protocols of diet production and proximate
composition determination were introduced in a previous study [21].

A total of 270 healthy fish of similar sizes (13.05 ± 0.15 g) were randomly distributed
into nine 200-L tanks (30 fish per tank) in a recirculating aquaculture system (RAS). Freshwa-
ter was provided with a mechanical filtration system, UV treatment, and constant aeration.
Fish were fed with a NFD, HFD, and 4-BPA, and each experimental diet was hand-fed
to fish from three tanks to achieve visual satiety twice daily (8:00 and 17:00). After eight
weeks of feeding, the fish were euthanized with 100 mg/L MS-222 (Sigma, St. Louis, MO,
USA). Then, bodyweights were measured, and liver sampling was conducted for analy-
sis, in accordance with the method described in our recent study [10]. The experimental
conditions were consistent with the conditions maintained during the acclimation period.
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2.2.2. Experiment II: The Acute Ammonia Nitrogen Challenge Study

Fish from the same batch that were of similar initial sizes to the fish in Experiment I
were distributed into six separate tanks (30 fish per tank). Three tanks of fish were fed a
NFD and were regarded as control group, the other three were fed a NFD with 50 mg/kg
4-PBA supplementation, named the 4-PBA group. Feeding management is same as with
Experiment I. After two weeks of feeding, an acute ammonia nitrogen challenge test was
carried out. A stock solution of a high NH4Cl concentration (10 g/L) was prepared and
subsequently added to each tank, the ammonia nitrogen concentration was adjusted to
95 mg/L, and the 48 h LC50 was carried out in our preliminary test. After 48 h, serum
and liver samples were conducted. During this period, the ammonia concentrations of
each tank were detected by nesslerization [25] every 6 h, and adjusted with a NH4Cl stock
solution to maintain the desired concentration. One-third of the test water was replaced
with fresh water every 12 h. Fish were fasting during this period.

2.3. Biochemical Assays

The contents of triglyceride (TG), protein carbonylation (PC), and malonaldehyde
(MDA), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GSH-PX) were deleted in liver homogenate by using commercial kits (Nanjing
JianCheng Bioengineering Institute, Nanjing, China). The activities of aspartate aminotrans-
ferase (AST) and alanine aminotransferase (ALT) were determined in serum in accordance
with our recent study [26].

2.4. Liver Histology

Oil red O staining was used to evaluate fat deposition in the liver. Briefly, liver
samples were fixed in a 10% formaldehyde solution for 24 h, then dehydrated in a 15%
and 30% sugar solution at 4 ◦C. The dehydrated samples were embedded into an optimal
cutting temperature (OCT) compound (Servicebio, Wuhan, China), and cut into 8 µm-thick
sections using a freezing microtome (CRYOSTAR NX50, Thermo Scientific, Waltham, MA,
USA). After that, sections were stained using oil red O and hematoxylin, then, they were
observed and photographed under a microscope (DM5500B, Leica, Germany).

Transmission electron microscopy (TEM) analysis was conducted to observe hepato-
cellular ultrastructure. Samples were fixed in 2.5% glutaraldehyde solution overnight and
post-fixed in osmic acid for 2 h at 4 ◦C. Then, the samples were dehydrated in gradient
acetone solutions and embedded in epoxy resin. Ultrathin slices with a 60-nm thickness
were produced, stained with uranyl acetate and lead citrate solutions, and observed under
a TEM (Hitachi H-7650, Tokyo, Japan).

2.5. Gene Expression

A commercial kit (RC101-01, Vazyme Biotech Co., Ltd., Nanjing, China) was used to
isolate the total RNA in the liver, according to the protocol provided by the manufacturer.
Then, 1% agarose gel electrophoresis was carried out to investigate the RNA’s integrity.
The agarose was obtained from LABLEAD. Inc. (Beijing, China). A NanoDrop™ One
spectrophotometer (Thermo Scientific, Waltham, MA, USA) was used to determine the
purity at 260/280 nm. First-strand cDNA was obtained from 1 µg of the total RNA, and
a commercial kit was used to achieve this (R211-01, Vazyme Biotech Co., Ltd., Nanjing,
China). The residual genomic DNA was erased using a gDNA wiper.

