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Abstract

Background: Developing binary classification rules based on SNP observations has been a major challenge for many
modern bioinformatics applications, e.g., predicting risk of future disease events in complex conditions such as cancer.
Small-sample, high-dimensional nature of SNP data, weak effect of each SNP on the outcome, and highly non-linear
SNP interactions are several key factors complicating the analysis. Additionally, SNPs take a finite number of values
which may be best understood as ordinal or categorical variables, but are treated as continuous ones by many
algorithms.

Methods: We use the theory of high dimensional model representation (HDMR) to build appropriate low
dimensional glass-box models, allowing us to account for the effects of feature interactions. We compute the second
order HDMR expansion of the log-likelihood ratio to account for the effects of single SNPs and their pairwise
interactions. We propose a regression based approach, called linear approximation for block second order HDMR
expansion of categorical observations (LABS-HDMR-CO), to approximate the HDMR coefficients. We show how HDMR
can be used to detect pairwise SNP interactions, and propose the fixed pattern test (FPT) to identify statistically
significant pairwise interactions.

Results: We apply LABS-HDMR-CO and FPT to synthetically generated HAPGEN2 data as well as to two GWAS cancer
datasets. In these examples LABS-HDMR-CO enjoys superior accuracy compared with several algorithms used for SNP
classification, while also taking pairwise interactions into account. FPT declares very few significant interactions in the
small sample GWAS datasets when bounding false discovery rate (FDR) by 5%, due to the large number of tests
performed. On the other hand, LABS-HDMR-CO utilizes a large number of SNP pairs to improve its prediction accuracy.
In the larger HAPGEN2 dataset FTP declares a larger portion of SNP pairs used by LABS-HDMR-CO as significant.

Conclusion: LABS-HDMR-CO and FPT are interesting methods to design prediction rules and detect pairwise feature
interactions for SNP data. Reliably detecting pairwise SNP interactions and taking advantage of potential interactions
(Continued on next page)
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to improve prediction accuracy are two different objectives addressed by these methods. While the large number of
potential SNP interactions may result in low power of detection, potentially interacting SNP pairs, of which many
might be false alarms, can still be used to improve prediction accuracy.

Keywords: Single nucleotide polymorphism, Binary classification, High dimensional model representation, Pairwise

Background

Many modern bioinformatics applications utilize data
analysis methods originally developed and studied in the
fields of statistics, signal processing, and machine learn-
ing. In particular, in many cases, the application can
be formulated as a classification or regression problem.
Data encountered in bioinformatics is typically “small-
sample high-dimensional’, a challenge not encountered in
many classical statistics problems and machine learning
applications. For instance, to predict the risk of a per-
son being diagnosed with a specific complex disease in
the future, or to predict the effect of a treatment, e.g.,
for targeted therapy, one may collect several hundred
thousand single nucleotide polymorphisms (SNPs) in a
sample of several hundred or a few thousand patients
with known labels. Although current “omics” data pro-
vide a deluge of information per sample point, research
being restricted to small sample sizes impedes reliable
analysis. While being a small-sample high-dimensional
problem is typical of many bioinformatics applications, it
seems to be more pronounced when analyzing SNPs as
(a) current technologies measure hundreds of thousands
of SNPs, and (b) sample size can easily be much smaller
than the number of disease associated SNPs. Further-
more, many molecular features, and in particular SNPs,
can be weak markers, meaning each individual feature
alone cannot reliably predict the disease outcome, and a
large collection of features need to be considered together
to obtain reliable predictions. Additionally, biological fea-
tures are typically heavily dependent, for instance due to
linkage disequilibrium (LD), and have complex interac-
tions, which may exacerbate the difficulties in developing
accurate prediction rules. Finally, note that interpretabil-
ity is an important aspect in biological research. Not only
do we look for biological markers and prediction rules
with high accuracy, but also require a glass-box model
that can explain “how” and “why” the prediction rule has
come to a specific decision. For example, that a specific
mutation increases cancer risk by some amount, or pres-
ence of a combination of mutations is an indicator of
high risk.

To that end, many pipelines implement a first phase of
feature selection to reduce dimensionality, improve repli-
cability, and increase prediction accuracy. It has been
shown in many studies that such approach in indeed

valuable and useful in practical applications [1-4]. Addi-
tionally, penalized methods, such as those using LASSO
or elastic net penalties, are widely used. Although feature
selection as a means of dimensionality reduction is help-
ful, it is not always sufficient. For instance, the number
of disease associated SNPs passing the selection stage can
still be too large compared with sample size.

Due to the large number of biological markers, their
complex interactions, the need for interpretability, and
the relative lack of large datasets as compared with other
machine learning applications, it is typically desired to
use low dimensional generative models. The idea is that
although the “optimal” rule can be highly complex, it can
be well approximated by a low dimensional model, and
a proper low dimensional family, for instance general-
ized linear models (GLMs) with logit or probit links, is
large enough to contain a point close to the best low
dimensional representation. Thereby, such approximation
will avoid over-fitting, improving prediction reliability and
accuracy.

SNPs are among the most challenging biological fea-
tures to analyze. Indeed a single mutation in the deoxyri-
bonucleic acid (DNA) might not greatly impact the risk of
a complex disease. Therefore, it is reasonable to assume
mutations are weak markers that should be jointly stud-
ied to arrive at a reliable decision rule. For instance, GLMs
with logit link that take dosage data, i.e., the number
of minor alleles at each SNP, are a very popular, if not
the most popular, method for binary classification given
SNP data. Refer to [3-8] for such examples. Additionally,
GLMs can be used with sparsity inducing penalties, such
as elastic net, and can include product terms of two SNPs
to account for their interactions. However, in many cases
it is not possible to use all strong pairwise interactions in
the data for classification. For instance, given 1000 disease
associated SNPs, there are about 500,000 SNP pairs that
can be considered in the classification rule. In absence of
biological information or given a set of known interact-
ing SNP pairs, it is typically not computationally feasible
to consider all possible pairwise interactions and use spar-
sity inducing penalties such as LASSO and elastic net.
Furthermore, such formulations may enforce a linear risk
function for many SNPs, implying that a SNP with two
minor alleles should induce a risk twice of that SNP having
one minor allele, which might not be a valid assumption.
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For example, for a recessive SNP we may have that only
presence of two minor alleles increases the risk, while one
minor allele has no effect on the risk. We would like to
emphasize that we found little discussion studying how
valid the logit link assumption with linear additive risks is
in practice.

Support vector machines (SVM), random forests, k
nearest neighbors (kNN), and naive Bayes are other meth-
ods used for binary classification of SNP data [3, 4, 6, 7];
however, they are not as popular as GLMs, even though
in many cases they are suggested to outperform GLMs.
Note that many of these methods, such as SVMs and
kNN, require a notion of distance, meaning they inter-
pret the number of minor alleles as real numbers, although
it might be more suitable to treat dosage data as ordinal
variables. Treating dosage data as real-valued variables,
although they take a finite number of values, whether
understood as ordinal or categorical variables, may be
a reason why many off-the-shelf methods, despite out-
performing GLMs, do not perform adequately on SNP
data.

Here we use the theory of high dimensional model
representation (HDMR) to find the “best” second order
approximation of the log likelihood ratio, and solve it
for the case of categorical observations, which we believe
is a better approach to model SNP data than treating
dosage values as real numbers. By considering a sec-
ond order expansion we can account for the effect of
single SNPs and pairwise SNP interactions, where by
SNP interactions we understand the non-zero terms in
the second order HDMR expansion of the log likeli-
hood ratio borrowing from two SNPs which is explained
in more detail the “Methods” section. Additionally, we
propose linear approximations based on the objectives
studied in compressed sensing to approximate the sec-
ond order HDMR expansion. We use the Sobol indices,
an extension of the R? statistic that is closely connected
to the HDMR expansion, to compute statistics indicat-
ing whether there is a significant interaction for a specific
SNP pair value. We apply the developed method to a sim-
ulated data based on the HAPGEN2 [9] project, as well
as lung and breast cancer datasets, showing the proposed
methods enjoy higher classification accuracies as well as
being able to efficiently detecting strong pairwise SNP
interactions.

Methods

Here we describe our classification methodology based
on the High Dimensional Model Representation (HDMR)
expansion, studied in detail in [10-13]. We first briefly
review the general theory, how it applies to a binary clas-
sification problem, and how the categorical observations
simply the process.
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High dimensional model representation

HDMR is a powerful tool to represent a function of a
random vector based on marginal observations. HDMR
provides us with a hierarchy of functions that describe
how the interactions of variables affect the output. In
particular, assuming output Z is a function of input ran-
dom vector X =[X3,---,Xp], i.e, Z = f(X), HDMR
decomposes f(X) based on partial observations. Let F =
{1,---,D}. The HDMR expansion of Z is the collection of
functions f, (X,,) for all u C F such that

2
/ (Zg(u) —f(X)> du, (1)

u

fu(xu) =

argmin
Su (xu)ELz (]RM)

under the condition that
Yu C{1,---,D}Vie u/fu(xu)w(x)dxidx_u =0.
(2)

where for each x € RP, x,, is the restriction of x to ele-
ments in u, x_, is the restriction of x to elements not
in u, and p is the probability measure of random vec-
tor X described by probability density function (p.d.f.) w
[12]. Note this condition is equivalent to a hierarchical
orthogonality criterion of the following form [12]:

VW C Vg f Furgy )W) = 0. 3)
Therefore, via the HDMR expansion we may write
fXO) =fo+ Y fulXu), (4)
uCF
ut
where
Jo= / f@w(x)dx, ()

Ju= /f(x)w(xfu)dxfu
=Y fE) - Y

vCu vEUVOUED

fv(xv)wfudxfw (6)

Equation 6 suggests that in the general case of depen-
dent variables a component function, f,(x,) depends on
all other expansion terms that also have a non-empty
intersection with . However, assuming elements of X are
independent, the last term of (6) equals zero and we may
write

fu= / FEW_)dx_, = ful@,). (7)

vCu

While this greatly simplifies the process of computing
the HDMR expansion, the independence assumptions is
too strong for SNPs, as they can be heavily correlated.
Observe that by considering sets u such that |u| < d in (4)
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we arrive a the @ order HDMR expansion of Z, which we
hereafter denote by E;(Z|X).

