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Competitive endogenous RNA (ceRNA) networks have emerged as critical regulators

of carcinogenesis. Their activity is mediated by various non-coding RNAs (ncRNAs),

including long non-coding RNAs and microRNAs, which competitively bind to targets,

thereby modulating gene expression and activity of proteins. Of particular interest,

ncRNAs encoded by the 8q24 chromosomal region are associated with the development

and progression of several human cancers, most prominently lncPVT1. Chemoresistance

presents a significant obstacle in the treatment of cancer and is associated with

dysregulation of normal cell processes, including abnormal proliferation, differentiation,

and epithelial-mesenchymal transition. CeRNA networks have been shown to regulate

these processes via both direct sponging/repression and epigenetic mechanisms. Here

we present a review of recent literature examining the contribution of ncRNAs encoded by

the PVT1 locus and their associated ceRNA networks to the development of resistance

to common chemotherapeutic agents used to treat human cancers.

Keywords: PVT1, lncRNA, ceRNA, miRNA, chemoresistance, carcinogenesis, 8q24, cancer

INTRODUCTION

Competitive endogenous RNA (ceRNA) networks have increasingly been found to play
an important role in carcinogenesis (1). These networks are characterized by “sponging”
activity, whereby non-coding RNAs (ncRNAs) competitively bind and repress targets, often
demonstrating reciprocal activity (2, 3). Long non-coding RNAs (LncRNAs) are generally classified
as ncRNA transcripts 200 nucleotides or greater in length and are involved in both transcriptional
and post-transcriptional gene regulation, including genome organization (4, 5). Several lncRNAs
have been shown to play a role in carcinogenesis, a prominent example being lncPVT1, which is
homologous to the mouse plasmacytoma variant translocation 1 gene.

PVT1 is located downstream of proto-oncogene MYC on chromosomal region 8q24, a known
cancer susceptibility locus (6). MYC expression has been shown to be highly reliant on PVT1—
PVT1 is increased in nearly 98% of cancers displaying overexpression of MYC (7). It was recently
was found that the PVT1 promoter can behave as a tumor suppressor DNA boundary element
by competing with the MYC promoter in cis for shared enhancers within the gene locus (8).
LncPVT1 can also regulate several downstream components of the MYC pathway (9). Their
complex relationship emphasizes the importance of this gene locus to cancer progression.

MicroRNAs (miRNAs) are small ncRNAs, roughly 18–25 nucleotides in length (10). miRNAs
can induce translational repression of target mRNA by recruiting the RNA-induced silencing
complex (RISC) and binding to miRNA response elements (MREs) (11). LncRNA have been shown
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to reduce miRNA-mediated translational repression by
sequestering miRNAs or competitively binding targets, for
example, lncPVT1 has been shown to regulate the activity of its
own miRNA transcripts (12, 13). The PVT1 gene encodes for
six microRNAs: miR-1204, miR-1205, miR-1206, miR-1207-3p,
miR-1207-5p, and miR-1208 (14, 15). These transcripts have
been shown to participate in ceRNA networks in many cancers,
exerting both oncogenic and tumor suppressive roles. Circular
RNAs (circRNAs) represent another class of ncRNAs that are
formed by bonding of the 3′ and 5′ ends of RNA (5).

Chemotherapy resistance presents a significant impediment
to successful treatment of most cancers, leading to diminished
survival and higher recurrence rates. Cancers can exhibit
either primary/intrinsic chemoresistance, for example, via
tumor heterogeneity, or secondary/acquired chemoresistance via
mechanisms such as target inactivation or alteration, drug efflux,
cell death inhibition, DNA damage repair, epigenetics, mutations,
or epithelial-mesenchymal transition (EMT) (16).

This paper aims to present a review of primary literature
examining the role of lncRNA PVT1, associated miRNA
transcripts, and their respective ceRNA networks in the
development of resistance to common chemotherapeutic agents
used to treat human cancers. This area of research is a
promising target for the development of new chemotherapeutics
or enhancement of existing treatment regimens.

BREAST CANCER

Breast cancer remains the leading cause of cancer death
among women under the age of 60 (17). Triple-negative breast
cancers (TNBCs) are among the most difficult to treat and
have the worst prognosis among breast cancer subtypes due
to the lack of available targeted therapy (18). Taxane-based
chemotherapy remains the primary treatment approach for
TNBC and metastatic breast cancer. Despite their general
success, response rates for paclitaxel and docetaxel are low in
many subtypes (19, 20).