Real-time quantitative PCR (qPCR) was conducted in accordance with the method
described in our recent study [27]. The primer sequences used in the present study were
shown in Table S2. The relative expression levels of target genes were normalized by β-actin
and calculated using the 2−∆∆Ct method.

2.6. Statistical Analysis

Statistical analysis was performed using SPSS Statistics 20. For Experiment I, one-
way ANOVA and Tuckey’s multiple range test were carried out to assess the differences
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between three treatments. Student’s t-test was utilized to evaluate the differences between
two groups in Experiment II. Significance was set at p < 0.05 in both Experiment I and
Experiment II, and all data were expressed as the means ± standard error (SE).

3. Results
3.1. Experiment I: The High-Fat Diet Feeding Study
3.1.1. Growth and Fat Accumulation

Fish that were fed the HFD showed a significantly lower weight gain (WG) and feed
efficiency (FE) compared with fish that were fed the NFD. In addition, 4-PBA supplementa-
tion significantly improved the WG and FE (Figure 1).
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Figure 1. Weight gain (A) and feed efficiency (B) of spotted seabass (L. maculatus) that were fed
the test diets for eight weeks. All values are exhibited as mean ± SE. The values with different
superscripts (a, b) are significantly different at p < 0.05 (Tukey’s test). Weight gain = final body
weight/initial body weight; Feed efficiency = wet weight gain/dry feed fed.

Moreover, fish that were fed the HFD exhibited excessive fat deposition compared
with other groups. Severe liver steatosis was observed under oil red O straining. Hep-
atic triacylglycerol (TAG) content was also enhanced by the HFD. Furthermore, 4-PBA
supplementation significantly reduced the oil red O-stained area and TAG content of
hepatocytes (Figure 2).
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Figure 2. Hepatic TAG content (A) and oil red O-stained sections ((B) scale bar = 20 µm) of spotted
seabass (L. maculatus) fed the test diets for eight weeks. All values are exhibited as mean ± SE. The
values with different superscripts (a, b) are significantly different at p < 0.05 (Tukey’s test).

3.1.2. Oxidative Status

In the liver, the activities/level of CAT, SOD, GPX, and T-AOC of fish that were fed
the HFD significantly decreased, whereas MDA and PC content significantly increased.
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The supplementation of 4-PBA dramatically elevated the activity/level of SOD, GPX, and
T-AOC, and reduced the MDA and PC content (Figure 3).
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Figure 3. The activities of catalase (CAT: (A)), superoxide dismutase (SOD: (B)), glutathione per-
oxidase (GSH-PX: (C)), the level of total antioxidant capacity (T-AOC: (D)), and the content of
malondialdehyde (MDA: (E)) and protein carbonylation (PC: (F)) in the livers of spotted seabass
(L. maculatus) that were fed the test diets for eight weeks. All values are exhibited as mean ± SE. The
values with different superscripts (a, b, c) are significantly different at p < 0.05 (Tukey’s test).

3.1.3. Endoplasmic Reticulum Stress

The expressions of ERS-related genes (ATF-6, IRE-1, PERK, EIF-2α, ATF-4, GRP78,
and CHOP) were significantly upregulated by HFD feeding, and the application of 4-PBA
significantly downregulated the expressions of these genes. (Figure 4).
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Figure 4. Relative expression levels of ERs-related genes in the livers of L. maculatus that were fed
the test diets for eight weeks. All values are exhibited as mean ± SE. The values with different
superscripts (a, b, c) are significantly different at p < 0.05 (Tukey’s test).

Under the electron microscope, abnormalities were found in the livers of fish that
were fed the HFD diet. In fish that were fed the NFD diet, the hepatocytes had stacks
of rough endoplasmic reticulum (rER) that were concentrated around the nucleus and
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cell membrane borders; however, there was also a widespread swelling of the ER in fish
that were fed the HFD diet. More mitochondria showed matrix losses in the HFD group,
whereas this phenomenon was rare in the NFD and HFD+4-PBA groups (Figure 5).

Antioxidants 2022, 11, x FOR PEER REVIEW 6 of 12 
 

rough endoplasmic reticulum (rER) that were concentrated around the nucleus and cell 
membrane borders; however, there was also a widespread swelling of the ER in fish that 
were fed the HFD diet. More mitochondria showed matrix losses in the HFD group, 
whereas this phenomenon was rare in the NFD and HFD+4-PBA groups (Figure 5). 