Second order HDMR for categorical observations

Now, additionally consider the case where X is a categor-
ical random vector. In particular, for each f € F, X is
a categorical random variable with support Cy. In other
words, Cy is the collection of categories Xy may take. Now,
assuming X is categorical, the domain of f,(x,) is the

finite collection of all combinations in C, = eru Cr.
Therefore, we may write
fu@) =) 1x,=c ®)
ceCy

where 1, is the indicator function of statement g being
true. Additionally, for the case of second order HDMR
expansion we have

ceCr
E (ZIXf’f/) = Z Z q;’}//le:C,Xf/:c’;
ceCy c’eCf/

for some 47, q;ji/, € R. Therefore, we can further simplify
and write

ExZIX) =go+ ) Y. a4} X Ly=

feF CfECf
G
+ Z Z qf(f {Xich’,,Xj:cﬁ}’ (9)
fifieF cf, €Cfl
i<j ijGCf/
%%

for some qo,qf Ay € R. Note instead of indicators

Ly =c and 1[ ], we can basically do a change of

X,':Cfl., /:Cj}
basis, and use a new set of indicators that are linearly inde-

pendent and uniquely tell us the value of the categorical

observation. More precisely, we may consider each Z =
Lix,=c} asa binary random variable, and directly write the

HDMR expansion using Zf:’s. Therefore, without loss of
generality, we may assume |Cy| = 2. Additionally, let Qy =
{qf i=1:
that umquely determine the value of Xy, although they
might not necessarily be in the form of 1{x,—}. For exam-
ple, suppose Cr = {0, 1,2}. Instead of statements I{szo}
and Lix,=1) to determine the value of Xy, we can also use

Gl = 1} for be a collection of statements

Lix,>1) and Lix,=2) to determine the category of X;. Note
for both cases we have I{szz} =1- I{szo} — I{szl} and
Lix=1} = lx=1) = LYx=2) Therefore, we can further
simplify and write
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ExLQOX) =ELX) + ) ) wiq
feF qeQy
+ Z Z Z W]‘Z:fql%ql (10)

ffqutle, QIGQJ}

l<]

Here our goal is to analyze SNP data when they are
reported in dosage, i.e., for each SNP f we report the
number of minor alleles, and hence C; = {0,1,2}. We
hereafter mainly focus on this special case to outline the
procedure for estimating coefficients b}I and b}ffj up to an

affine transformation; however, the algorithms developed
are more general. Note with little abuse of terminology,
we use SNP to refer to the categorical dosage value, being
the number of minor alleles. Our specific choice of Qr
is 1{x.>1) and Lix,=a) which will be made clear later.
Note a deeper discussion on the HDMR expansion using
extended bases can be found in [11, 14, 15].

HDMR expansion for binary classification

Here we describe how HDMR can be used for a binary
classification problem. Consider a binary classification
problem with class labels y = 0,1 and feature index set F.
Let X be a random unlabeled observation with true label
yx. Given S, it is desired to design a decision rule that
assigns a label, J, to X so that y, = y, with high probabil-
ity. Note given the full joint distribution of X and yy, one
could have easily computed P (y, = 1|X), or equivalently
the log likelihood ratio L(X) = log(P(y, = 1|1X)/P(yx =
01X)), and use a decision rule J,, = 1r(x)>7, where 1, is
the indicator function of statement g being correct, and T
is a threshold.

However, the full joint distribution is typically not avail-
able, as is usually estimated given training sample, S
Alternatively, many models assume the classification rule
belongs to a family of rules parametrized by 6, and aim to
estimate 0 given S. For example, a GLM using the famous
logit link assumes L(X) = ,Bo—i—zfeF BrXr, where Xy is the
value of X for feature f, and 6 is the collection of 8y and
B/’s. However, such model is insufficient for many appli-
cations where it is desired to account for pairwise SNP
interactions, and is not easy to train using LASSO and
elastic net penalties while accounting for pairwise inter-
actions by adding terms of the form Xy Xy to the GLM.
Here we develop an algorithm based on observations from
second order HDMR expansion of E(L(X)|X), ie, Z =
L(X).

Following the derivation of the HDMR expansion in
(10), we only need to substitute Z = L(X) to obtain the
HDMR expansion. Now, to compute the HDMR expan-
sion, we need the full joint distribution. However, we
are almost never given the true underlying distribution
parameters, and are given the training sample 8 instead.
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Note when working with SNP data, the number of dis-
ease associated SNPs that may affect the output may be
larger than the sample size. Therefore, we may not be able
to arrive at a well-defined set of distribution parameters
estimates, let alone hoping the estimates to be accurate.
Therefore, in the following, we present an algorithm to
compute the approximate second order HDMR expansion
of the log likelihood ratio directly without computing the
distribution parameters for categorical dosage SNP data.

Sobol indices, HDMR expansion, and variable selection
The Sobol indices are an extension of the R? statistic, and
can be used for global sensitivity analysis [16]. They basi-
cally explain the portion of variance explained by each
set of variables. For each set of features, u, the total
effect Sobol index and the main effect Sobol index are
respectively defined as

_ var(E(Z|Xy))
S(u)—imr(z) , (11)
e o var(E(ZIX_,))
S¢u) =1 @D (12)

In other words, the total effect Sobol index describes the
portion of variance that the set u explains, and the main
effect Sobol index describes the amount of information
present in u that is not present in any other feature.

The approximate second order HDMR expansion of
Eq. (10) can also be used to analyze the extent of the effect
of each feature and feature pair on the class labels. Note
that if a feature is independent of the class labels then
S(Xy) = 0 and if two features f; and f; do not have any
interactions, i.e.,

E (L(X) |Xfl.,;) = E(LX)IX;) +E (L(X)pg;) . (13)

then S <Xﬁ,ﬁ> = 0. The use of S (Xf) for variable selection

and its connection to other methodologies are discussed
below. We then study how the exact HDMR expansion
motivates analyzing feature pairs, and study the special
case of categorical features.

The Sobol indices and feature filtering

In feature selection and biomarker discovery literature,
univariate filters, or filters in short, refer to the family
of feature selection algorithms that assess each feature
individually and assign a score to each individual feature,
which is then used for selecting a subset of features [17,
18]. Filters are fast, but do not take feature dependencies
into account. Note in this taxonomy, univariate hypothesis
tests, such as t-test, equipped with multiple testing correc-
tion are an example of filters. Other methodologies used
for feature selection include multivariate filters, wrappers,
and embedded methods, which are studied in more detail
in [1, 17-19]. Here we study how the Sobol index for each
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single feature reduces to filtering, and how it connects to
other filter methods.
Let u = {f} be the set of single feature f. We have

E(Y|X
E(Y|X_
S =S5 = —W(m(r()'[) ) (15)

In other words, the total effect Sobol index measures how
much information each feature contains about Y, and the
main effect Sobol index measure how much information
f carries about Y that is not present in any other feature.
Here we prefer to use Sy over SJE for three major reasons:
(1) Due to the dependencies among biological features and
that each individual feature might only have a very small
impact on Y, the main effect index might be small for all
features. (2) In a high-dimensional setting looking at all
features but one may cause over-fitting, making it impos-
sible to reliably measure Sfc. Finally, (3) the computation
cost to measure S]Cr for all features can be infeasible.

Looking at Sy, we would like to select features which
affect the output the most, i.e., have large S¢’s, which we
may formulate as the following hypothesis test:

(16)

Note that Sy = 0 if and only if f is independent of Y.
Therefore, the null of the hypothesis test of Eq. (16) can be
reformulated as follows:

H():SfZO V.S. H1:Sf>0.

1 Given f no decision rule with less error than random
decision can be built.

2 Y and f are independent.

3 f has the same distribution in both classes.

Note the first formulation has been used to develop meth-
ods that train a classifier/regression model, and aim to
assess if it outperforms a random decision, for instance
using a generalized linear model (GLM) with logit link and
linear model By + B for each f and outputting the p-value
for B = 0. The second formulation leads to using inde-
pendence criteria, such as Hilbert-Schmidt independence
criterion, and the null assuming Y and f are indepen-
dent. Finally, the last formulation, which may be the most
popular one, leads to hypothesis tests that aim to ver-
ify if the class-conditioned distributions are different. The
Kolmogorov-Simirnov (KS) test and Wilcoxon rank sum
test are examples of such tests. Note that different for-
mulations give rise to different nulls and hence different
p-values. However, under certain assumptions one may
be able to identify different tests with each other. For
example, assuming (independent) Gaussian features with
equal variances in both classes, linear discriminant analy-
sis (LDA) performs better than a random decision if and
only if f has different means in both classes, which is
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exactly what student-t test measures. Additionally, assum-
ing features are independent and Gaussian with some
unknown mean and variances, quadratic discriminant
analysis (QDA) performs better than a random decision
if f does not have the same mean and variances in both
classes, which is exactly what the likelihood ratio test of
does [20], which is studied in more detail in [21].

Fisher’s exact test and x2-test are two popular hypothe-
sis tests used to determine if two categorical features have
similar distributions in both classes. The recently pro-
posed optimal Bayesian filter (OBF) [22] directly measures
the sample conditioned probability of a categorical vari-
able having distributional differences across two classes, is
suggested to enjoy superior performance compared with
several other selection algorithms used for identifying dis-
ease associated SNPs [22]. Note we will later use OBF for
feature selection in our pipeline.