MiR-1207 has been found to be elevated in several cancers,
including young breast cancer patients (21). Leucine zipper
tumor suppressor gene 1 protein (LZTS1), a tumor suppressor,
was found to be downregulated in paclitaxel-resistant breast
cancer (22). MiR-1207-5p can promote chemoresistance in
TNBC cells by inhibiting LZTS1, thereby decreasing cell growth
arrest and apoptosis in response to paclitaxel (23). Furthermore,
there was downregulation of Bax and upregulation of Bcl-2,
pro-apoptotic and anti-apoptotic genes, respectively.

Although there is evidence for a regulatory role for miR-
1207-5p in TNBC, several questions remain. LZST1 was chosen
due to its role as a tumor suppressor, but other apoptotic
pathways may also be targeted by miR-1207-5p. Additionally,
alternate mechanisms may contribute to overall drug resistance
that were not studied here, including proliferative and drug efflux
pathways, which are known to be active in breast cancer (24, 25).

MiR-1207-5p has also been found to negatively regulate
transcription factor STAT6 in invasive breast cancer, leading to
disinhibition of CDKN1A/B, increased proliferation, and cell
cycle progression (26). MiR-1204 has been shown to promote
tumorigenesis, EMT, and metastasis in breast cancer by targeting

the vitamin D receptor gene (VDR) (27). The role of vitamin D
signaling in cancer is well-studied; calcitriol, the activemetabolite
of vitamin D, can improve chemosensitivity in breast cancer
(28–31). Ablation of VDR has also been shown to promote
breast tumorigenesis in mice (32, 33). The aforementioned
studies are promising, and future research should further explore
possible ceRNA networks involving miR-1204 and miR-1207 in
breast cancer.

CERVICAL CANCER

Cervical cancer (CC) is the second most common cancer among
women aged 20–39 years in the United States (17). HPV infection
has been shown to contribute to its development and coincide
with 99.7% of cases (34). Two viral HPV oncoproteins, E6 and
E7, have been implicated in tumorigenesis via degradation of
tumor suppressor p53 and interactionwith pRb, respectively (35).
Paclitaxel-based chemotherapy is commonly used in conjunction
with cisplatin as first-line chemotherapy for CC. (36).

LncPVT1 can regulate miR-195 via both epigenetic and
sponging mechanisms, thereby disinhibiting downstream
activation of SMAD3, promoting EMT, and inducing paclitaxel
resistance in CC (37). The MiR-195 was previously been
shown to behave as a tumor suppressor in CC by repressing
SMAD3, a member of the SMAD family of transcription factors
which mediate the TGF-β family of cytokines, responsible
for cell proliferation and differentiation (38, 39). MiR-195
and lncPVT1 have reciprocal sponging activity, whereby
miR-195 overexpression reduces expression of lncPVT1
and PVT1 knockdown increases miR-195 expression (37).
Overexpression of miR-195 or PVT1 knockdown resulted in
downregulation of mesenchymal markers (vimentin, fibronectin)
and upregulation of epithelial markers (E-cadherin) in response
to paclitaxel treatment.

LncPVT1 can also epigenetically regulate miR-195 by
inducing H3K27me3 methylation in the miR-195 promoter
region via recruitment of EZH2. LncPVT1 was also shown
recruit EZH2 in lung, hepatocellular, and thyroid cancers (40–
42). Additionally, knockdown of HPV16 E7 decreased levels of
lncPVT1 and increased levels of miR-195. This ceRNA network
involving lncPVT1 and miR-195 in cervical cancer characterizes
the typical complex pathway mediating chemoresistance in many
cancers (Figure 1).

Previous studies have shown related roles for lncPVT1 in CC.
It can sponge miR-424 to promote cell proliferation, invasion
and migration, as well as regulate expression of miR-200b by
recruiting EZH2 (43, 44). LncRNAHOTAIR has also been shown
to interact with HPV16 E7 to potentially contribute to cervical
carcinogenesis (45). Approximately 14 other lncRNAs have been
shown to be involved in CC and there is significant research
to be done concerning their roles in chemoresistance, including
overlap with lncPVT1 (46).

