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Abstract

From CEOs confronting competition to children playing board games, our professional and

personal lives are full of dynamic decisions. Naturally, while playing the role of a decision-

maker, people differ. To comprehend and analyze how they differ, first it is necessary to con-

struct a profiling method that classifies dynamic decision-makers. Developing such a

method is the main objective of our article. We equate dynamic decision-making with back-

ward inducting. We rely on response times to construct the profiles. Our method has both

descriptive power and predictive power: a subject’s profile resembles her reasoning process

and forecasts the likelihood of her correctly backward inducting. To test the proposed profil-

ing method, we use data generated by 22 different finite dynamic scenarios from the mobile

app Blues and Reds. Our sample consists of 35,826 observations from 6,463 subjects

located in 141 countries. We construct the profiles of our subjects, and, in a variety of exer-

cises supported by an array of robustness checks, we successfully establish the predictive

power of our profiling method.

You ask what is the use of classification, arrangement, systemization? I answer you: order and
simplification are the first steps toward the mastery of a subject—the actual enemy is the
unknown.

Thomas Mann

Introduction

From Plato’s typology of political regimes to Linnaean taxonomy of organisms to Mendeleev’s

periodic table, science has been built on the classification, arrangement, and systemization of

knowledge for advancing our comprehension of natural and social phenomena. Social sciences

also rely on categorization as a fundamental scientific activity: classification of markets (eco-

nomics), typology of generic strategies (management), taxonomy of consumer behavior (mar-

keting)—to name but a few from the plethora of readily available examples.

In the same spirit, this article develops a method of profiling dynamic decision-makers. The

focus is on decisions in dynamic settings because of how omnipresent and important such
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settings are in our lives. In particular, we analyze scenarios in which backward inductions

yields the optimal outcome for a decision-maker.

What type of dynamic decision-maker is she/he? What type of dynamic decision-maker am

I? Addressing these questions calls for a system of classifying people in their roles as dynamic

decision-makers. With this motivation in mind, we propose a profiling method that satisfies

two natural requirements ([1]): descriptive power and predictive power. A person’s profile por-

trays her reasoning process (descriptive power) and forecasts her behavior (predictive power).

To collect the experimental data, we use a novel methodology that takes advantage of the

omnipresence of mobile technology and opens attractive, yet relatively unexplored, opportuni-

ties to conduct global large-scale experiments. More precisely, we employed a team of develop-

ers to create Blues and Reds, a mobile app available for free on iOS and Android devices since

August 2017. The app’s objective is to run experiments—due to their nature called “mobile

experiments”—and collect data. Everyone with access to Google Play or the App Store can

become a subject in a mobile experiment, and there are billions of people with such access.

Data in this article comes from 22 dynamic tasks in Blues and Reds, each played by a

human subject against Artificial Intelligence (AI). Subjects either win or lose; there are no ties.

Importantly, tasks that subjects face are designed in a way to clearly separate those who cor-

rectly backward induct (winners) from those who fail at backward induction (losers). Each

task is a multi-round decision-making problem. The number of rounds varies from 3 to 6, and

subjects choose at odd rounds while AI moves at even rounds.

Upon installing the app, a user of a mobile device becomes a subject in our experiment and

goes through the mandatory tutorial that serves a role of experimental instructions. Blues and
Reds collects the following data for each subject and each task: (i) performance record (win or

loss) and (ii) response times (RT) measured in seconds at every round. We use response time

data to construct the subjects’ profiles describing their dynamic reasoning. We use winning/

losing records to test how well these profiles predict whether subjects behave consistently with

backward induction.

To describe dynamic reasoning, we exploit the fact that multi-round tasks are inherently

associated with a time allocation problem: while solving a task, every time it is their turn to

make a choice, subjects reason what action to choose which, eventually, leads to a distribution

of total thinking time across all the rounds at which they make decisions. Naturally, we are

confined within the standard “as if” approach. More precisely, we do not expect people to con-

sciously go through a process of deciding how many seconds to spend on thinking at each

round. Rather, the subjects behave as if making such a decision. In other words, the observed

distribution of thinking time is an outcome of subject’s reasoning process. While we do not

know what and how precisely a subject thinks, however, we observe subject’s response times—

evidence and description of the said reasoning. To capture the complexity of a person’s

dynamic reasoning, the proposed profiling method constructs a two-dimensional vector.

The first dimension captures how savvy a subject is or, more precisely, how closely her

dynamic reasoning resembles the thinking process required to successfully backward induct.

We recognize that when it comes to backward inducting, all reasoning time should be allo-

cated to the first round. Longer response times at later rounds indicate a suboptimality of the

initially made decision. With that in mind, we compute a subject’s relative response time at

round 1 as RRT1 ¼ RT1

TT with RT1 being the response time at the first round and TT the total

response time (sum of round-based RTs). For a savvy subject, RRT1 is higher in comparison to

a naive subject.

The second dimension depicts how fast of a thinker a subject is. This is captured by the

total response time TT. Following the literature, we consider TT as a measure of cognitive
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effort a subjects exerts in solving a task ([1–6]). Faster thinkers have lower TT compared to

slower subjects.

Next, we advance the view that a lexicographic ranking is a natural order of profiles. There-

fore, Ann with profile (RRT1A, TTA) is ranked higher than Bob with profile (RRT1B, TTB) if

she is either savvier than him (RRT1A> RRT1B) or, assuming they are equally savvy, faster

(TTA< TTB).

Our key empirical hypothesis is that profiles have predictive power; that is, a subject with a

higher profile is more likely to behave in accordance with the backward induction algorithm.

To test our hypothesis, we conduct a series of empirical exercises accompanied by several

robustness checks. All the evidence validates the proposed profiling as a prediction tool.

Including the current article, data from Blues and Reds has been used to pursue different

projects in experimental economics. In [7], we test game-form recognition. We design the

same interactive problem in two different formats. One of them is more complex and requires

the subjects to correctly recognize the game they play. We find that, in general, people struggle

with game-form recognition which also proves to be more challenging than backward

induction.

In [8], we develop an empirical measure of tree complexity. To that end, we test various

metrics: average response time at the first round, average total response time, and the percent-

age of subjects who fail at backward induction. We find that the first two statistics work best to

rank trees in terms of their complexity.

From the articles based on data from Blues and Reds, the closest is [9] where the main goal

is to understand the relationship between RRT1 and TT. We find this relationship to be non-

monotonic: for low values of RRT1, TT is negatively correlated with RRT1 but this correlation

becomes positive when RRT1 is high enough.