Pairwise SNP interactions

Suppose f; and f; are categorical random variables, and
we would like to see if a specific patten in the form of
Lx, =Gi&X =g carries significant information not available
if we consider each feature individually. In other words,
we would like to test if the second order HDMR term
corresponding to feature pair f;, f; is non-zero. Let

P (Xﬁ = ;&Xy = Cj|y)

K ) = .
P(X; = cly) P (Xfi _ cj|y)

(17)

Note that

cov <1Xfi=ci’ 1Xf,~=‘f/|y> =F <1Xfl~=ci X 1Xfi=cf|y)

—E (leizci |)’> E (1X/7=Ci Iy)

K — 1) P(X; = cily)
P (Xf] = Cj|y) .

Therefore, we would like to see if kgﬁ # kf 4, Thereby,
by a pairwise SNP interaction we understand the non-
zero second order HDMR terms that involve two distinct
SNPs, i.e., are not present in the first order expansion.
Here we see that such terms correspond to SNP pairs with
unequal correlations between the two classes. Note that
a linear additive model looking only at individual SNPs
is not sufficient to compute the log likelihood ratio for
such correlated categorical features. This is also in line
with previous definitions proposed for quantifying SNP
interactions, e.g., [6, 23].

Now to compute the p-value associated with each fixed
SNP pair pattern we use Fisher’s r to z transformation

and approximate the distribution of the null (kg U= k’f f’)

by the standard normal distribution. We compute the
statistics

(18)
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24— 0510 [ 2 (19)
y Aiof;
1- 4

for y = 0,1, where ﬁj;'f’ is the estimate of correlation

coefficient from data. We then compute

L _ i

1 1
-3 + n1—3

2 = , (20)

no

where 7, is sample size in class y. Z/+i approximately fol-
lows the standard normal distribution, which we use to
compute p-values. We hereafter call this method fixed
pattern test (FPT).

Algorithm
Here we describe the algorithm developed for classifier
design.

Initial filtering

Here we outline the pre-processing we do on the cate-
gorical SNP data. When working with SNP data, many
times dosage values, i.e., the number of minor alleles, are
reported which take values in {0, 1,2}. Note that many
SNPs can be dominant or recessive. A dominant SNP is
one for which a SNP with one minor allele behaves similar
to a SNP with two minor alleles, and a recessive SNP is one
for which a SNP with one minor allele behaves similar to a
SNP with non minor alleles. Therefore, we do a first phase
pre-processing, and transform each SNP to two “binarized
SNP’s. For each SNP, we create two auxiliary features, one
the indicator of the presence of a minor allele, and another
the indicator of two minor alleles. This way, if only the first
auxiliary feature is used then we are dealing with a dom-
inant SNP, if only the second auxiliary feature is used we
have a recessive SNP, and if both are used the SNP does
not fall into only one of the two categories, for instance
we may have an additive SNP. Examples of different SNP
models and a discussion on them can be found in [24, 25].

By this preprocessing, if k SNPs are observed, we have
|F| = 2k binarized SNPs. We hereafter assume all SNPs
are already binarized, i.e., for each feature f € F we have
Cr = {0, 1}, instead of using the family of constraints Q.
Note that we only do so for notational convenience.

As mentioned above, given that many studies may mea-
sure several hundred thousand or a few million SNPs, they
all cannot be directly inputted to a classifier, particularly
that we aim to account for pairwise SNP interactions, i.e.,
the second order terms of the HDMR expansion. A first
phase filtration is typically inevitable to reduce compu-
tational complexity of classifier design, i.e., the training
of the classification algorithm. Here we use the recently
proposed optimal Bayesian filter (OBF) [22], to rank bina-
rized SNPs, and we pick the top D features for classifier



pour et al. BMC Medical Genomics 2020, 13(Suppl 9):133

design. Note D is a parameter that can be determined later
through cross validation, or be chosen as a large value so
that most disease associated SNPs are captured. Note we
have chosen OBF as it has outperformed many of the cur-
rently used methods for selecting disease SNPs, including
the popular y2-test [22].

Classification algorithm

Here we design the classifier used to label observa-
tions. Note here we are using binarized SNPs as our
features. In the training, given the labeled training data
and selected binarized SNPs of the preprocessing step,
the algorithm assigns coefficients to all SNPs and SNP
pairs. Note D might be large, and given D features,
there are 0.5D(D — 1) SNP pairs to use. Furthermore,
there may be weak individual SNPs or SNP pairs that
are so weak that not including them in the final classi-
fier might actually improve performance. Therefore, in
our classifier design we remove features and feature pairs
that are too weak. The classifier design process can be
broken to the following steps: (1) feature pair construc-
tion, (2) removing weak features, (3) removing weak fea-
ture pairs, (3) merging feature pairs into blocks, and (4)
estimating classifier parameters and obtaining the risk
function.

Feature pair construction
Given that we have binarized SNP values, for two fea-
tures f; and f;, we have four feature pairs of the form

Zf,fé, =1 ] Each of the created ZZ’:}Z/’S is here-

after called a feature pair. Figure 1 illustrates how to

Xl‘:Cfi&)(j:Cj;.

generate feature pairs Zj;’,]z/ from binarized SNPs.

Removing weak features

Here we remove features that are too weak to be
used in the classifier. For each feature, f, we find
the risk associated to it, #. We first compute Y -

max {| logﬂ;,l/‘fafl,oL | log‘t}’;,l/fa’;d }, where p is the pos-
terior probability of Xy = c in class y and is obtained
through OBF. If [7';1 > fo’;O for the pattern c obtaining the
maximum in the definition of v we set ¥ = v/; otherwise,
o= - We assign the zero coefficient, i.e., remove,
features for which |#/| < T;. Note T a model param-
eter. Note features for which 171{,0 > P are called risk
increasing or positive risk features, and features for which
1}/;,0 < fo’{}o are called risk decreasing features. Figure 2a
illustrates this process for single features.

Removing weak feature pairs
We then filter out feature pairs that are too weak. We again
follow a procedure similar to our process for removing

single features. For each feature pair f; and f; define r/:‘ljzl =
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~JiJj ~ lf ~Ji ~Ji ~Jj ~Jj
log( Ciéj(l)/ c,'é,(o)) —log (Péi,l Péi,o) — log (1/5111 1%-,0)
where ﬂ:ﬁ} (y) is the sample conditioned probability that
feature pair f;, fj satisfies X; = ¢; and X = ¢; in class .

6
CL‘C]'

are assigned zero weight in the classification rule. Note

Again, feature pairs for which < Ty areremoved, i.e.,

again feature pairs for which Acﬁj(l) > Ac{é/ (0) are called
risk increasing or positive risk feature pairs, and feature
Aciéj

pairs for which p Ci.féj 1) < (0) are called risk decreasing

or negative risk feature pairs. Here we have defined V/:ilzl
so that the interaction of a feature pair comprised of two
independent features would not enter the classification
rule. Figure 2b illustrates this process for feature pairs.

Feature block construction

Recall given D features, there are 0.5D(D—1) feature pairs.
Although our filtering removes many feature pairs, there
still could be too many feature pairs to be easily used for
classifier design. In addition, since (a) SNPs may be heav-
ily correlated, (b) a feature may occur in many feature
pairs, and (c) the binarization scheme described in the
pre-processing step creates two binary features for each
SNP, the binary features might be heavily correlated, cre-
ating dependencies among feature pairs. In other words,
given that a specific pattern for a feature pair is observed,
one may be able to estimate the value of many other fea-
ture pairs. For example, given we observe 1 { X= 1} =0

for a specific feature pair that uses l[X 2}, we can eas-
(=

ily conclude all feature pairs that assume 1y, _ ) are zero.

i

These dependencies exacerbate classifier design. There-
fore, we propose the following procedure to reduce the
number of weights to estimate. Note we could have used
any other community detection algorithm instead; how-
ever, we observed the following procedure works well, and
enjoys low computation cost.

We consider blocks of feature pairs of the following
forms for each feature f; and pattern c;c;:

1)§1C2 = {Zéﬁcz 1 # i,fzﬁz > Tz} )
Niye, = {Zgﬁq J# i,fiﬂz < —TZ},

where P’s and N’s are collections of risk increasing and risk
decreasing feature pairs, respectively. Figure 3 depicts this
process. Afterwards, given an observation X, we report
the ratio of feature pairs in each block which take value
one. Among the constructed blocks, we again remove
“weak blocks’, i.e., for each block 4, irrespective of being
risk increasing or risk decreasing, we compute 74, the log-
arithm of the expected ratio of observed patterns of block
A in class 1 versus class 0. We then remove blocks for
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Fig. 1 An illustration of creating four binarized feature pairs Z;"c, given binarized features f; and f;. Each square denotes a pairwise value of binary

SNPs f; and f;, and how they are denoted as feature pairs Zg’%

which |rA| < T3. Again, T3 is threshold that will be chosen
through cross validation.

We observed this approach to (a) reduce the num-
ber of parameters to estimate when D is large, and (b)
improve prediction performance. Note that this approach

Cf.Cf.
is equivalent to decomposing wﬁf}jf’ to two terms, one

for the block Aj:il.cj and another for block Ajf',.c,., where A

is either P or N, and assuming all features pairs in AJ;"Z.C].
have the same decomposed coefficient in their expansion.
Here, in the simulations, we observed such assumptions
improves classification performance when features, i.e.,
SNPs, are correlated, but leave a mathematical analysis of
such assumption on the classifier performance for future
work.

Now, given observation X, we construct the vector
V(X), comprised of each feature value, and the ratio of
observed patterns in risk increasing and risk decreasing
blocks. The vector V(X) shall be used in the next section
to assign a “risk” to observation X.

Estimating classifier parameters

To complete our classifier construction, we need to esti-
mate HDMR coefficients. Note given our construction
of blocks in the previous section, we now only need to
find a vector b so that we may write that Eo(L(X)|X) ~

E(L(X)) + b.V(X). However, we may be dealing with an
ill-posed problem due the number of coefficients to esti-
mate being larger than the sample size. Note that although
the HDMR expansion of the log likelihood ratio is unique,
we mostly compare it with a threshold to assign a label
to a newly observed point. Therefore, in many cases it is
acceptable to work with a affine transformation of the log
likelihood ratio. In other words, although not being able
to find the exact second order HDMR expansion of the
log likelihood ratio is not desirable, it is not catastrophic
either, as any affine transformation of the log likelihood
ratio can be used as an equally good decision rule.