LUNG CANCER

Lung cancer remains the most prevalent cancer among both
sexes (17). Non-small cell lung cancer (NSCLC) accounts for
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FIGURE 1 | CeRNA networks involving lncPVT1 and its associated transcripts are generally mediated by two mechanisms: (1) direct sponging of other RNA

transcripts/proteins or (2) epigenetic modification. Both of these mechanisms have been shown to be active in regulating chemoresistance in cervical cancer.

approximately 90% of lung cancers and the majority of patients
are diagnosed at later stages (47). Cisplatin is a common first-line
adjuvant chemotherapeutic for NSCLC, however many cancers
are chemoresistant and have poor response to treatment (48–50).

LncPVT1 can promote cisplatin resistance in NSCLC by
acting as a ceRNA for miR-216b and upregulating downstream
Beclin-1 (51). Levels of lncPVT1 were significantly increased,
while levels of miR-216b were reduced, in the A549/DDP
cisplatin-resistant NSCLC cell line. PVT1 knockdown promoted
apoptosis and suppressed autophagy. Beclin-1 plays a complex
role in regulating both autophagy and apoptosis and it was
found to be negatively associated with tumor recurrence rate in
NSCLC (52, 53).

Other ncRNA have been shown to modulate chemoresistance
by targeting Beclin-1. Mir-216b can modulate vemurafenib
sensitivity in melanoma by targeting Beclin-1 and associated
proteins (UVRAG and ATG5) (54). Negative regulation of
Beclin-1 by miR-30d in anaplastic thyroid carcinoma (ATC)
has been shown to suppress autophagy and promote apoptosis,
and lower levels of miR-30d in ATC cells were correlated with
cisplatin-resistance (55). The role of lncPVT1 in these contexts
has not been studied.

LncPVT1 can behave as a ceRNA for at least four other
miRNAs inNSCLC:miR-195, miR-199-5p, mir-424-5p, andmiR-
497 (56–60). Regulatory axes containing miR-195 and miR-424-
5p are of particular interest since they have been shown to
mediate radiosensitivity, a crucial component of multi-modal
lung cancer treatment (56, 59). PVT1-derived miR-1204 has
also been shown to promote cell proliferation in NSCLC by
regulating paired-like homeodomain 1 (PITX1), a member of
the RIEG/PITX family involved in organ development (61).
LncPVT1 can also epigenetically downregulate large tumor
suppressor kinase 2 (LATS2) in NSCLC via recruitment of
EZH2 and methylation of the LATS2 promoter, similar to the
mechanism in cervical cancer (40). Further research is needed
to uncover the molecular targets of other microRNA and

potential mechanisms contributing toward chemoresistance in
lung cancer.

OSTEOSARCOMA

Osteosarcoma is a rare sarcoma with global incidence of
3.4 cases per million, occurring mostly among younger age
groups (62). Five-year survival has improved significantly since
the introduction of chemotherapeutics, but high grade and
metastatic patients still have dismal outcomes. Doxorubicin and
cisplatin are ubiquitous components of osteosarcoma regimens,
while gemcitabine is primarily used in patients with unresectable
or recurrent disease (62, 63).

LncPVT1 can promote gemcitabine resistance in
osteosarcoma by serving as a ceRNA of miR-152 and
disinhibiting c-MET and the downstream PI3K/AKT
pathway (64). PVT1 was upregulated and miR-152 was
downregulated in the MG63/DOX chemoresistant osteosarcoma
cell line. Overexpression of PVT1 attenuated gemcitabine-
mediated inhibition of tumor growth. Previous studies
have shown that c-MET mediates chemoresistance to
cisplatin in osteosarcoma and that miR-152 acts as a tumor
suppressor by targeting c-MET in oral squamous cell
carcinoma (65, 66).

Alternatively, circRNA PVT1 may contribute to doxorubicin
and cisplatin resistance in osteosarcoma by regulating multidrug
resistance protein 1 (MDR1) (67). CircRNA PVT1 knockdown
was shown to decrease levels of MDR1 and reverse doxorubicin
and cisplatin resistance in chemoresistant cell lines. However, the
specific mechanism of regulation was not clearly demonstrated.
LncPVT1 can also alter glucose metabolism in osteosarcoma by
acting as a ceRNA for miR-497 and disinhibiting hexokinase 2,
consequently increasing glucose uptake and lactate production
(68). It can also inhibit apoptosis, cell cycle arrest, and
invasion/migration by acting as a ceRNA for of miR-195 and
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upregulating BCL2, CCND1, and FASN, respectively, in the
U2OS cell line (69).