 
Figure 5. Hepatic transmission electron microscopy (TEM) images of L. maculatus that were fed the 
test diets for eight weeks. (N—nucleus; M—mitochondrion; green arrows—damaged mitochondria; 
red arrows—damaged endoplasmic reticulum). 

3.2. Experiment II: The Ammonia Nitrogen Exposure Study 
3.2.1. The Survival and Liver Damage of Fish 

After 48 h of ammonia nitrogen exposure, the mortality of the control group was 
about 50%, whereas the mortality of the 4-PBA group was significantly lower. The activity 
of ALT in the control group is significantly higher than that of the 4-PBA group, and the 
activity of AST exhibited the same trend but it did not cause a significant difference (Fig-
ure 6). 

 
Figure 6. Mortality (A) and serum alanine aminotransferase (B) and aspartate aminotransferase (C) 
activities of L. maculatus after two weeks of being fed the test diets and 48 h of ammonia nitrogen 
exposure. All values are exhibited as mean ± SE. The values with different superscript (*) are signif-
icantly different at p < 0.05 (Student’s t-test). 

3.2.2. Oxidative Status 
The activities/levels of SOD and T-AOC in the fish that were fed the control diet sig-

nificantly decreased, compared with the 4-PBA group. Although, the content of MDA and 
PC were much higher in the control group than in the 4-PBA group (Figure 7). 

Figure 5. Hepatic transmission electron microscopy (TEM) images of L. maculatus that were fed the
test diets for eight weeks. (N—nucleus; M—mitochondrion; green arrows—damaged mitochondria;
red arrows—damaged endoplasmic reticulum).

3.2. Experiment II: The Ammonia Nitrogen Exposure Study
3.2.1. The Survival and Liver Damage of Fish

After 48 h of ammonia nitrogen exposure, the mortality of the control group was about
50%, whereas the mortality of the 4-PBA group was significantly lower. The activity of ALT
in the control group is significantly higher than that of the 4-PBA group, and the activity of
AST exhibited the same trend but it did not cause a significant difference (Figure 6).
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Figure 6. Mortality (A) and serum alanine aminotransferase (B) and aspartate aminotransferase (C) ac-
tivities of L. maculatus after two weeks of being fed the test diets and 48 h of ammonia nitrogen
exposure. All values are exhibited as mean ± SE. The values with different superscript (*) are
significantly different at p < 0.05 (Student’s t-test).

3.2.2. Oxidative Status

The activities/levels of SOD and T-AOC in the fish that were fed the control diet
significantly decreased, compared with the 4-PBA group. Although, the content of MDA
and PC were much higher in the control group than in the 4-PBA group (Figure 7).
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Figure 7. The activities of superoxide dismutase (SOD: (A)), catalase (CAT: (B)), glutathione peroxidase
(GSH-PX (C)), the level of total antioxidant capacity (T-AOC: (D)), and the content of malondialdehyde
(MDA: (E)) and protein carbonylation (PC: (F)) in the livers of L. maculatus after two weeks of being fed
the test diets and 48 h of ammonia nitrogen exposure. All values are exhibited as mean ± SE. The values
with different superscript (*) are significantly different at p < 0.05 (Student’s t-test).

3.2.3. Endoplasmic Reticulum Stress

The expression levels of ERS-related genes (CHOP, GRP78, ATF4, ATF6, and EIF-2α)
in the control group were remarkably higher than those in the 4-PBA group (Figure 8).
The ultrastructural damage of the ER could be observed in both groups; however, in the
control group, more ER lumens presented severe dilatation, and the ER network was
fragmented (Figure 9).
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4. Discussion

Oxidative stress refers to the excess reactive oxygen species (ROS) production that can
be stimulated by environmental and nutritional factors [28]. ROS can induce the oxidative
damage of biomacromolecules and cellular membrane systems [29]. Emerging evidence
also indicates that ROS often initiate the inflammation response and apoptosis [30,31].