To circumvent the ill-posed problem, we use an objec-
tive function which is a variation of objective functions
mostly studied in the compressed sensing literature [26]
that aim to estimate a sparse signal given 1-bit quantized
observations. In other words, optimization problems and
formulations that aim to estimate vector a from # obser-
vations of the form {(x,-,yl-) i=1: n} where y = sign(a -
x) and “” denotes inner product. Connections between
these objectives and a convex relaxation to the logistic
regression problem is discussed in [27]. Extensions that
additionally consider noisy measurements in the form of
random flips, i.e.,

_ | sign(a-x)  with probability 1 — ¢,
| —sign(a-x) with probabilitye,
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Fig. 2 lllustration of removing weak (a) features and (b) feature pairs. a Features for which ’rf‘ < T; are removed. Features for which S Ty are risk

increasing features, and features for which rf < —T; are the risk decreasing features. b Similarly, features pairs for which ’C’,/c, < T, are removed.

. . fif; S . . . . fif; . .
Feature pairs for which ’c/,é, > T, are risk increasing feature pairs, and feature pairs for which rc’,/q < —T, are risk decreasing. Red and green,
respectively, denote risk increasing and risk decreasing features and feature pairs

(a) (b)

Fig. 3 Illustration of constructing a risk increasing and b risk decreasing blocks. Each red/green square in row f; and column f; is selected as a risk
' ) ) (| 6
increasing/decreasing feature pair (

ify
g,

> Tz) to construct risk increasing/decreasing block Pﬁl ,CZ/N{"W - Finally white squares correspond to
feature pairs that are removed, i.e., have risks less than T,
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are studied in [27]. Finally, [28] studies extensions to non-
Gaussian features. Note in [27] it is shown that up to a
constant the error in recovering the signal 4 matches the
minimax error for the unquantized compressed sensing
problem. We use the following optimization problem to
solve for the weights we wish to use.

1 1
b* = — b-VX)— — b-V(X),
argmaz. - 37 b VOO~ 3 b VOO
Xe8 Xe8o
(21)

where 8, is the portion of data in class y. Figure 4 depicts
how b* is selected given vectors V' (X) for the training data.
Heuristically speaking, given a feature vector in the form
of log likelihood ratios of partial observations x,, here
we find weights that maximize the distance between the
average points of each class. The heuristic for using such
objective is as follows: the HDMR expansion obtains the
weights that result in the “best” low dimensional represen-
tation, i.e., we find the mean square error (MSE) estimate
of the log likelihood ratio. The underlying reason we do so
is that we believe the HDMR expansion of the log likeli-
hood ratio gives a us a model that enjoys a low prediction
error. On the other hand, weights that maximize the dis-
tance between the projections of the center points of the
two classes to a one dimensional space should also yield
low prediction error. Hence, such objective should result
in a model that is close to the HDMR expansion. Note that
in special cases, for instance independent Gaussian fea-
tures with equal variances in both classes, we can actually
prove that such approach minimizes the prediction error.
Given b* we have everything need for classification.
Given a new observation X we find R(X) = b* - V(X), and
we assign class label v = 1rx)> T, for threshold T. Note
the thresholds T, T, and T are parameters of the model,
and will be selected through the validation process, for
instance, by cross validation. We hereafter call the result-
ing classifier built for categorical X as linear approxima-
tion for block second order HDMR expansion of categori-
cal observations (LABS-HDMR-CO). The pseudo-code of
LAS-HDMR-CO is provided in Algorithm 1.

Results

Here we use a model developed to generate SNP data
to evaluate the performance of LABS-HDMR-CO, and
compare it with several popular methods used for binary
classification. We consider three datasets, a dataset based
on the HAPGEN2 project, a lung cancer dataset, and a
breast cancer dataset. OBF takes m(f), the prior prob-
ability a SNP is disease associated, and hyperparameter
a describing the Dirichlet prior on each categorical SNP
value as input. We assume 7 (f) is constant for all fea-
tures, hence not affecting the ranking, and set « =[2, 2]
for each binarized SNP used with LABS-HDMR-CO and
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Algorithm 1 Pseudo-code of LABS-HDMR-CO
Input: All training points (x, y), D, thresholds T, To, T3
and 7T, and new observation X.
1: Perform SNP binarization and initial filtering passing
top D features of OBE.
2. For each feature f compute /.
3: Remove features for which |rf | < T1.

4: For each feature pair f;, f; compute Wi,

< Ts.

5: Remove feature pairs for which ‘rfifﬁ

6: Construct positive and negative risk blocks for each
feature f; and categorical values c;, c;.
7: Remove blocks A for which ’rA’ < Ts.
8: Construct V(x), the collection of single features, and
positive and negative blocks with large risks.
9: Compute b* using Eq. (21).
10: Compute R(X) = b* - V(X) for observation X.
11: Compute V= 1roo>T-
Output: Y.

o =[1, 1, 1] for each non-binarized SNP used with other
classification rules. Note the choice of & to be the all one
vector simplifies to a uniform prior. As LABS-HDMR-
CO uses feature pairs, a uniform prior on binarized SNP
patterns suggests o =[2, 2].

HAPGEN2 data
Here we generate data from the HAPGEN2 project [9],
reporting SNP values for more than 3.9 million SNPs,
which we then convert to dosage. This dataset is gen-
erated by fixing one or two SNPs on each chromosome
to be disease associated. The generated dataset contains
2000 controls (class 0), and 1000 cases (class 1). We ran-
domly select 900 points in each class for training, and the
rest is used as test data. We iterate 100 times, and mea-
sure the area under curve (AUC) of the receiver operator
characteristic (ROC) as our performance metric

In addition to LABS-HDMR-CO, we use the non-
processed data, use OBF for feature selection to select
top features, and use several variants of GLMs with pro-
bit link for further selection and classification. We use a
probit model that uses top 1000 features with LASSO (L;)
penalty A and another that uses top 500 features with elas-
tic net putting equal weights on L; and Ly penalties with
penalty coefficient 1. We also use a variant that accounts
for pairwise SNP interactions by considering terms of the
form X;X; using top 50 features and L; penalty 1. We only
use the top 50 features (see Tables 1, 2) for the variant
accounting for pairwise SNP interactions so that the total
number of regressors to use in the regression model is
comparable to the linear variants. We observed that larger
values of features in the probit link accounting for pairwise
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e class
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>

Fig. 4 The illustration of the b* selection process. Given V(X) vectors for the two classes, denoted by red and green crosses, the b* is chosen to
maximize the distance between the center of projections of V(X) vectors on b

interactions drastically increases runtime, causing infeasi-
ble computation cost. Finally, we also implement a naive
Bayes classifier using top 1000 features.

Indeed, it is an advantage of LABS-HDMR-CO that
can incorporate several hundred features in its regression
model while accounting for pairwise SNP interactions
with reasonable computational burden. Finally, our rea-
sons to choose the probit link over the more popular logit
link are 3 fold: (1) In the data generation model the risk
of an SNP mutation is modeled as additional linear risk;
corresponding to the logit link. Therefore, models based
on the logit link get an unfair advantage that they exactly
match the data generation model; while in reality almost
always the assumed model deviates from reality. (2) We
observed the computational cost to train a probit link is
much less, about a third, of the logit link. Hence, to reduce
computational cost of the GLM variants we compare with,
we selected the probit link. (3) In practice the probit link
behaves similar to the logit link, which is not surprising
as the sigmoid and the cumulative distribution function
(CDF) of the standard normal distribution are rather sim-
ilar. Hence this choice better illustrates how slights devi-
ations in the assumed link might affect performance of a
GLM when dealing with SNP data.

Finally, note that all GLM variants and naive Bayes use
OBF assuming three categories, i.e., three dosage values,

for ranking features. We tested the popular x2-test as
well, and obtained lower AUCs for the GLMs and naive
Bayes. This results strengthens the observations made in
[22] that OBF provides better feature rankings compared
several other methods, including the popular x2-test.
The AUCs for LABS-HDMR-CO, the linear probit
model using L; penalty (probit(lin,LASSO)), second order
probit model with L; penalty (probit(quad,LASSO)), lin-
ear probit using elastic net (probit(lin,elastic net)) and
naive Bayes are 91.03%, 84.52%, 86.44%,84.28%, and
86.83%, respectively. The larger AUC of LABS-HDMR-
CO suggests it enjoys superior overall performance, i.e.,
LABS-HDMR-CO should typically enjoy a higher prob-
ability of detection for a fixed false alarm rate value.
Figure 5 plots the ROC curve of the classification algo-
rithms. For the GLMs we tested A = 0.01 : 0.01 : 0.2,
and for each variant report the AUC of the A with supe-
rior performance, i.e., highest AUC. Also, the parameters
of LABS-HDMR-CO are chosen through cross validation.
As the results suggest LABS-HDMR-CO enjoys supe-
rior performance compared with other algorithms. In
particular, for false positive rates larger than 2% LABS-
HDMR-CO enjoys higher probability of detection com-
pared with all other algorithms. For small false alarm
rates though, naive Bayes had the highest true positive
rate, but was closely followed by LABS-HDMR-CO. While
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Fig. 5 ROC curve of different classification rules for the generated data based on HAPGEN2 project [9]

the ROC curve of probit(lin,LASSO) seems to monoton-
ically increase with respect to false positive rate, true
positive rate of probit(quad,LASSO) and probit(lin,elastic
net) seem to only infinitesimally increase for false positive
rates between 0.04 and 0.05. Given that ROC curves must
be concave, we initially believed this might be an artifact
of not enough iterations (here being 100); however, sim-
ulations only implementing these two GLMs with more
iterations resulted in rather similar graphs. However, in
many iterations (using MATLAB’s default settings) the
warning of reaching maximum number of iterations was
reported for these two methods. Therefore, this may be an
artifact of the limited number of iterations or numerical
instabilities of the training stage.