PANCREATIC CANCER

Pancreatic cancer (PC) is the fourth most common cancer in
the United States (17). The typical adjuvant chemotherapeutic
regimen generally consists of either gemcitabine or 5-flurouracil
and leucovorin (70). Previous research indicated that PVT1
overexpression may induce gemcitabine resistance in PC (71).
Meanwhile, overexpression of miR-1207-3p and miR-1207-5p
inhibited proliferation and increased apoptosis after gemcitabine
treatment. C-Src was identified as a potential target of miR-1207-
5p and experiments confirmed that miR-1207-5p could reduce
levels of c-Src in both PC cell lines and tissue. MiR-1207-3p
was similarly shown to target RhoA, which has been shown to
play a complex role in carcinogenesis (13, 72). Future research
can hopefully elucidate the role of these pathways and their
downstream targets in contributing to chemoresistance.

Additionally, gemcitabine treatment was shown to upregulate
expression of miRNA processing enzymes, Drosha and DGCR8,
leading to increased processing of lncPVT1 into mature miR-
1207-5p/3p transcripts, thereby inhibiting downstream targets
(13, 64). This unique regulatory relationship of differential
processing of lncPVT1 has not been well-studied with respect
to chemoresistance. Similar to its activity in cervical cancer,
lncPVT1 can also upregulate the SMAD/TGF-β pathway and
promote EMT in PC, although the mechanism by which this
occurs has not yet been uncovered (73).

OTHER CANCERS

There is evidence that lncPVT1 and its associated miRNA
transcripts can modulate chemoresistance in several other
cancers, although their molecular targets have not been identified
or their role in influencing response to chemotherapeutics has
not yet been studied. It is critical to further study the role of these
pathways in chemoresistance.

Gallbladder cancer (GBC) is rare in the United States, but
prevalent among certain populations, such as North and South
American Indians (74). GBC is overwhelmingly diagnosed at
later stages and 5-year survival remains low (75). Cisplatin is
a component of first-line therapy and resistance can impede
treatment (76). MiR-1207-5p has been shown to decrease
cisplatin sensitivity in GBC by an unknown mechanism (77).
Levels of MiR-1207-5p correlated with both proliferative and
apoptotic markers in this study, inconsistent with a uniform role
in GBC. LncPVT1 can act as a ceRNA for miR-143 in GBC,
disinhibiting hexokinase 2, and promoting cell proliferation
invasion and migration (78, 79). Hexokinase 2 has also been
shown to be regulated by miR-143 in other cancers, including
colon, prostate, and breast (80). It is important to evaluate
the extent these independent pathways may contribute to
chemoresistance in GBC.

Hepatocellular carcinoma (HCC) is the fifth-most commonly
diagnosed cancer globally, but accounts for a disproportionate
amount of cancer-related deaths due to its difficult to treat
nature (17, 81). Although surgical resection, radiofrequency
ablation, and transplantation represent curative approaches for

FIGURE 2 | LncPVT1 and its associated microRNAs induce chemoresistance in various cancers by regulating oncogenes or tumor suppressor genes. Affected

downstream pathways include the TGF-β and PI3K-AKTpathways. Also depicted is epigenetic inhibition of target genes via EZH2.
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early stage cancers, there is a lack of systemic therapy available
for more advanced cases (82). LncPVT1 has been shown to
be upregulated in HCC tissues and associated with recurrence
(83). LncPVT1 can serve as a ceRNA for miR-186-5P, thereby
disinhibiting downstream yes-associated protein 1 (YAP1) to
promote tumorigenesis in HCC (84). LncPVT1 can also recruit
EZH2 to stabilize MDM2 and repress tumor suppressor p53 in
HCC (42). MiR-424-5p is yet another proposed ceRNA target of
PVT1, although further research are needed to demonstrate in
vitro interaction (85).

Nasopharyngeal carcinoma (NPC) is a relatively rare cancer
in the United States but has increased incidence in parts of
Southern China (17, 86, 87). Typically, radiotherapy alone is used
in treatment of early-stage NPC, but advanced disease usually
necessitates the use of chemotherapy (88). MiR-1204 was shown
to be downregulated in paclitaxel-resistant NPC cell lines, and
restoration of miR-1204 was shown to resensitize NPC cells
to paclitaxel in vitro and inhibit tumor growth in vivo (89).
While there is evidence that miR-1204 can modulate paclitaxel-
resistance in NPC, a molecular target has not yet been identified
and the role of other ncRNA from the PVT1 locus has not
been studied.