In addition, in [9], we also investigate the power of RRT1 in predicting a subject’s success at

backward induction. First, we treat RRT1 as an unconditional metric. Dividing the sample into

RRT1-terciles shows that RRT1 is positively correlated with a subject’s correctly backward

inducting. Second, we consider RRT1 conditional on TT. Now, we split the sample into TT-

quintiles, and then, each quintile into RRT1-terciles. Conditional on TT, it is again shown that

RRT1 is a good predictor of a subject’s backward inducting. These results are also confirmed

using logit regression.

In this article, we go further and deeper with the analysis of RRT1 and TT. Rather than

focusing on unconditional or conditional RRT1, we consider a pair (RRT1, TT) as a predictor.

This allows us to distribute decision-makers in the two-dimensional typology with savvy/naive

on one axis and fast/slow on another. Importantly, we treat TT as conditional on RRT1

because of the lexicographic ranking we advance. This article sheds new light on the usefulness

of metrics built on subjects’ response times in the context of predicting their behavior.

In the literature, we find numerous examples of profiling subjects and establishing a con-

nection between profiles and behavior (e.g., [10–15]). In general, these studies profile subjects

using some form of cognitive test; the Raven Progressive Matrices ([16]) and Cognitive Reflec-

tion Test ([17]) being the most popular choices. This is where our paper distinguishes itself.

Instead of measuring general cognitive skills—that is, skills related to reasoning in a plethora

of contexts—we narrow down our focus only on skills that are required to make dynamic

choices. Here, we follow the logic of designing task-specific tests to measure task-specific skills.

For instance, to identify subject’s mathematical (or linguistic, scientific, etc.) abilities, we con-

duct an exam composed of mathematical (linguistic, scientific, etc.) exercises rather than a

general aptitude test.

Since the second dimension of the proposed profiling relates to the speed of thinking, the

closest articles related to this paper are [1, 18], and the concept of fast/slow thinking in [19].
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However, the unique feature of our article is its emphases on dynamic tasks and a two-, rather

than one-, dimensional structure of the proposed profiling.

Methodologically, this article belongs to the experimental literature that relies on measuring

response times. In economics, this literature started with [20] and, since then, has grown expo-

nentially (see [3, 4], and [5] for literature reviews). In particular, [21, 22] also rely on response

times to predict behavior—the former in the context of individual choices and the latter in

global games. However, both studies differ from our article in terms of the setting (we focus on

dynamic tasks) and goal (we not only predict behavior but also develop a profiling method).

Due to our data-collection method, it is important to mention innovative methodologies

like newspaper-based experiments (e.g., [23]) and online experiments (e.g., Ariel Rubinstein’s

https://arielrubinstein.org/gt/, [24–26]). One of the many advantages of mobile experiments is

the ease of engaging large groups of people as subjects, which is made even more effective and

efficient by advertising tools like Google AdWords.

The remainder of this article proceeds as follows. Section “Experimental design” provides a

detailed description of Blues and Reds as an experiment. Links to download Blues and Reds
from Google Play and the App Store are on the website www.bluesandreds.com. Section “Pro-

files: describing reasoning” presents the construction of profiles. Section “Profiles: predicting

behavior” establishes the predictive power of our profiling method. Section “Conclusions”

concludes. Several robustness checks for the empirical exercises and additional empirical

results are provided in Appendixes A and B in S1 Appendix. Appendix C in S1 Appendix pro-

vides the screenshot from the mandatory tutorial (experimental instructions). Finally, Appen-

dix D in S1 Appendix contains the screenshots of all the 22 tasks that generated data for this

article.

Experimental design

Blues and Reds as an experiment

Blues and Reds consists of dynamic tasks in which a human subject plays against Artificial

Intelligence (AI) that was programmed to implement the backward induction algorithm. This

article uses data from 22 tasks played after the completion of the mandatory tutorial.

Each of the 22 tasks resembles a tree with perfect and complete information. Fig 1 depicts

an example of a task in Blues and Reds; Appendix D in S1 Appendix includes the screenshots

of all the 22 tasks.

A task starts with the subject choosing which blue bridge the RoboToken (golden sphere)

crosses. Then AI selects a red bridge for the RoboToken and the process repeats. The subject

chooses at odd rounds, and AI at even rounds. If the RoboToken ends at a blue node, the sub-

ject wins; otherwise, the subject loses.

It is possible for the subject to win each task. However, this requires following the path that

is the same as the unique winning path selected by the backward induction algorithm. Deviat-

ing from that path results in the subject losing as AI was designed to exploit the subject’s mis-

takes. Subjects are instructed that AI plays against them. There is no payoff uncertainty ([27])

as subjects learn the payoff implications of blue and red nodes and that they solve problems

with zero-sum payoff structure. (See Appendix C in S1 Appendix for the screenshots of the

mandatory tutorial that serves the role of experimental instructions.) In the next section, we

argue that a subject’s winning is indicative of her correctly backward inducting.

Task have a symmetrical structure: the number of actions at each node of a given round is

the same. A 3-round task is denoted as N1.N2.N3 where Ni is the number of actions at the ith

round. A 4-round task is labeled as N1.N2.N3.N4, and so on. Fig 1 depicts the 3.2.2.2 task. The
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first column in Table 1 in Section “Data description” includes the list of all tasks from the data-

set. The sequence in which the tasks appear to the subjects is randomized for each subject.

To become a subject in the experiment, it is necessary to install Blues and Reds on a mobile

device (smartphone, tablet) from either Google Play or the App Store. To promote the app and

find subjects, we relied on AdWords and media exposure.

Except for the tutorial, subjects can play each of the 22 tasks only once (no matter whether

they win or lose). This is to incentivize subjects to reason about the choices they make. Once a

task is finished with a subject’s winning or losing, the next task becomes available. Subjects do

not choose a task they play, this is determined by a random sequence of tasks assigned to

them.

While Blues and Reds offers no financial rewards, subjects collect in-app awards for cor-

rectly solving the tasks. These non-monetary incentives in tandem with the satisfaction of win-

ning, or discontent in losing, substitute for cash incentives ([1, 28–30]). This is especially true

in our experiment as subjects self-select to install the app and, consequently, have already

revealed interest in solving the types of problems contained in Blues and Reds.

Winning and backward inducting

Each of the 22 tasks from Blues and Reds that generated data for this article was designed in a

way to test for the ability to backward induct. A subject who correctly implements the back-

ward induction algorithm is guaranteed a win in each task. As mentioned in the Introduction,

we interpret the results within the “as if” methodology implying that we do not expect that

people actually know the backward induction algorithm and literally apply it. Instead, what we

hypothesize is that their behavior is consistent with what backward induction advances. In

other words, backward induction correctly models choices that people make.