Finally, we observed the runtime of LABS-HDMR-CO
using 1000 SNPs is comparable to the probit variant using
500 SNPs and elastic net. This suggests LABS-HDMR-CO
is extremely fast for a method that accounts for pairwise
SNP interactions. Note given 1000 SNPs there are about
500,000 SNP pairs to evaluate. However, LABS-HDMR-
CO has more parameters to tune via cross validation,
its total runtime is more than a GLM with one tunable
parameter. Note in this work we did not test an elastic
net probit that also optimizes over «, the relative weights
between L; and Ly penalties; however, we expect the
two dimensional search for such model might result in
computation costs comparable to LABS-HDMR-CO.

Finally, we use all of data, to find the top SNPs and SNP

pairs with largest risks, i.e., # and r{ﬁj, respectively. Using
Fisher’s exact test and bounding the false discovery rate
(FDR) by 5% using the Banjamini-Hochberg procedure
[29] 785 SNPs are significant. Also, using FPT for identify-
ing significant pairwise SNP interaction patterns, among
the 4 x ('%°) & 2 x 10° patterns to check, 1046864, about
52.4% of all tests, are significant when bounding FDR by
5%. Given than many selected SNPs are on the same chro-
mosome this is not surprising. Furthermore, we observed
that all single SNPs that were not significant after bound-
ing FDR are present in at least one SNP pair, emphasizing
the importance of considering pairwise SNP interactions
See Supplementary Materials for details.

Lung cancer

Data obtained in [30] is deposited on gene expression
omnibus (GEO) [31] with accession number GSE33355.
It contains 61 sample pairs of cancer and normal lung
tissue specimen from non-smoking females collected at
national Taiwan university hospital and Taichung veterans
general hospital. The data is based on the GPL6801 plat-
form and measures dosage values of 909622 SNPs. In our
evaluation healthy and cancerous tissue specimen com-
prise classes 0 and 1, respectively. Thereby, the goal is to
determine if a test point is normal or cancerous. Given
the dataset we randomly select 55 points in each class for
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Table 1 Several top SNPs and their associated risk for the
HAPGEN2 project

Rank SNPid Chromosome Location  Risk +/— Risk Recessive
1 rs1982151 9 85807085 538 - TRUE
2 rs796004 9 85784618 538 + FALSE
3 rs296887 9 85784890 538 + FALSE
4 1s296889 9 85785391 538 + FALSE
5 rs296890 9 85785551 538 + FALSE
6 rs796003 9 85785621 538 + FALSE
7 1s296893 9 85788010 538 + FALSE
8 rs11140325 9 85824855 538 - TRUE
9 rs10868080 9 85816589 538 - TRUE
10 rs296888 9 85785318 534 + TRUE
40 rs861539 14 103235506 44 - FALSE
41 1861534 14 103238454 44 - TRUE
42 rs861531 14 103242560 44 - FALSE
43 158018979 14 103178840 439 - FALSE
44 1511849259 14 103186074 4.39 - FALSE
45 rs3783404 14 103188251 439 - FALSE
46 rs55885592 14 103195777 439 - FALSE
47 1556660916 14 103195890 4.39 - FALSE
48  rs57218990 14 103197760 4.39 - FALSE
49 152403205 14 103213138 4.39 - FALSE
50  rs709400 14 103219228 4.39 - FALSE

training, use the rest for testing, and iterate 100 times.
Figure 6a plots the ROC curve of different methods. We
observe that LABS-HDMR-CO enjoys a higher true pos-
itive rate for each given false positive rate, suggesting its
superior performance on this dataset. Cross validation
sets D = 900, 77 = 0.25, T5 = 1.2, and T3 = 0.8. Lin-
ear and quadratic probit with LASSO penalty set A to 0.2
and 0.02, respectively, and the linear probit with elastic net
sets A = 0.13.
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Tables 3 and 4 list the top SNPs and SNP pairs with
largest risks used by LABS-HDMR-CO. Although cross
validation suggests using D = 900 SNPs for prediction,
the Fisher’s exact test using the Benjamini-Hochberg [29]
procedure for FDR correction suggests that only looking
at the SNPs used for prediction, only the top 250 are sig-
nificant bounding FDR by 5%. Although the remaining
SNPs are not significant, their net effect is an improve-
ment in prediction which may be due to agglomerating
them as individual SNPs, or specific SNP pair intereac-
tions among them that should be considered together as
a marker family to observe their effect. Going back to
the literature we observe many of the top SNPs and SNP
pairs, or the genes they belong to, are shown or suggested
to be affected in lung cancer. For example, the top SNP
rs9493858 is located on the SGK1 gene, which is sug-
gested to be affected in lung cancer in several studies [32,
33]. Looking at the top SNP pairs, we observe the sec-
ond highest SNP pair map to NXN and MEOX2 genes,
suggesting their interaction might be key to understand-
ing lung cancer. Interestingly, mutations in NXN has been
associated with colon cancer in east Asian populations
[34], but its role in lung cancer requires further investiga-
tion. Furthermore, MEOX2 is also suggested to be affected
in lung cancer [35]. In this dataset, except for one SNP
pair, all risks are positive. In other words, certain muta-
tions increase the cancer risk; however, the data does not
suggests any candidate mutations that seem to further
help healthy people guard against lung cancer.

Now, using FPT to detect significant pairwise SNP
interactions, bounding FDR by 5% using the Benjamini-
Hochberg procedure, none of the pairs are significant;

0.3
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Fig. 6 ROC curve of different classification rules for the a lung cancer and b breast cancer datasets
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Table 2 Top 25 SNP pairs and their associated risk

RankSNP ID RecessiveValueSNP ID RecessiveValue+/— RiskRisk
1 9-85652897FALSE 1 9-85439030FALSE 0 + 143
2 9-85652915FALSE 1 9-85439030FALSE 0 + 143
3 9-85652897FALSE 1 9-85524813FALSE 0 + 14

4 1512897511 TRUE 0 9-85652897FALSE 1 + 1.35
5  9-85779070FALSE 1 rs12346234FALSE 0 + 1.34
6 9-85652897FALSE 1 rs861539 TRUE 0 + 133
7 9-85652897FALSE 1 rs861534 TRUE 0 + 133
8  9-85652897FALSE 1 rs861531  TRUE 0 + 1.33
9  9-85652897FALSE 1 rs10135248 TRUE 0 + 1.33
10 9-85652897FALSE 1 rs3915733 TRUE 0 + 1.33
11 9-85652897FALSE 1 rs8005885 TRUE 0 + 1.33
12 9-85652897FALSE 1 rs8018979 TRUE 0 + 1.33
13 9-85652897FALSE 1 rs11849259TRUE 0 + 133
14 9-85652897FALSE 1 rs3783404 TRUE 0 + 1.33
15 9-85652897FALSE 1 rs55885592TRUE 0 + 133
16 9-85652897FALSE 1 rs56660916 TRUE 0 + 1.33
17 9-85652897FALSE 1 rs57218990 TRUE 0 + 1.33
18  9-85652897FALSE 1 rs2403205 TRUE 0 + 1.33
19  9-85652897FALSE 1 rs709400 TRUE 0 + 1.33
20 9-85652897FALSE 1 rs861548 TRUE 0 + 1.33
21 9-85652897FALSE 1 rs11624505 TRUE 0 + 1.33
22 9-85652897FALSE 1 rs61995780TRUE 0 + 133
23 9-85652897FALSE 1 rs861536 TRUE 0 + 133
24 rs861539 TRUE 0 9-85828929TRUE 0 + 1.32
25 rs861539 TRUE 0 rs7039458 TRUE 0 + 1.32

however, cross validation suggests T = 1.2, resulting in
using 169324 SNP pairs in its analysis. These results sug-
gest although we cannot reliably tell which SNP pairs are
true discoveries and which are false discoveries, the infor-
mation present of the weak SNP pairs outweighs the noise,
by aggregating these pairs we can extract the information
of encoded in the pairs more than the noise that may be
inserted to the decision rule, insert the added information
in the prediction rule, and the net effect is more reliable
performance. Note that by encoding the SNP pairs in the
analysis we may be able to say that for a new test point
the net effect of SNP pair interactions is increased risk,
i.e., likelihood of being a cancerous point; however, we
may not be able to pinpoint which SNP pairs brought us
to this conclusion, rather, we can only comment on their
agglomerated net effect.

Finally, we plot the amount of difference in correlation
coefficients of SNP pairs in Fig. 7a as we look for the
pattern of both binarized SNPs taking value 1 to have a

pairwise interaction, i.e., Z’I‘ﬁl = 1 being an indicator of
an interaction. The x-axis denotes the rank of the first
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SNP in the pair, and y-axis denotes the second. The z-
axis as well as the color of each circle corresponding to
a SNP pair denote the amount of the difference in cor-
relation coefficients. To avoid a cluttered figure though,
only SNP pairs with differences larger than 0.5 are plot-
ted with a non-zero height. Only a small portion of SNP
pairs seem to have large differences in correlation coef-
ficients. Additionally, we observe that many SNPs are
common among SNP pairs with large differences in cor-
relation coefficients. In other words, few SNPs are present
in many of the SNP pairs with potential interactions.
Putting SNP pairs with small differences in correlation
coefficients aside, we observe the remaining pairs resem-
ble the pairwise patterns of Fig. 3 describing the heuristic
behind LABS-HDMR-CO to merge SNP pairs and con-
struct blocks, suggesting suitability of such strategy might
further be biologically motivated.