High fat intake could cause excess fat accumulation and induce oxidative stress in
fish [27,32]. Moreover, the the activities of antioxidative enzymes (CAT, SOD, and GSH-PX)
decreased, and then, peroxidation occurred. In the present study, the increased MDA and
PC levels indicated that HFD feeding induced oxidative stress.

The endoplasmic reticulum (ER) is composed of a complex membrane system and is
susceptible to attacking ROS [33]. As the main site of protein synthesis, folding, modifica-
tion, and secretion, oxidative damage to the ER often induces protein unfolding or/and
misfolding [34]. The aggregation of unfolded/misfolded proteins activates endoplasmic
reticulum stress (ERs) [35]. Previous studies have demonstrated that ERs activation reiles
on unfolded protein response (UPR) pathways [36]. As it is downstream of UPR, CHOP
plays a vital role in ERs-mediated cytotoxicity, given its contributor role to apoptosis [37].
These molecules of the UPR pathway are well accepted as biomarkers of ERs. In this study,
the expressions of ERs-related genes (ATF-6, IRE-1, PERK, Eif-2α, ATF-4, GRP78, and CHOP)
were upregulated through HFD feeding. Moreover, swollen endoplasmic reticula were
observed under TEM. These results indicated that HFD feeding activated ERs. Similar
results have also been reported in other fish [16,22,38] and rodent models that were fed
high-fat diets [39,40]. Furthermore, 4-Phenylbutyric acid (4-PBA) has an effect on misfolded
and unfolded proteins; therefore, it can be used as a specific inhibitor of ERs [41,42]. The
present results showed that dietary 4-PBA significantly decreased ERs induced by a HFD.

There are many proteins involved in the synthesis and export of lipids that are folded
or/and bounded at the ER. Hence, the ER also plays a key role in the homeostasis of lipid
metabolism [43]. The overload of lipid metabolism leads to continuous ERs, which leads to
lipid synthesis as a result of the protein metabolism in the ER [43,44]. In the present study,
4-PBA exhibited fat lowering effects that are dependent on ER metabolism remolding. The
fat-lowering effect of 4-PBA also contributed to the alleviation of oxidative stress [45].

It is reported that there is an interplay between ERs and oxidative stress [23]. The
overexpression of UPR components, such as CHOP and ATF4, directly contribute to ROS
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synthesis in the ER [33]. Moreover, the impaired ER can translate Ca2+ to mitochondria
through the calcium release channel and mitochondrial-associated membranes, which
exaggerates the production of ROS via the electron transport chain (ETC) [46]. In the
present study, the expression of CHOP and ATF4 were downregulated by dietary 4-PBA.
Moreover, the analysis of TEM showed that HFD-induced mitochondrial damage was
also alleviated. Based on these phenomena, we postulate that 4-PBA also inhibits ROS
formation in both the ER and mitochondria.

There are many factors in the aquaculture environment that can be triggers of oxidative
stress [6,47]. Notably, the highly intensive aquaculture industry has boomed in recent
decades, as there has been a high demand for fish products [48]. Thus, fish often suffer
ammonia nitrogen stress in the highly intensive culture [12]. The high ammonia nitrogen
concentration can cause serious tissue damage and high mortality, which is a high-risk
factor during fish farming [49–51]. Ammonia nitrogen stress can rapidly gather in the
blood and tissue of fish and act as a potent cause of oxidative stress [52]. Fish that were
fed the 4-PBA supplementation diet had a lower mortality rate and serum transaminases
activities after the acute ammonia nitrogen challenge. This indicates that dietary 4-PBA
can improve the tolerance of fish to ammonia stress. Further analysis showed that 4-PBA
can enhance antioxidative abilities and reduce the peroxidation of proteins and lipids.
Moreover, 4-PBA downregulated the gene expression of UPR factors. This indicates that
4-PBA supplementation exhibits the protective effect of ER homeostasis in fish that are
exposed to high ammonia nitrogen concentrations.

5. Conclusions

In summary, the present study showed that ERs played an important role in the oxida-
tive stress induced by a HFD or stress caused by high ammonia nitrogen concentrations.
Furthermore, 4-PBA can attenuate the stress of the ER and excess fat deposition caused by
the HFD feeding. Moreover, the supplementation of 4-PBA can increase the tolerance of
fish that have suffered ammonia stress.
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