Fig 1. An example of a task from Blues and Reds.

https://doi.org/10.1371/journal.pone.0266366.g001
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At the same time, a subject who does not reason in a way consistent with backward induc-

tion, or does so but erroneously, automatically loses the task. This statement requires further

elaboration since a subject might only seemingly violate backward induction—a well-known

problem of significant concern in the presence of social preferences or belief in the opponent’s

irrationality.

First, there is a problem of social preferences. As an example, take the centipede game

([31]). Two players alternate in deciding whether to stop or go. If Ann chooses to stop, then

she gains more (in terms of monetary gains) compared to what she would gain if Bob stops at

the next round but less if the opponent chooses to go. Backward induction predicts that, under

standard assumptions, the first player stops the game at the first node. Since the first experi-

ment using the centipede game ([32]), the literature has repeatedly rejected this prediction.

A typical explanation is the notion of altruism. Other explanations include mistakes ([33]),

payoff uncertainty ([27]), lack of (common) knowledge of rationality ([34]), and non-standard

preferences ([35]. (See [36] for the most recent survey of experiments based on the centipede

game.) As [32] indicate, “if it is believed that there is some likelihood that each player may be

an altruist, then it can pay a selfish player to try to mimic the behavior of an altruist in an

attempt to develop a reputation for passing.” In other words, the centipede game does not test

backward induction. Rather, it tests the joint hypothesis of altruism and backward induction.

Consequently, in the centipede game, if Ann does not stop, it is not crystal clear what the

right explanation of her behavior should be. If altruism does not enter her utility, then not

Table 1. Summary statistics.

Task N %Win RRT1 TT
Mean Sth. Dev. Min Max Mean Sth. Dev. Min Max

2.2.2 1,638 94% 0.71 0.11 0.13 0.93 19.05 7.17 5 50

2.2.3 1,729 94% 0.74 0.10 0.06 0.93 21.07 7.22 6 49

2.3.2 1,630 92% 0.71 0.11 0.10 0.92 21.04 7.86 8 50

2.3.3 1,637 93% 0.78 0.11 0.13 0.96 22.98 9.82 8 62

3.2.2 1,666 91% 0.75 0.11 0.15 0.94 21.03 7.76 7 49

3.3.2 1,647 90% 0.77 0.12 0.12 0.96 23.18 9.56 8 61

3.2.3 1,628 91% 0.77 0.11 0.01 0.96 21.94 8.44 8 56

3.3.3 1,638 90% 0.80 0.12 0.18 0.96 25.64 9.63 5 58

4.2.2 1,717 89% 0.77 0.12 0.11 0.95 22.68 9.79 6 62

2.2.2.2 1,660 67% 0.72 0.19 0.12 0.96 30.10 14.60 6 85

2.2.2.3 1,610 79% 0.78 0.15 0.19 0.98 33.24 17.01 6 93

2.2.3.2 1,674 77% 0.77 0.16 0.12 0.98 34.55 16.91 9 90

2.3.2.2 1,606 56% 0.73 0.20 0.12 0.98 35.98 18.44 6 101

3.2.2.2 1,575 70% 0.79 0.16 0.14 0.98 38.44 20.65 5 118

2.2.2.4 1,602 83% 0.79 0.13 0.18 0.96 32.57 15.96 7 87

2.2.4.2 1,673 73% 0.77 0.17 0.07 0.97 40.44 20.88 7 112

2.4.2.2 1,641 81% 0.78 0.14 0.18 0.96 35.84 17.94 9 96

4.2.2.2 1,614 70% 0.79 0.16 0.14 0.98 38.63 21.69 8 121

2.2.2.2.2 1,545 72% 0.69 0.19 0.06 0.95 59.43 32.15 10 184

3.2.2.2.2 1,550 67% 0.68 0.22 0.04 0.97 66.26 42.55 12 235

4.2.2.2.2 1,566 48% 0.67 0.23 0.02 0.98 95.08 78.10 10 534

2.2.2.2.2.2 1,580 47% 0.61 0.21 0.08 0.97 81.55 60.14 11 328

Notes. N denotes the number of subjects who played a given task. %Win is the percentage of subjects who backward inducted. For RRT1 and TT, this table provides the

mean, standard deviation, and minimal and maximal values.

https://doi.org/10.1371/journal.pone.0266366.t001
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stopping is an indication of her violating backward induction. However, it also is possible she

is a champion of backward induction who is driven by altruism; in this case, it would be erro-

neous to conclude that not stopping is an indicator of Ann’s inability to backward induct.

Second, there is a problem of belief that the opponents are not fully rational ([14, 15, 34, 37,

38]). In the centipede game, if Ann assigns the probability high enough to Bob being irrational,

then she will not stop expecting Bob not to stop either so she can stop at a later stage and gain

more. Therefore, it would be a mistake to consider Ann’s choice as a violation of backward

induction.

While phenomena like social preferences and players’ irrationality are of interest and

importance—after all, we never make decisions in a lab-like clean environment—they also cre-

ate noise that, as discussed, make it difficult if not impossible to test for backward induction.

Consequently, a subject’s choices need not reflect whether she correctly backward inducts.

Without such knowledge, it is impossible to determine how much of subject’s behavior is

driven by her backward-inducting skills and how much is to be contributed to other factors.

Removing noise when testing for backward-inducting skills is of critical importance. To

that end Blues and Reds consists only of winner-takes-all tasks. As [39] observe, behavior in

tasks with such a payoff structure “does not depend on social preferences or beliefs about the

rationality of one’s opponent. This allows for a purer measure of players’ ability to recognize

and implement backward induction strategies.” However, even in zero-sum games it is possi-

ble for social preferences to be present; for instance, a parent loses on purpose in a chess or ten-

nis match played against their own child. To err on the side of caution, Blues and Reds was

designed as a human vs AI rather than a human vs human experiment. As [40] argue, playing

against the computer “turns off social preferences (and beliefs that other players express social

preferences) by having human subjects bargain with robot players who play subgame perfectly

and maximize their own earnings, and believe the humans will too.”

To elaborate on how the zero-sum payoffs structure allows us to disregard subjects’ belief in

AI’s rationality (or lack of it), consider a simple tree depicted in Fig 2 with payoffs in the alpha-

betical order. In the context of our experiment, Ann plays the role of the subject while Bob is

AI.