Breast cancer

Data obtained in [36] is deposited on GEO with accession
number GSE16619, containing dosage data of 42 nor-
mal breast tissue samples and 69 cancerous samples. The
data is based on the GPL6804 platform measuring 503590
SNPs. Normal and cancerous points comprise classes 0
and 1, respectively. We randomly select 35 normal points
and 60 cancerous points for training, use the remaining
data for testing, and iterate 100 times. Cross validation
sets D = 1250, T; = 0.25, T, = 1, and T3 = 0.5. Linear
and quadratic probit with LASSO penalty set A to 0.01 and
0.03, respectively, and the linear probit with elastic net sets
A = 0.02. Figure 6b plots the ROC curve of different meth-
ods. For false positive rates below 5% LABS-HDMR-CO
enjoys a higher true positive rate than other algorithms.
For higher false positive rates linear probit with elastic
net and quadratic problit with LASSO perform almost
identical and superior to other algorithms, but are closely
followed by LABS-HDMR-CO.

Tables 5 and 6 list the top SNPs and SNP pairs with
largest risks used by LABS-HDMR-CO, respectively. We
observed some of the SNP IDs present in the data file were
not present GPL6804 platform description on the GEO
website. For such SNPs we report their ID in the datafile
rather than their SNP ID. Although cross validation sug-
gests D = 1250 for classification, only looking at this set,
269 binarized SNPs are significant using the Fisher’s exact
test bounding FDR by 5% using the Benjamini-Hochberg
procedure. Going back to the literature we observe several
of the genes top SNPs and SNP pairs map to are shown
or suggested to be affected in breast cancer. For example,
rs13129525 which ranks 9 is located on the FAM171A1
gene which is suggested to be affected in breast cancer
[37]. Furthermore, the SNP pair ranking fourth map to
CDK19 [38] and CCDC162P [39] genes, which are both
shown to be affected in breast cancer. Similar to the lung
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Table 3 Several top SNPs and their associated risk for the lung cancer dataset

Rank SNP ID Chromosome Location Risk +/— Risk Recessive Gene

1 rs9493858 6 134535159 1.9 + FALSE SGK1

2 rs11768533 7 27560904 156 + FALSE -

3 153134492 8 96699596 154 - FALSE C8orf37-AS1

4 rs9893755 17 79187432 147 + FALSE CEP131

5 1510266429 7 71932046 1.39 + FALSE CALN1

6 rs17168935 7 15672957 134 + FALSE MEOX2

7 1517089043 8 23166281 134 + FALSE LOXL2

8 rs10853701 18 27355474 1.34 + FALSE -

9 rs6998594 8 8848993 132 + FALSE ERIT,LOC105379227
10 rs650434 6 137889729 132 + FALSE -

11 rs9539394 13 62632653 132 + FALSE -

12 rs9888682 15 54173596 132 + FALSE UNC13C

13 rs11774017 8 98227965 132 + FALSE LOC101927066
14 rs16976057 15 96612108 1.28 + FALSE LOC112268156
15 11434302 9 28975706 1.25 + FALSE LINGO2

16 rs10985284 9 124270502 1.22 + TRUE -

17 rs11141468 9 89249433 122 + FALSE -

18 rs8070093 17 68474421 122 + TRUE -

19 rs1864466 2 203856457 12 + FALSE -

20 rs7523787 1 94330615 12 + FALSE -

21 rs475385 1 117212892 12 + FALSE CEP164

22 rs13157029 5 86419364 1.2 + FALSE LOC101929380
23 rs1409035 13 67839021 1.16 + FALSE LOC105370246
24 rs10129678 14 46059875 1.16 + FALSE -

25 rs6915318 6 162254299 1.16 + FALSE PRKN

26 rs11873590 18 48100355 1.16 + TRUE MAPK4

27 rs6761711 2 65128290 1.16 + FALSE -

28 rs1944751 9 18224772 1.16 + FALSE ADAMTSL1

29 rs10266429 7 71932046 1.16 + FALSE CALN1

30 r1s12836163 X 90688866 115 + FALSE PABPC5-AST

31 rs11078726 17 7900230 1.15 + FALSE -

32 1s332635 6 124749725 1.15 + FALSE NKAIN2

33 rs4889210 16 80904237 1.1 + FALSE LINC02170

34 rs12578154 12 68177559 1.1 + FALSE -

35 rs3913648 17 9597295 1.1 + FALSE USP43

36 15284691 19 34231040 1.1 + TRUE CHST8

37 1604277 18 34972537 1.1 + FALSE CELF4

38 rs17100016 14 101669396 1.1 + TRUE -

39 1s241166 8 28657998 1.1 + TRUE INTS9

40 rs2335524 19 7785698 1.05 + FALSE -

41 rs7751879 6 133089557 1.05 + FALSE -

42 rs7323755 13 45900267 1.05 + FALSE -




pour et al. BMC Medical Genomics 2020, 13(Suppl 9):133

Page 16 of 22

Table 3 Several top SNPs and their associated risk for the lung cancer dataset (Continued)

43 1s17014512 2 34259759
44 rs13317243 3 23185162
45 1s356612 5 63357558
46 157535074 1 202052416
47 1s9870623 3 145516298
48 rs3733103 3 45962595
49 157864264 9 87639472
50 15443565 15 62788601

1.04 + FALSE LINCO1317
1.04 + FALSE -

1.04 + FALSE -

1.04 + FALSE -

1.04 + FALSE -

1.04 + FALSE FYCO1
1.04 + FALSE NTRK2
1.04 + FALSE TLN2

cancer dataset we again observe that SNP pairs have pos-
itive risks, while in contrast to the lung cancer dataset
many individual SNPs have negative risk, meaning certain
point mutations may reduce the breast cancer relapse risk.

Using FPT to detect significant pairwise interactions
among the top D = 1250 SNPs, bounding FDR by 5%
using the Benjamini-Hochberg procedure only 4 pairs are
significant, although cross validation suggests 7o = 1,
resulting in using 567190 SNP pairs for classification. This

suggests in order to boost our prediction accuracies we
need to use many SNP pairs that are not significant, but
the information contained in the true discoveries out-
weighs the noise of the many false discoveries present in
the prediction rule. Finally, Fig. 7b plots the differences in
correlation coefficients where only pairs with differences
larger than 0.8 are assigned a non-zero height. We again
observe that few SNPs are common among many pairs
with potential interactions.

Table 4 Top 25 SNP pairs and their associated risk for the lung cancer dataset

Rank SNPID Gene Recessive Value SNP ID Gene Recessive Value +/— Risk Risk
1 rs2241873 SAG FALSE 0 rs2506262 - FALSE 1 + 3.09
2 rs11649975 NXN FALSE 0 rs17168935 MEOX2 FALSE 0 + 3.04
3 rs17068439 SYNPR FALSE 0 rs17168935 MEOX2 FALSE 0 + 3

4 1s7226895 - FALSE 1 rs17168935 MEOX2 FALSE 0 + 3

5 rs10077754 CTNND2 TRUE 1 154889210 LINC02170 FALSE 0 + 3

6 rs11032706 - FALSE 0 r1s16943878 - FALSE 0 + 2.94
7 rs9318973 - FALSE 0 rs11708764 - FALSE 0 + 2.94
8 1s7615876 - FALSE 0 rs17168935 MEOX2 FALSE 0 + 2.94
9 rs10246303 C1GALTT TRUE 1 rs16948197 TAOK3 FALSE 0 + 294
10 rs10739001 DOCK8 FALSE 0 rs9493858 SGK1 FALSE 0 + 2.89
1 rs9493858 SGK1 TRUE 0 rs9493858 SGK1 FALSE 0 + 2.89
12 rs2151274 - FALSE 0 rs17168935 MEOX2 FALSE 0 + 2.89
13 rs16914914 - FALSE 0 rs17168935 MEOX2 FALSE 0 + 2.89
14 rs11649975 NXN FALSE 0 rs9493858 SGK1 FALSE 0 + 2.89
15 rs4325674 PPP5D1 FALSE 0 rs9517847 CLYBL FALSE 0 + 2.89
16 rs9678660 - FALSE 0 rs9493858 SGK1 FALSE 0 + 2.89
17 rs11876308 - FALSE 0 1s771573 - FALSE 0 + 2.89
18 rs4455790 RP1L1 FALSE 0 152059645 PSD3 FALSE 0 + 2.89
19 rs202589 - FALSE 0 rs17168935 MEOX2 FALSE 0 + 2.89
20 rs9577032 LOC105370152 FALSE 0 1s6995294 - FALSE 0 + 2.89
21 rs5982322 MIR325HG TRUE 0 1s7615876 - FALSE 0 + 2.89
22 rs2059645 PSD3 TRUE 0 154455790 RP1L1 FALSE 0 + 2.89
23 rs11200876 - FALSE 0 1s12585722 - FALSE 0 + 2.89
24 rs9595630 N4BP2L2 TRUE 0 rs9493858 SGK1 FALSE 0 + 2.89
25 rs13092498 LINC02008 FALSE 0 rs475385 CEP164 FALSE 0 + 2.89
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Fig. 7 Difference of correlation coefficients for the indicator of both binarized SNPs being present as the interaction pattern for the (a) lung cancer
and (b) breast cancer datasets. In the a lung cancer and b breast cancer datasets only differences larger than 0.5 and 0.8, respectively, are given a
non-zero height. The color of each point, denoting a SNP pair, represents the correlation coefficient difference
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Discussion

Analyzing SNP data and developing classification rules
given SNP observations is difficult when studying com-
plex diseases. The small-sample high-dimensional nature
of the problem, individual SNPs being potentially weak
markers, SNPs being categorical variables in nature, and
their complex interactions are several important factors
that make classifier design a challenging task. Due to each
individual SNP contributing only minimally to the class
labels, it seems necessary to account for SNP interac-
tions to obtain reliable predictions. The proposed algo-
rithm, LABS-HDMR-CO aims to balance computation
cost, complexity, and prediction performance by using
a representation that accounts for pairwise interactions.
Although higher order HDMR expansions can be consid-
ered, given current technology, computation power, and
sample sizes, accounting only for pairwise interactions
seems to be the most one can hope for.

