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Adapting for life in the extreme
Red algae have adapted to extreme environments by acquiring genes

from bacteria and archaea.

CAROLIN M KOBRAS AND DANIEL FALUSH

M
ost humans have nearly the same

complement of genes, all of which

have come from our primate ances-

tors (Salzberg, 2017). On the other hand, even

closely related strains of the bacterium Escheri-

chia coli can differ by hundreds of genes

(Touchon et al., 2009) despite having a much

smaller genome. These genes have been

acquired via a process called horizontal gene

transfer (HGT), which is an important driver of

adaptation, as it allows bacteria and other pro-

karyotes to gain the genes they need in order to

thrive in certain environments (Koonin et al.,

2001). Moreover, this exchanging of genes has

resulted in many genetic elements in prokar-

yotes becoming highly mobile, making it easier

for DNA to be transferred to a diverse range of

hosts.

HGT has also been observed in animals,

plants and other eukaryotes (Husnik and

McCutcheon, 2018), but its role in determining

genome composition and facilitating adaptation

in these species remains unclear (Ku and Martin,

2016). Now, in eLife, Andreas Weber and co-

workers at Heinrich Heine University, Arizona

State University and Rutgers University – includ-

ing Alessandro Rossoni as first author – report

evidence for HGT between prokaryotes and the

red alga Cyanidiales (Rossoni et al., 2019).

These are remarkable single-cell organisms that

can perform photosynthesis at temperatures up

to 56˚C, and can live in extreme environments

such as hot springs and acid rivers

(Schönknecht et al., 2013). Cyanidiales can also

be used to investigate HGT over geological

timescales because they share a common ances-

tor that dates back 800 million years to a time

before animals had even evolved.

Based on an analysis of ten new and three

previously reported Cyanidiales genomes, Ros-

soni et al. found that 1% of genes had been

obtained via HGT. Moreover, many of these

genes coded for proteins that were needed to

survive in extreme environments (such as pro-

teins involved in detoxifying heavy metals like

arsenic or mercury, or removing free radicals;

Figure 1). Additionally, prokaryotes adapted to

the same extreme environment as Cyanidiales

were commonly identified as the source of these

genes. It seems likely, therefore, that HGT influ-

enced the evolution of Cyanidiales, especially

because the criterion used to detect HGT was

conservative and the study did not attempt to

detect gene transfer from other eukaryotes.

Comparing the new Cyanidiales genes to

genes found in present-day bacteria and archaea

databases did not yield any recent examples of

HGT. This absence of recent events is unsurpris-

ing, as Rossoni et al. estimated that Cyanidiales

acquire just one gene via HGT every 14.6 million

years – the same amount of time it took for

humans to diverge from the orangutan. Such a

low rate makes finding a fresh transfer in a small

number of genomes unlikely. Instead, the major-

ity of HGT candidate genes found by Rossoni

et al. have acquired introns (non-protein coding
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segments of DNA), and then persisted over hun-

dreds of millions of years.

Despite there being evidence to show HGT

occurred, it still remains unclear how these trans-

fers took place. The best-studied mechanisms by

which eukaryotes acquire DNA from other

organisms are sexual reproduction and by trans-

ferring DNA from symbionts (biological organ-

isms that live cooperatively with other

organisms). However, meiotic sex only occurs

between closely related species, and therefore

cannot explain how Cyanidiales appear to have

gained DNA from such a diverse range of

prokaryotes: moreover, the evolution of symbi-

otic transfer is uncommon in most taxonomic

groups. Instead DNA was more likely obtained

via viral infection or plasmids (circular molecules

of double stranded DNA) being transferred

between prokaryotes and eukaryotes

(Heinemann and Sprague, 1989). Indeed, a

recent study has shown that many eukaryotes,

including red algae, can acquire plasmids carry-

ing genes derived from plants, viruses and bac-

teria (Lee et al., 2016).

The work of Rossoni et al. suggests that, in

terms of gene content evolution, Cyanidiales are

more similar to humans than to E. coli, which is

consistent with previous qualitive comparisons

of HGT patterns in eukaryotes and prokaryotes

(Ku and Martin, 2016). However, a number of

mysteries still remain. For example, what are the

most common modes of plasmid transmission in

Cyanidiales? How do plasmids maintain them-

selves in populations? How often do they jump

between species, and how far do they jump? To

answer these questions we should first observe

what is happening all around us today

(Popa et al., 2017) and, if possible, study events

that occur more frequently than once every 14.6

million years.

Figure 1. Horizontal gene transfer in the evolution of red algae. The evolutionary trajectory of the red algae

Cyanidiales is shown from top to bottom. Rossini et al. investigated genetic changes that took place before and

after the Cambrian explosion 541 million years ago, and found that Cyanidiales obtained 1% of their genes during

this time by horizontal transfer. Many of these genes allowed Cyanidiales to adapt to extreme environments, such

as genes related to the detoxification of heavy metals including mercury and arsenic (represented by green

arrows). Some of the lineages of Cyanidiales that were sequenced by Rossoni et al. are shown in the bottom

panels: two of these have the same taxonomic name despite having diverged from one another millions of years

ago. Image credit: Andreas Weber (left panel), Debashish Bhattacharya (two middle panels), and Shin-ya

Miyagishima (right panel).
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