Backward induction indicates that Ann must choose L which guarantees her utility 1. Sup-

pose, however, that she assigns probability p to Bob being irrational. More precisely, Bob will

choose δ with probability p if Ann opts for R. However, even if the probability p is strictly non-

zero, it is suboptimal for Ann to go with R. This is because L yields utility 1 while the expected

utility from R is p. In other words, for backward-inducting Ann, L strictly dominates R.

To sum, subjects in Blues and Reds who do not reason in accordance with correctly imple-

mented backward induction lose automatically. Those who do make their choices as pre-

scribed by backward induction win with certainty.

Data description

Data was collected between August 15, 2017 and February 6, 2018. For each task and each sub-

ject, Blues and Reds records the following data:

1. Whether a subject wins or loses.

2. For each round, response time (RT) spent on selecting an action. RTs are measured in sec-

onds. Subjects act at odd rounds. Consequently, in 3- and 4-round tasks, we record RT1

and RT3—response time at round 1 and 3, respectively, and in 5- and 6-rounds tasks, we

additionally record RT5.

From the data, the following three variables are constructed:
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1. TT. This is a subject’s total response time in a task; i.e., the sum of round-based RTs.

2. RRT1. This is a subject’s relative time spent at the first round defined as RRT1 ¼ RT1

TT , where

RT1 is a subject’s response time at the first round of a task.

3. Win. This variable takes the value of 1 if a subject wins and is otherwise 0.

A conservative data-cleaning procedure was applied, and observations with TT above the

95th percentile within each task were removed from the sample. The final data consists of

35,826 observations generated from 6,463 subjects located in 141 countries.

Table 1 presents the number of subjects, percentage of subjects who won (i.e., behave in

accordance with backward induction), and summary statistics for RRT1 and TT for each task

in the experiment.

Profiles: Describing reasoning

Fictional example

The objective of this section is to reason about reasoning in dynamic tasks within the context

of backward induction and response times. We start with four fictional subjects who played

the task 3.2.2.2 (Fig 1) and whose response times and total times are presented in Table 2. In

Blues and Reds, subjects only choose at odd rounds; hence, the data consists only of RT1 and

RT3.

Given the data in Table 2, the following challenges are of interest: (1) designing the subjects’

profiles that depict their dynamic reasoning processes, (2) proposing a ranking of profiles that

orders subjects from the least to the most likely to behave in accordance with backward induc-

tion, and (3) testing whether that ranking indeed predicts behavior consistent with backward

induction.

Fig 2. Zero-sum payoffs and belief in opponent’s rationality.

https://doi.org/10.1371/journal.pone.0266366.g002
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Two-dimensional profile

Solving dynamic tasks is a cognitive challenge that requires spending time on reasoning. In a

multi-round task, thinking takes place every times an action is to be selected. Recall that in our

experiment subjects select actions at odd rounds. Hence, in 3- and 4-round tasks, they choose

actions twice. In 5- and 6-rounds tasks, they make three choices.

Consequently, subjects face a time allocation problem inherent to dynamic tasks. As already

mentioned in the Introduction, we interpret data in the context of decision-makers as if solv-

ing this time-allocation problem. As in a static decision problem, they decide how much rea-

soning time to allocate to the whole problem (TT). In addition, they also distribute that total

time across all the rounds they select actions at (round-based RTs). This problem generates

two variables of particular interest.

First, we look at total time TT that captures cognitive effort the subjects exert ([1–6]). We

say that fast subjects are those with low TT and slow subjects are characterized by high TT. In

terms of their thinking speed, in Table 2, Ann and Chris are fast, while Bob and David are

slow.

Second, we compute the time allocated to thinking at the first round (RT1) as a fraction of

the total reasoning time (TT), that is, the relative time a subject spends thinking before select-

ing an action in the first round (RRT1). When it comes to backward inducting, reasoning at

the first round is crucial for selecting an optimal choice. This is especially relevant in Blues and
Reds as making a mistake in any round results in a loss.

If a correct decision is made in round 1, then, during the following rounds, a subject only

spends time on physically picking the right actions but no longer has to re-think what to

choose. In this case, we observe a high value of RRT1. Time spent in later rounds indicates a

possible flaw in the subject’s reasoning (e.g., making a mistake in the first round). Here, we

record a low value of RRT1.

Since high RRT1 is consistent with correctly following the backward induction algorithm,

subjects with higher RRT1 are called savvy while those with lower RRT1 are labeled as naive.

In Table 2, Ann and Bob are equally savvy (RRT1 = 0.75) and savvier than Chris and David

who are equally naive (RRT1 = 0.4).

To summarize, a profile is a two-dimensional vector (RRT1, TT) with RRT1 and TT captur-

ing how savvy/naive and fast/slow, respectively, a subject is.

Lexicographic ranking

Once the profiles have been constructed, the next challenge lies in ranking them. After all, the

goal is to empirically verify that higher-ranked profiles are more likely to behave in line with

backward induction. However, this test demands a definition of what it means when one pro-

file is ranked higher than another.

There is not much to discuss regarding ranking methods for scalar profiles. However, for

two-dimensional profiles like (RRT1, TT), ranking is not a trivial task as there are several ways

Table 2. Response times of four fictional subjects in the task 3.2.2.2.

Subject RT1 RT3 TT

Ann 15 5 20

Bob 30 10 40

Chris 8 12 20

David 16 24 40

https://doi.org/10.1371/journal.pone.0266366.t002
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to rank vectors. We rely on the fact that solving dynamic problems is a cognitive task. If a per-

son does not understand how to find the optimal choice, additional time will not help them

with the task. Hence, how people allocate their thinking time (RRT1) is more important than

how much total time they spend thinking (TT). Therefore, a lexicographic ranking is the natu-

ral solution.

Consequently, a savvy profile (larger RRT1) is higher than a naive profile (smaller RRT1),

no matter how fast/slow both are. However, the second dimension (TT) becomes useful for

ranking profiles who are equally savvy (the same RRT1). Subjects who are more proficient or

experienced with making dynamic decisions reason faster (a lower TT) as thinking is cogni-

tively costly and spending less time on reasoning is preferable. For instance, an expert and her

student are equally savvy as they share the same understanding of how to apply the backward

induction algorithm. However, the expert is faster and requires less time to implement the

algorithm as she has more experience solving dynamic problems, a result that has been empiri-

cally confirmed in the vast body of literature on expertise in chess (e.g., [41–44]). Conse-

quently, assuming that the two profiles are equally savvy, the faster one is a higher profile.