Interestingly, we observed in our simulated examples
described here that the linear models seem to perform
better than expected. Although the current simulations
are not sufficient to verify the performance and robust-
ness of linear models for SNP classification, we expect this
rather good performance to be due to closeness of GLMs
to the first degree HDMR expansions. Note that probit
and logit links have rather similar graphs, and the linear
model of the logit link aims to compute the log likelihood
ratio. In other words, the GLM with logit link assumes
the log likelihood ratio is linear, and assumes the risk of a
SNP with two minor alleles is twice the risk of a SNP with
one minor allele. Note the linear term basically resembles

the first order HDMR expansion under this additional
“dose-effect linearity” assumption. This assumption, sim-
ilar to the assumptions we made here in the development
of LABS-HDMR-CO, reduces complexity and the num-
ber of parameters to estimate. Note that the training of a
logit model is usually done by maximum likelihood (ML)
estimation of the parameters. Finally, note that since pro-
bit and logit links are very similar in shape, the superior
performance of LABS-HDMR-CO over GLMs may be due
to the following three reasons: (1) LABS-HDMR-CO uses
second order HDMR expansion while most GLMs used
in practice mimic first order HDMR expansion, (2) the
preprocessing of LABS-HDMR-CO decomposing SNP
dosage data to two indicators seems to better grasp the
nonlinear nature of SNPs, while not affecting the flexibil-
ity of the algorithm to account for SNPs that are neither
recessive nor dominant, and (3) the additional assump-
tions made in LABS-HDMR-CO seem to enforce less
rigidness in the model than the assumptions of GLMs on
linear additive risks.

When analyzing cancer datasets reporting SNP dosage
values, in the lung cancer dataset we observed that LABS-
HDMR-CO may enjoy much superior performance com-
pared with other popular algorithms, and in the breast
cancer dataset we observed may perform only slightly
inferior to them. Furthermore, when lack of reliable bio-
logical knowledge results in the need of considering
extremely large number of potential SNP pairs, although
we may not be able to reliably detect which SNP pairs
are affected in the disease under study, we may be able to
aggregate the information of many potential SNP pairs to
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Table 5 Several top SNPs and their associated risk for the breast cancer dataset

Rank SNP ID Chromosome Location Risk +/— Risk Recessive Gene

1 rs17088238 4 58051368 1.83 - FALSE -

2 rs9616659 22 48274771 1.7 - FALSE C220rf34

3 SNP-A-1916909 - - 1.67 - TRUE -

4 rs1830876 6 51173716 1.67 - TRUE -

5 rs1627802 1 15148537 161 - FALSE INSC

6 r1s1514867 5 17797421 15 + TRUE LOC105374666
7 SNP-A-4276906 - - 15 + TRUE -

8 rs10752369 10 15410484 1.49 - FALSE FAM171A1

9 rs13129525 4 141069061 1.48 - TRUE MAML3

10 1532489 5 55634181 1.48 - FALSE LOC105378977
M rs2183902 10 74749286 148 - FALSE CFAP70

12 14679029 3 38317718 148 - FALSE SLC22A14

13 SNP-A-1856501 - - 143 - FALSE -

14 rs1459375 10 126998027 143 - FALSE -

15 rs17450114 5 59517635 143 - FALSE PDE4D

16 rs10941538 5 17820309 1.39 + FALSE LOC105374666
17 rs10192060 2 206075348 1.36 - TRUE PARD3B

18 rs10517460 4 37643478 1.34 - FALSE TBC1D1

19 1s954765 6 102608467 131 + FALSE GRIK2

20 153867286 1 69483918 1.3 + TRUE -

21 152069662 5 75952359 1.3 + FALSE F2RL2,IQGAP2
22 1s7579373 2 67252044 1.28 + FALSE LINCO1828

23 rs7205704 16 27308394 127 - FALSE -

24 152274055 13 97925497 127 - FALSE STK24

25 rs1937991 10 42281298 127 - FALSE CCNYL2

26 rs17038799 2 36207369 127 - TRUE -

27 12256639 14 68125927 127 - TRUE RAD51B

28 rs11615811 12 40212891 127 - FALSE PDZRN4

29 rs17073525 8 5274464 1.26 - FALSE -

30 1s719204 20 51997608 12 - FALSE BCAS1

31 SNP-A-4196610 - - 12 - FALSE -

32 rs10741628 M 13851791 12 - TRUE -

33 1s9820942 3 64535053 12 - TRUE ADAMTS9

34 rs2063403 2 36082617 12 - TRUE -

35 rs4413537 5 42681603 12 + TRUE GHR

36 19292856 5 42681023 12 + FALSE GHR

37 r1s7156144 14 67049466 1.19 - FALSE TMEM229B,GPHN
38 rs318934 10 131977850 1.16 + TRUE LOC107984002
39 157607695 2 152607080 1.16 + TRUE CACNB4

40 17175886 15 31780252 1.16 + FALSE RYR3

41 1433670 16 76173403 1.14 - FALSE -

42 157278719 21 16607117 1.14 - FALSE MIR99AHG
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Table 5 Several top SNPs and their associated risk for the breast cancer dataset (Continued)

43 rs4716071 6 16541202
44 rs6475803 9 2462372
45 1s2322095 18 5439746
46 154545261 X 25954300
47 rs4381121 X 25953702
48 rs13250548 8 35627942
49 rs318931 10 131967734
50 SNP-A-2248670 - -

1.14 - FALSE ATXN1

1.14 - TRUE LOC101930053
114 + TRUE EPB41L3

1.13 + FALSE -

1.13 + FALSE -

1.1 - TRUE UNC5D

1.09 + FALSE LOC107984002
1.09 + TRUE -

improve prediction accuracy. In other words, when work-
ing with SNP data, it seems sets with large FDRs might
still carry enough signal to improve prediction accura-
cies. Finally, note that the HAPGEN?2 data is based on real
work sequences, and we can expect it to adequately mimic
real world scenarios. We observed much higher accura-
cies for all classification rules for the HAPGEN?2 dataset
compared with other cancer datasets. As SNPs seem to be
equally weak in all datasets, for instance risks of individual

SNPs are not very different, we may hypothesize that the
relatively small sample size of cancer datasets may con-
tribute to inferior performance, as the trained classifiers
have errors much larger than the Bayes error, and that the
larger samples are necessary for more reliable predictions.

Conclusion
The analysis of genetic variants and their joint effect on
complex diseases is a challenging task. In particular, SNPs

Table 6 Top 25 SNP pairs and their associated risk for the breast cancer dataset

Rank  SNPID Gene Recessive  Value ~ SNPID Gene Recessive  Value  4/—Risk  Risk
1 rs10045084 - TRUE 0 rs954035 PRRC2C TRUE 0 + 3.06
2 rs7731058 DOCK2 TRUE 0 rs17022519 LOC102724960 FALSE 0 + 3.06
3 rs7731058 DOCK2 TRUE 0 1517022501 LOC102724960 FALSE 0 + 3.06
4 152817806 CDK19 FALSE 1 rs949881 CCDC162P FALSE 0 + 3.06
5 rs2715133 GRB10 TRUE 0 1512878981 TMEM229B,GPHN FALSE 1 + 3.06
6 rs151130 - FALSE 1 rs4075386 LRRK1 TRUE 1 + 3.06
7 1s577743 - FALSE 0 157598745 - TRUE 0 + 3.03
8 1517829549 - FALSE 0 152322095 EPB41L3 TRUE 0 + 3.03
9 rs11072625 SCAPER TRUE 0 rs868978 LOC105376137 FALSE 0 + 3.03
10 1517762161 - TRUE 1 rs2322095 rs2322095 TRUE 0 + 3.03
1 r1s8106386 ZNF420 TRUE 1 rs981013 PDZRN4 FALSE 0 + 3.03
12 1s9384703 CCDC162P FALSE 0 1s2691184 - FALSE 1 + 3.03
13 1s6425603 CEP350 FALSE 0 SNP-A-2020595 - TRUE 1 + 3.03
14 rs1469369 - TRUE 1 rs2103788 SLC35F4 TRUE 1 + 3.03
15 SNP-A-2041709 - FALSE 1 SNP-A-4299911 - TRUE 1 + 3.03
16 1517006942 - TRUE 1 16460669 GALNT17 FALSE 1 + 3.03
17 SNP-A-1834818 - FALSE 0 590987 NTNG1 TRUE 0 + 3
18 rs11830382 - FALSE 0 rs1964337 ZNF66 FALSE 0 + 3
19 rs11020107 - TRUE 1 rs10732488 - FALSE 0 + 3
20 rs1687064 PRRC2C FALSE 1 rs10045084 - TRUE 0 + 3
21 rs10135394 SLC35F4 TRUE 1 rs934034 - FALSE 0 + 3
22 rs1469369 - TRUE 1 11028458 SLC35F4 FALSE 0 + 3
23 154793993 SNF8 FALSE 1 15941729 - FALSE 0 + 3
24 152503675 - FALSE 1 rs1433062 - FALSE 0 + 3
25 12503675 - FALSE 1 rs10745023 ZNF699 FALSE 0 + 3
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are a difficult data type to handle due to their high-
dimensionality, weak effects of each individual SNP on the
phenotype under study, the need to account their joint
complex interactions, and their categorical nature. These
challenges make it difficult to develop classification rules
with reliable predictions, and are exacerbated by the small
sample sizes in many applications.

Here we revisited the binary classification problem
given categorical SNP observations when reported in
dosage, and proposed LABS-HDMR-CO as an algorithm
that produces classification rules with good prediction
performance that can take several hundred SNPs as input,
and account for their pairwise interactions. Additionally,
LABS-HDMR-CO is a very fast algorithm in nature, with
runtime comparable to a GLM with LASSO penalty. How-
ever, due to the 4 parameters to tune (D, T1, T, and T3)
in cross validation, the training of the model may become
quite computationally expensive. However, note that dif-
ferent thresholds can be evaluated independent of each
other, making LABS-HDMR-CO an ideal candidate for
parallel computing. Further development of techniques to
speed up the training process is an interesting direction
for future work that should be explored in more detail.