Ovarian cancer (OC) is the fifth leading cause of cancer-
related death among women in the United States and
chemoresistance plays a significant role in treatment failure
in high-grade and recurrent subtypes (17, 90–92). MiR-1207
was upregulated in OC tissues and shown to target negative
regulators ofWnt/β-catenin signaling pathway, including SFRP1,
AXIN2, and ICAT, thereby promoting development of ovarian
cancer stem cell-like traits (93). Previous studies have shown
that genes involved in the Wnt signaling pathway are associated
with chemoresistance in OC, highlighting the need for further
research regarding the role of miR-1207 and related ncRNA in
this context (94, 95).

Prostate cancer (PCa) is the second-most commonly
diagnosed cancer among men (17, 81). Androgen-deprivation is
the most common first-line therapy used in the treatment of PCa
and the development of androgen-independent or castration-
resistant PCa presents a significant obstacle to treatment (96, 97).
MiR-1207-3p was found to be underexpressed in PCa cell lines
and shown to target fibronectin type II domain containing 1
(FNDC1), thereby leading to downregulation of fibronectin 1
(FN1) and loss of androgen receptor expression (98). Future
research should study the effects of miR-1207-3P in augmenting
androgen-deprivation therapies. Overexpression of LncPVT1
was shown to be correlated with epigenetic silencing of miR-146a
and increased cell survival in PCa (99). The mechanism by which
this epigenetic regulation occurs was not identified and the
influence on chemoresistance has not been studied.

Thyroid cancer (TC) is the ninth-most commonly diagnosed
cancer worldwide, with a threefold higher incidence among
women (17, 81). Several studies have implicated PVT1 in
thyroid cancer and have shown it is significantly upregulated
(100, 101). LncPVT1 acts as a ceRNA for miR-30b in papillary
thyroid carcinoma (PTC), thereby disinhibiting IGFR1 and

promoting cell proliferation, invasion, migration and EMT
(102). LncPVT1 has also been shown to recruit EZH2 to
reduce activity of the thyroid-stimulating hormone receptor
(TSHR) in TC (41). These results are interesting although
their significance in chemoresistance is not well-understood and
warrants further study.

CONCLUSION

Recent research demonstrates that ceRNA networks
involving lncPVT1 and its associated miRNAs can mediate
chemoresistance in several cancers (Figure 2). The primary
regulatory motif involves lncPVT1 acting as a ceRNA for specific
miRNA and consequently disinhibiting downstream genes
and proteins involved in promoting chemoresistance, such as
anti-apoptotic proteins, cell cycle regulators, and mediators of
EMT. Interestingly, differential processing of lncPVT1 in various
cancers can also increase or decrease levels of PVT1-derived
miRNAs, which can inhibit downstream targets. Alternatively,
lncPVT1 or its associated transcripts can recruit epigenetic
modifiers, such as EZH2, to modify expression of target genes.

In addition to the role of lncPVT1 in cisplatin resistance
in gallbladder, lung, and osteosarcoma discussed here, lncPVT1
has also been shown to promote cisplatin resistance in gastric
and colorectal cancers, although the molecular mechanisms and
associated ceRNA networks have not been studied thoroughly
and are promising for further research (103, 104). We
also presented the first study implicating circRNA PVT1 in
chemoresistance in osteosarcoma (67). It has previously been
shown to have ceRNA activity in colorectal, gastric, and non-
small cell lung cancers (105–107), although its chemoresistant
role in other cancers has not been well-studied.

The majority of chemotherapeutics discussed here represent
first-line therapies for their respective cancers, such as paclitaxel
and cisplatin. However, often the most difficult to treat cases
involved treatment with second- or third-line therapies, and thus
future research should also consider the potential role of ncRNA
to enhance the efficacy of these drugs.

The PVT1 locus in particular is a promising area of study
in terms of the discovery of new ceRNA networks in cancer.
Further identification of regulatory networks could potentially
introduce a new class of targeted therapeutics. Additional roles
could include the co-delivery of drugs to potentiate existing
therapeutics, especially difficult to treat chemoresistant cancers
involving second- or -third line treatments.
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