To summarize, Ann with (RRT1A, TTA) is said to have a higher profile than Bob with

(RRT1B, TTB) if one of the following holds:

1. Ann is savvier than Bob; i.e., RRT1A> RRT1B.

2. Ann and Bob are equally savvy but she is faster; i.e., if RRT1A = RRT1B, then TTA< TTB.

Ann is the highest profile in Table 2, followed by Bob, then Chris, with David as the lowest

profile. The main predictive claim of this article is that a higher profile is more likely to cor-

rectly backward induct.

We provide further empirical evidence about the importance of using a lexicographic rank-

ing in Appendix B in S1 Appendix. Using regression analysis, we show that TT has predictive

power about the probability of a subject correctly backward inducting only after we control by

RRT1.

Profiles: Predicting behavior

In this section, we empirically validate the predictive power of our profiling method. The vari-

ous exercises that we conduct have the same goal: to verify whether higher profiles are more

likely to behave in accordance with backward induction.

In Section “Testing predictive power: 22 replications,” we consider each dynamic task as a

separate experiment. In every task, we replicate the same test to determine whether the profil-

ing method is able to differentiate subjects according to their likelihood to correctly backward

induct. In Section “Predictive power of a profile constructed from a single game,” we study

whether a profile constructed from the data in a given task predicts the behavior in subsequent

tasks. We also test for how long (or, for how many tasks after it was constructed) a profile

maintains its predictive power. Finally, in Section “Predictive power of a profile constructed

from a group of consecutive games,” we study whether constructing the profiles using multiple

tasks instead of a single task improves the profiles’ predictive power.

In each exercise of this section, we partition the subjects into six profiles. First, the subjects

are divided into terciles according to their RRT1. Second, for each RRT1-tercile, the subjects

are further split into upper-TT and lower-TT halves with the median TT as a threshold value.

Therefore, we use the 3-RRT1 by 2-TT division to partition subjects into six profiles.

Profile 1 corresponds to the lowest RRT1-tercile and upper TT-half—this is the most naive

and the slowest profile. Profile 2 corresponds to the lowest RRT1-tercile and lower TT-half.
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The profile keeps increasing until we reach Profile 6, which corresponds to the subjects in the

highest RRT1-tercile and lower TT-half—this is the savviest and the fastest profile.

Fig 3 graphically summarizes the main hypothesis tested in this section. A two-dimensional

space captures decision-makers’ savviness and speed of reasoning. Each dot represents a pro-

file, from Profile 1 (the lowest) to Profile 6 (the highest). Probability of a profile correctly back-

ward inducing increases with the direction of dashed arrows.

Appendix A in S1 Appendix contains a series of robustness checks prepared for each exer-

cise presented in this section. First, we control for attrition by restricting the data to subjects

who completed all 22 tasks analyzed in this article. Second, using the whole sample, we con-

sider alternative partitioning of subjects into profiles: 2-RRT1 by 2-TT (four profiles), 4-RRT1

by 2-TT (eight profiles), and 3-RRT1 by 3-TT (nine profiles).

Appendix B in S1 Appendix provides further empirical evidence that a lexicographic profil-

ing method is necessary by showing in a regression setup that TT has predictive power on the

probability of a subject correctly backward inducting only after we control for RRT1.

Testing predictive power: 22 replications

In this section, the same test of predictive power is replicated in the 22 various tasks. Each

time, the following exercise is conducted.

First, as already explained, we split the subjects into six profiles according to the 3-RRT1 by

2-TT partition. Data is presented in Table 3. For each task, we provide the number of subjects

who played a task (N) and, for each profile, we compute the percentage of subjects who back-

ward inducted (i.e., won a task). For profile i = 1, . . ., 6, this percentage is denoted as Pi.

Fig 3. Graphical representation of the main hypothesis. Notes. Each dots represents a two-dimensional profile, from

the lowest Profile 1 to the highest Profile 6. Probability of subject behaving consistently with backward induction

increases with the direction of dashed arrows.

https://doi.org/10.1371/journal.pone.0266366.g003
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Table 3. Profiling with the 3-RRT1 by 2-TT partition.

Task N Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6

2.2.2 1,638 72.16% 93.91% 96.28% 99.36% 98.91% 100%

(0.00) (0.10) (0.01) (0.72) (0.04)

2.2.3 1,729 75.53% 92.44% 95.37% 99.28% 98.33% 100%

(0.00) (0.07) (0.00) (0.86) (0.01)

2.3.2 1,630 70.18% 93.95% 92.06% 100% 98.17% 99.62%

(0.00) (0.81) (0.00) (0.99) (0.05)

2.3.3 1,637 66.41% 95.29% 98.80% 100% 98.91% 99.26%

(0.00) (0.01) (0.04) (0.96) (0.33)

3.2.2 1,666 61.73% 89.24% 96.61% 99.37% 97.28% 99.63%

(0.00) (0.00) (0.01) (0.97) (0.02)

3.3.2 1,647 65.65% 84.21% 96.37% 99.63% 95.41% 99.65%

(0.00) (0.00) (0.00) (1.00) (0.00)

3.2.3 1,628 65.12% 85.61% 96.56% 99.23% 98.81% 100%

(0.00) (0.00) (0.01) (0.69) (0.04)

3.3.3 1,638 57.20% 84.35% 97.08% 99.34% 97.35% 99.64%

(0.00) (0.00) (0.02) (0.97) (0.01)

4.2.2 1,717 57.00% 87.05% 96.15% 100% 98.00% 98.92%

(0.00) (0.00) (0.00) (0.99) (0.18)

2.2.2.2 1,660 7.22% 27.90% 75.18% 94.85% 95.57% 99.64%

(0.00) (0.00) (0.00) (0.35) (0.00)

2.2.2.3 1,610 26.92% 60.81% 90.66% 97.84% 96.43% 100%

(0.00) (0.00) (0.00) (0.84) (0.00)

2.2.3.2 1,674 25.18% 54.04% 87.83% 97.97% 98.22% 100%

(0.00) (0.00) (0.00) (0.41) (0.01)

2.3.2.2 1,606 3.07% 7.99% 49.25% 79.79% 96.30% 99.24%

(0.01) (0.00) (0.00) (0.00) (0.01)

3.2.2.2 1,575 14.13% 32.68% 82.61% 95.13% 94.98% 98.17%

(0.00) (0.00) (0.00) (0.53) (0.02)

2.2.2.4 1,602 48.18% 68.08% 91.82% 94.85% 96.51% 98.89%

(0.00) (0.00) (0.08) (0.17) (0.04)

2.2.4.2 1,673 15.75% 44.36% 80.36% 97.92% 96.13% 99.63%

(0.00) (0.00) (0.00) (0.90) (0.00)

2.4.2.2 1,641 35.58% 67.25% 89.51% 93.84% 97.83% 99.26%

(0.00) (0.00) (0.03) (0.01) (0.08)

4.2.2.2 1,614 13.46% 42.59% 79.06% 93.51% 95.93% 98.88%

(0.00) (0.00) (0.00) (0.11) (0.02)

2.2.2.2.2 1,545 18.22% 61.87% 67.56% 93.31% 93.82% 100%

(0.00) (0.09) (0.00) (0.41) (0.00)

3.2.2.2.2 1,550 14.83% 45.10% 64.64% 87.35% 94.12% 97.32%

(0.00) (0.00) (0.00) (0.00) (0.04)

4.2.2.2.2 1,566 3.79% 21.79% 27.20% 56.11% 85.50% 93.46%

(0.00) (0.08) (0.00) (0.00) (0.00)

(Continued)
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The main hypothesis is that as the profile increases, Pi increases as well. More formally, we

test the following null hypothesis H0 against the alternative hypothesis H1.

H0 : Pi� 1 � Pi ð1Þ

H1 : Pi� 1 < Pi ð2Þ

Since there are six profiles in each task, we conduct 5 comparisons per task. In Table 3, the

value in parentheses below Pi corresponds to the p-value of our test.

Analysis of Table 3 indicates that in 97 out of the 110 pairwise comparisons it is true that

Pi> Pi−i. Moreover, in 89 out of these 97 comparisons, we reject H0 at the 10% level of signifi-

cance or less. We conclude that higher profiles are more likely to backward induct and, conse-

quently, establish the predictive power of the two-dimensional profiling.

Predictive power of a profile constructed from a single task

In this section, we evaluate whether a profile calculated in a given task has predictive power in

subsequently played tasks. This exercise sheds a light on how well a profile carries information

into the future.

Recall that every subject in the sample is assigned a random sequence of 22 tasks. Let vari-

able Seq = 1, . . ., 22 denote the order at which a given task appeared in a sequence. For k = 1,

. . ., 21, let Seq−k correspond to a task that appeared k tasks before the task that was presented

in the order Seq.

Therefore, for each value of k we construct a dataset in which we test if the profiles con-

structed at tasks played in the order Seq − k have predictive power in tasks played in the order

Seq. For example, if we want to test if the profiles assigned to subjects are still informative 6

tasks after they are calculated, we set k = 6. Then, we test if the outcome (winning/losing) at

tasks in Seq> 6 can be predicted with the profiles constructed in tasks Seq−6 (i.e., for the out-

come of a task in Seq = 7 the corresponding profile is the one constructed in task Seq − k = 1,

for the outcome of a task in Seq = 8 the corresponding profile is the one constructed in task

Seq − k = 2, and so on).

As in Subsection “Testing predictive power: 22 replications,” we divide subjects into six

profiles according to the 3-RRT1 by 2-TT partition. For each k = 1, . . ., 21, we estimate the fol-

lowing logit model. The choice of the particular econometric model is driven by the objective

of this article: namely, evaluating how well the proposed profiling method predicts subjects’

behaviors. For profiling to be efficient and effective, it is important for the subjects’ descriptive

characteristics that affect their probability to backward induct to be captured in their profiles.

Then, when the method is applied, it is enough that the subjects’ data consists only of their

Table 3. (Continued)

Task N Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6

2.2.2.2.2.2 1,580 17.29% 24.90% 32.21% 40.93% 82.13% 84.09%

(0.02) (0.03) (0.02) (0.00) (0.27)

Notes. The table shows the probability that a subject with Profile i wins a given task (Pi), where subjects are divided into six profiles in each task. The profiles are

constructed by dividing RRT1 into terciles and, further, dividing each RRT1-tercile into two TT-halves. Profile 1 corresponds to the lowest RRT1-tercile and upper TT-

half; Profile 2 corresponds to the lowest RRT1-tercile and lower TT-half; Profile 3 corresponds to the middle RRT1-tercile and upper TT-half; Profile 4 corresponds to

the middle RRT1-tercile and lower TT-half; Profile 5 corresponds to the highest RRT1-tercile, upper TT-half; Profile 6 corresponds to the highest RRT1-tercile and lower

TT-half. Finally, the values in parentheses correspond to the p-value of testing the null hypothesis that Pi−1� Pi.

https://doi.org/10.1371/journal.pone.0266366.t003
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choices.

LogitðYiÞ ¼ aþ bSSeqþ bCComplexþ bPProfilei;k ð3Þ

Yi is the dependent variable in the regression and captures whether the subject i backward

inducted in the task appearing in the order Seq (Yi = 1) or did not backward induct (Yi = 0), α
is the intercept, and Seq corresponds to the order in which a task appeared in the subject i’s
sequence of tasks.

To control for individual task complexity, we introduce the variable Complex and, following

[8], define it as the average response time at the first node calculated from all subjects who

played a given task. We control for complexity because the order of tasks a subject plays is ran-

dom. This implies that for a given value of Seq, various subjects participate in tasks of varying

complexity. Following our discussion in Section “Lexicographic ranking,” the average

response time at the first node is a natural measure of complexity as, especially in the context

of tasks studied in this article, it is the reasoning at the first node that is crucial for a subject’s

success. More complex tasks require more thinking time at the beginning. Importantly, [8]

show that the average response time at the first node is an exceptionally reliable empirical mea-

sure of complexity.

Finally, Profilei,k, the main variable of interest, is a profile of the subject i calculated in a task

that appeared in the order Seq − k. The values of variable Profilei,k range from 1 (lowest profile)

to 6 (highest profile). The positive coefficient of Profilei,k verifies the predictive power of our

profiling method.

Results are shown in Table 4, where we report in parentheses the p-values from heteroske-

dastic robust standard errors. (Estimations using clustered standard errors at the subjects’ level

do not qualitatively modify any result).

Table 4 provides three interesting results. First and most importantly, the coefficient for

Profilei,k is always positive and statistically significant at the 1% level or less. This means that a

higher profile implies a higher likelihood of a subject correctly backward inducting. (This is

also true in the extreme case of k = 21: a profile calculated in the 1st task the subject plays is

still informative in the 22nd played task.) In fact, the coefficient for Profilei,k is fairly stable

across all k values, which suggests that the information contained in the profiles calculated at

any prior task has a relatively similar predictive power.

Second, the order in which a task is played is important. The variable Seq shows that as a

subject gains experience, the likelihood of correctly solving a task increases. Interestingly, that

increment decreases and becomes non-significant once a subject has played nine or more

tasks (k� 9). This result points towards a limitation of non-supervised learning. However, an

in-depth analysis of the impact of non-supervised learning is beyond the scope of this paper

and would benefit from future research.

Third and finally, the coefficient of Complex is always negative and statistically significant.

As expected, facing a more complex task decreases the likelihood of a subject correctly back-

ward inducting.

Note that as we increase k, the number of observations used to estimate the model

decreases. This is driven by two facts. First, a larger k leads to using a lower amount of data per

subject. Imagine a subject who played all 22 tasks. For k = 1 the model uses 21 observations for

this subject, while for k = 21 it uses only 1 observation. Second, the larger the k is the larger the

impact of attrition as most subjects played fewer than the 22 tasks used in this paper. The prob-

lem of attrition is controlled for in Appendix A.3.1 in S1 Appendix, where we restrict the data

analysis to subjects who played all tasks. Qualitatively, the results remain the same.
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Table 4. Predictive power of a profile constructed from a single task.

k N Seq Complex Profilei,k

1 28,283 0.069 -0.046 0.253

(0.00) (0.00) (0.00)

2 22,956 0.046 -0.047 0.278

(0.00) (0.00) (0.00)

3 19,157 0.038 -0.047 0.279

(0.00) (0.00) (0.00)

4 16,707 0.038 -0.045 0.280

(0.00) (0.00) (0.00)

5 14,579 0.034 -0.048 0.318

(0.00) (0.00) (0.00)

6 12,827 0.033 -0.046 0.273

(0.00) (0.00) (0.00)

7 11,360 0.021 -0.045 0.312

(0.00) (0.00) (0.00)

8 10,089 0.023 -0.047 0.312

(0.00) (0.00) (0.00)

9 8,931 0.010 -0.046 0.303

(0.25) (0.00) (0.00)

10 7,906 0.000 -0.048 0.334

(0.97) (0.00) (0.00)

11 6,985 0.004 -0.047 0.328

(0.72) (0.00) (0.00)

12 6,133 0.002 -0.046 0.339

(0.89) (0.00) (0.00)

13 5,356 0.017 -0.047 0.332

(0.32) (0.00) (0.00)

14 4,609 0.006 -0.045 0.327

(0.31) (0.00) (0.00)

15 3,921 -0.004 -0.046 0.338

(0.88) (0.00) (0.00)

16 3,282 -0.024 -0.044 0.298

(0.44) (0.00) (0.00)

17 2,676 -0.018 -0.046 0.338

(0.67) (0.00) (0.00)

18 2,101 0.059 -0.043 0.273

(0.33) (0.00) (0.00)

19 1,540 0.058 -0.051 0.311

(0.55) (0.00) (0.00)

20 1,014 -0.101 -0.045 0.301

(0.67) (0.00) (0.00)

21 488 – -0.032 0.252

(0.00) (0.00)

Notes. The table shows the results from estimating a logit model. The dependent variable captures whether the

subject backward inducted (Yi = 1) or did not backward induct (Yi = 0) in a given task. The independent variables are

Seq (order in the sequence in which a task appeared for the subject), Complex (measure of task complexity), and

Profilei,k (profile of subject i calculated in the tasks that appeared in the order Seq−k of the sequence). The regression

includes an intercept. The parentheses contain p-values calculated using heteroskedastic robust standard errors.

https://doi.org/10.1371/journal.pone.0266366.t004
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Predictive power of a profile constructed from a group of consecutive tasks

In this section we study the predictive power of the proposed profiling method by constructing

the profiles using data that consists of g consecutive tasks. The goal is to determine whether a

multi-task profile has better predictive power than the single-task profile we have relied on so

far. To make the results easier to compare across the different multi-task profiles, we fix the

sequence of tasks in which the predictive power of the profiles is tested.

We apply our profiling method using the first g tasks (with g = 1, . . ., 9) and test its predic-

tive power in all tasks played in the second part of the sequence of tasks a subject is assigned to

(i.e., from Seq = 11 to Seq = 22). Given that every subject receives a randomly assigned

sequence of tasks and every task has a different distribution of RRT1 and TT (see Table 1), we

normalize these metrics by applying the standard min-max normalization method that maps

the distribution of the variables to the [0, 1] interval.

More precisely, for each task s and each subject i, we compute the following variables.

RRT1min� maxi;s ¼
RRT1i;s � minðRRT1sÞ

maxðRRT1sÞ � minðRRT1sÞ
ð4Þ

TTmin� max
i;s ¼

TTi;s � minðTTsÞ
maxðTTsÞ � minðTTsÞ

ð5Þ

Then, for each group of g-tasks (where g = 1, . . ., 9) we calculate for each subject the following

variables.

RRT1gi ¼
1

g

Xg

s¼1

RRT1min� maxi;s ð6Þ

TTg
i ¼

1

g

Xg

s¼1

TTmin� max
i;s ð7Þ

Then, for each g, we use the subjects’ vectors ðRRT1gi ;TT
g
i Þ to create 6 profiles using the two-

dimensional profiling with the 3-RRT1gi by 2-TTg
i division. (This method is in the same spirit

of the technique used when we partitioned subjects into the six profiles in Sections “Testing

predictive power: 22 replications” and “Predictive power of a profile constructed from a single

game”).

For each g, we test the predictive power of our profiling method by estimating the following

logit model.

LogitðYiÞ ¼ aþ bSSeqþ bCComplexþ bPProfilei;g ð8Þ

In the model (8), Seq> 10 and g = 1, . . ., 9, and the variables Yi, Seq, and Complex are the same

as defined in the model described in (3) and discussed in Section “Predictive power of a profile

constructed from a single game.” For each g, the variable Profilei,g corresponds to the subject’s

i profile calculated using the first g tasks. The positive coefficient of Profilei,g confirms the pre-

dictive power of our profiling method. Results are in Table 5 below.

Consistent with our previous results, the variable Complex is always negative and statisti-

cally significant. The variable Seq is always insignificant since we are only estimating the likeli-

hood of a subject correctly solving a task after the 10th task has been played, and, from Table 4,

we already know that Seq loses its predictive power after the 8th task.

The most important result pertains to the main variable of interest in this exercise, namely

the multi-task profile, Profilei,g. The coefficient βP is significant for all values of g (from 1 to 9).
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The results show that the more tasks we use to construct the profiles, the larger the coefficient.

However, the coefficient’s increments after using 5 tasks (g = 5) become quite small. In fact, in

Table A.3 in Appendix A.3.1 in S1 Appendix, where we restrict the analysis to subjects who

played all tasks, the largest coefficient for Profilei,g is found at g = 5.

This result implies that looking only at the first five tasks the subject plays offers almost all

the necessary information to discriminate subjects by their likelihood to correctly backward

induct in future tasks. This is captured in Table 6, which depicts the marginal effect of each

profile (from Profile 1 to Profile 6) across the nine g groups of tasks used to create the 6

profiles.

Table 6 shows that the difference in marginal effect between two consecutive profiles

increases when we use more tasks to calculate the profiles. This means that increasing the

number of tasks to construct the profiles improves their predictive capacity.

For example, for g = 1, P(win|Profile = 1) = 78.98% and P(win|Profile = 6) = 93.51%. On the

other hand, for g = 5, P(win|Profile = 1) = 71.54% and P(win|Profile = 6) = 96.07%. Interest-

ingly, after g = 5, the change in difference between the profiles’ marginal effects becomes quite

small. For example, for g = 9, P(win|Profile = 1) = 70.01% and P(win|Profile = 6) = 97.02%,

which is quite similar to that of g = 5.

Finally, Fig 4 below shows the marginal effects for g = 5 only, where we added the 95% con-

fidence interval to show that the profiling method successfully distinguishes profiles by their

likelihood to correctly solve the tasks.

In summary, the three exercises presented in this section in tandem with a series of robust-

ness analyses included in Appendix A in S1 Appendix have established that the proposed

Table 5. Predictive power of a profile constructed from a group of consecutive tasks.

g N Seq Complex Profilei,g

1 7,868 0.008 -0.046 0.294

(0.43) (0.00) (0.00)

2 7,310 0.009 -0.048 0.342

(0.82) (0.00) (0.00)

3 6,882 0.002 -0.049 0.399

(0.85) (0.00) (0.00)

4 6,538 -0.005 -0.049 0.434

(0.68) (0.00) (0.00)

5 6,229 0.000 -0.050 0.504

(0.94) (0.00) (0.00)

6 6,013 -0.005 -0.051 0.521

(0.68) (0.00) (0.00)

7 5,820 -0.006 -0.051 0.553

(0.65) (0.00) (0.00)

8 5,609 -0.001 -0.051 0.544

(0.91) (0.00) (0.00)

9 5,521 0.001 -0.051 0.573

(0.92) (0.00) (0.00)

Notes. The table shows the results from estimating a logit model. The dependent variable captures whether the

subject backward inducted (Yi = 1) or did not backward induct (Yi = 0) in a given task. The independent variables are

Seq (order in the sequence in which a task appeared for the subject), Complex (measure of task complexity), and

Profilei,g (profile of subject i calculated using the first g tasks the subject played). The regression includes an intercept.

The parentheses contain p-values calculated using heteroskedastic robust standard errors.

https://doi.org/10.1371/journal.pone.0266366.t005
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profiling method has excellent predictive power. First, we showed that, in each of the 22 tasks

analyzed in this article, the subjects’ profiles correctly distinguish subjects by their probability

of backward inducting. Second, we confirmed that profiles carry information into the future.

Finally, we found that while using more than one task to construct the profiles increases their

predictive power, relying on just 5 tasks suffices.

Appendix A in S1 Appendix contains a series of robustness checks prepared for each exer-

cise presented in this section. First, we control for attrition by restricting the data to subjects

who completed all 22 tasks analyzed in this article. Second, using the whole sample, we con-

sider alternative partitioning of subjects into profiles: 2−RRT1 by 2−TT (four profiles), 4

−RRT1 by 2−TT (eight profiles), and 3 − RRT1 by 3 − TT (nine profiles). The optimal granu-

larity of the partition used for profiling subjects depends on the dispersion of a problem’s

Table 6. Marginal effects.

g Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6

1 78.98% 83.03% 86.45% 89.30% 91.63% 93.51%

2 75.01% 80.26% 84.66% 88.25% 91.12% 93.37%

3 73.78% 79.99% 85.06% 89.05% 92.12% 94.42%

4 73.51% 80.26% 85.67% 89.83% 92.93% 95.17%

5 71.54% 79.64% 85.92% 90.56% 93.84% 96.07%

6 71.44% 79.80% 86.22% 90.90% 94.16% 96.34%

7 70.52% 79.50% 86.31% 91.19% 94.50% 96.66%

8 71.17% 79.87% 86.49% 91.24% 94.49% 96.62%

9 71.01% 80.16% 86.99% 91.79% 94.99% 97.02%

Notes. The estimated marginal effects correspond to the logit model presented in Table 5.

https://doi.org/10.1371/journal.pone.0266366.t006

Fig 4. Marginal effects for g = 5. Notes. The estimated marginal effects and confidence intervals correspond to the

logit model presented in Table 5 for the case g = 5.

https://doi.org/10.1371/journal.pone.0266366.g004
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response times. Our results suggest that if response times are condensed around the mean, a

higher granularity might reduce accuracy, while if response times are more disperse, a lower

granularity might reduce accuracy.

Conclusions

This article develops a novel taxonomy of decision makers who solve dynamic tasks. The pro-

posed profiling method is parsimonious and highly predictive of a subject’s likelihood to act in

accordance with backward induction.

A profile consists of two dimensions. The first dimension relates the thinking process of a

subject to the implementation of the backward induction algorithm. It is quantified as the rela-

tive response time at the first round (RRT1). The second dimension relates the thinking pro-

cess of a subject to the effort that is required to implement the backward induction algorithm.

It is measured by the total time spent on solving the task (TT).

Ann with (RRT1A, TTA) has a higher profile than Bob with (RRT1B, TTB) if she is either sav-

vier (i.e., RRT1A> RRT1B) or they are equally savvy but she is faster (i.e., if RRT1A = RRT1B,

then TTA< TTB). We hypothesize that higher profiles are more likely to behave in accordance

with backward induction.

To test the predictive power of the proposed profiling, we use a database generated by Blues
and Reds, a mobile app for Android and iOS that was developed with the intention to take

advantage of the omnipresence of mobile technology. The objective of Blues and Reds is to

conduct mobile experiments, that is, experiments in which people install the app on their

mobile devices and become the subjects of an experiment by using the app.

The database used in this paper consists of 35,826 observations from 6,463 subjects located

in 141 countries. The experiment consists of 22 dynamic tasks with perfect and complete infor-

mation played by human subjects against Artificial Intelligence. Subjects either win or lose,

and winning is indicative of backward inducting. For each subject and each task, Blues and
Reds records the response time at each round of the task and whether the subject wins.

A variety of empirical exercises accompanied by several robustness checks offer support for

our main hypothesis and validate the predictive power of our profiling method: higher profiles

are more likely to make choices consistent with the backward induction algorithm.
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