The categorical nature of SNP dosage data has been
a challenge for many machine learning algorithms, and
treating them as real numbers has been the focus of many
methods. Although the current work requires further
study, our initial results suggest that HDMR can a be suit-
able framework to study SNP data as categorical variables.
Additionally, although we only approximate the second
order HDMR expansion, we already know that the second
order expansion is the best low dimensional representa-
tion in the mean square error (MSE) sense [16]. Therefore,
it is not surprising that LABS-HDMR-CO enjoys superior
prediction performance compared with many algorithms
used to study SNP data.

The ability of HDMR to acknowledge categorical nature
of SNP data with complex non-linear interactions opens
up a new avenue of research to develop low dimensional
models suitable for categorical data. Last but not least,
the close connection of HDMR with the Sobol indices
gives one the ability to identify significant SNP pairs with
high interactions, using the same methodology as used
for classification problems. Interestingly, we observed that
although we may not be able to detect which SNP pairs
are affected in the disease under study, the net effect of
aggregating many high-profile SNP pairs can boost the
prediction accuracy. In other words, in spite of not being
able to declare where the “signal” is, i.e., which specific
pairwise patterns are affected, it is possible to implicitly
extract and take advantage of such information to improve
prediction accuracy.

The power, of LABS-HDMR-CO to account for and
combine many SNP pairs in its decision rule opens up
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many avenues of research demanding further investiga-
tion. For instance, the type of a classification problem for
categorical observations considered here may be extended
to non-binary cases (multiple phenotypes) as well, and we
will pursue such an extension of our approach in future
work. We note, however, that binary classification is the
cornerstone of classification theory and many solutions to
multiclass problems can be formulated as a sequence of
solutions to binary class problems.

Nomenclature

1;: indicator function of statement s being true

y: the class label taking values 0 or 1

D: the number of features that pass the first phase filtra-
tion of the LABS-HDMR-CO classification algorithm

F: the set of feature indices

u: an arbitrary subset of F

fu: the HDMR component for set u C F

X: the observation random vector comprised of categori-
cal variables

X,,: restriction of X to features in u C F

Xy: used instead of Xy, for f € F

L(X): the log likelihood ratio of point X belonging to class
1

ny: sample size in class y

Pe,y: OBF’s estimate of the probability of feature f taking
value ¢ in class y

A!{éi (y): OBF’s estimate of the probability of features f;
and f; taking values c; and ¢, respectively, in class y

q.: the HDMR coefficient of when feature set u takes
value ¢

Cs: the set of categorical values feature f € F can take
#': the risk associated to binarized feature f
r; f;+ the risk associated to binarized feature pair com-
prised of f; and f;
R(X): the risk associated to observation X
8: the training sample
8y: the training sample in class y
S(u): the Sobol index of feature set u
S€(u): the main effect Sobol index of feature set u
T the threshold used to assign a class to a test point
T1: the threhsold used to remove weak features
Ty: the threhsold used to remove weak feature pairs
Tj: the threhsold used to remove weak feature blocks
b*: the estimated approximate HDMR coefficients
obtained from the training sample
wl: the HDMR coefficient of when the observed values of
feature set u satisfy constraint g
Z = f(X): is the dependent varibale whose HDMR expan-
sion is being computed
E (Z|X): the d” order HDMR expansion of Z given
observation X
Cii’,é/: the indicator of features f; and f; taking values ¢; and
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¢j , respectively

ﬁfﬁ: correlation coefficient between f; and f;

kgg (y): the ratio between probability mass function
value of observing features f; and f; taking values c; and
¢j ,repectievly, and the probability mass function value
assuming f; and f; are independent in class y

z{fﬁ: Fisher’s r to z transform value for Bernoulli random
variables f; and f;

c; - the block comprised of feature pairs that (a) have
large negative risks, (b) contain f;, (c) f; takes value ¢;, and
(d) the other feature in the pair, f;, takes value ¢

Pfl ¢ the block comprised of feature pairs that (a) have
large positive risks, (b) contain f;, (c) f; takes value ¢;, and
(d) the other feature in the pair, f;, takes value ¢y

r: the risk associated to block A being the ratio of
observed pairwise feature patterns of A averaged over all
samples

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512920-020-00774-1.

Additional file 1: Supplementary: top SNPs of LABS-HDMR-CO. The top
SNPs used by LABS-HDMR-CO for the HAPGEN2, breast cancer, and lung
cancer datasets are provided in the Supplementary.

Abbreviations

AUC: area under curve; DNA: deoxyribonucleic acid; FDR: false discovery rate;
FPT: fixed pattern test; GEO: gene expression omnibus; GLM: generalized linear
model; HDMR: high dimensional model representation; LABS-HDMR-CO: linear
approximation for block second order HDMR expansion for categorical
observations; LASSO: least absolute shrinkage and selection operator; MSE:
mean square error; ROC: receiver operator characteristic; SNP: single
nucleotide polymorphism

Acknowledgments
Not Applicable.

About this supplement

This article has been published as part of BMC Medical Genomics Volume 13
Supplement 9, 2020: The International Conference on Intelligent Biology and
Medicine (ICIBM) 2019: Computational methods and application in medical
genomics (part 2). The full contents of the supplement are available online at
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-
13-supplement-9.

Authors’ contributions

AFP and GR designed the approach and performed analyses. AFP, MP, GR
were involved in initial manuscript preparation. LESC and EK provided
simulated data. LAD, AFP, MP, GR, EK and LESC were involved in discussions
throughout the study and in preparing the final manuscript. All author(s) have
read and approved the final manuscript.

Funding

The research and publication costs were partially supported by the National
Science Foundation grant DMS-1853587 to GR and by the Mathematical
Biosciences Institute (MBI) at The Ohio State University. MBI is supported by
the National Science Foundation under grant DMS-1440386. The funding
sources had no role in the design of the study and in writing of the manuscript.

Page 21 of 22

Availability of data and materials

A MATLAB implementation of LABS-HDMR-CO is available on Github. GWAS
datasets are publicly available on GEO, and the synthetically generated
HAPGEN2 data is available upon request.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

! Department of Electrical and Computer Engineering, The Ohio State
University, 2015 Neil Ave, 43210 Columbus OH, USA. 2Department of
Mathematics, The Ohio State University, 231 West 18th Ave, 43210 Columbus
OH, USA. 3Mathematical Biosciences Institute, 1735 Neil Ave, 43210 Columbus
OH USA. “College of Public Health, The Ohio State University, 1841 Neil Ave,
43210 Columbus OH, USA. > Department of Biomedical Informatics, The Ohio
State University, 1585 Neil Ave, 43210 Columbus OH, USA. ®College of
Pharmacy, The Ohio State University, 500 West 12th Ave, 43210 Columbus OH,
USA.

Published: 21 September 2020

References

1. Sima C, Dougherty ER. What should be expected from feature selection
in small-sample settings. Bioinformatics. 2006;22(19):2430-6.

2. HuaJ, Tembe WD, Dougherty ER. Performance of feature-selection
methods in the classification of high-dimension data. Pattern Recog.
2009;42(3):409-24.

3. Huang H-H, XuT, Yang J. Comparing logistic regression, support vector
machines, and permanental classification methods in predicting
hypertension. BMC Proceedings. 2014;8(1):96.

4. Long N, Gianola D, Rosa GJ, Weigel KA, Avendano S. Comparison of
classification methods for detecting associations between snps and chick
mortality. Genet Sel Evol. 2009;41(1):18.

5. LongN, Gianola D, Rosa GJM, Weigel KA, Avendaio S. Machine learning
classification procedure for selecting snps in genomic selection:
application to early mortality in broilers. J Anim Breeding Genet.
2007;124(6):377-89.

6. Schwender H, Ickstadt K. Identification of SNP interactions using logic
regression. Biostatistics. 2007;9(1):187-98.

7. Garcia-Magarifos M, Lopez-de-Ullibarril, Cao R, Salas A. Evaluating the
ability of tree-based methods and logistic regression for the detection of
snp-snp interaction. Ann Hum Genet. 2009;73(3):360-9.

8. Weissfeld JL, LinY, Lin H-M, Kurland BF, Wilson DO, Fuhrman CR,
Pennathur A, Romkes M, Nukui T, Yuan J-M, et al. Lung cancer risk
prediction using common snps located in gwas-identified susceptibility
regions. J Thorac Oncol. 2015;10(11):1538-45.

9. SuZ, MarchiniJ, Donnelly P. HAPGEN2: simulation of multiple disease
SNPs. Bioinformatics. 2011;27(16):2304-5.

10. Rabitz H, Alis OF. General foundations of high-dimensional model
representations. J Math Chem. 1999;25:197-233.

11. Li G, Rabitz H. General formulation of HDMR component functions with
independent and correlated variables. J Math Chem. 2012;50(1):99-130.

12. Hooker G. Generalized functional ANOVA diagnostics for
high-dimensional functions of dependent variables. J Comput Graph Stat.
2007;16(3):709-32.

13. Sobol IM. Theorems and examples on high dimensional model
representation. Reliab Eng Syst Saf. 2003;79(2):187-93.

14.  Alis OF, Rabitz H. Efficient implementation of high dimensional model
representations. J Math Chem. 2001;29(2):127-42.

15. LiG, HuJ, Wang S-W, Georgopoulos PG, Schoendorf J, Rabitz H.
Random sampling-high dimensional model representation (RS-HDMR)
and orthogonality of its different order component functions. J Phys
Chem A. 2006;110(7):2474-85.

16. LuR, Wang D, Wang M, Rempata GA. Estimation of Sobol’s sensitivity
indices under generalized linear models. Commun Stat-Theory Methods.
2018;47(21):5163-95.


https://doi.org/10.1186/s12920-020-00774-1
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-9
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-9
https://github.com/MPiet11/LABS-HDMR

pour et al. BMC Medical Genomics 2020, 13(Suppl 9):133

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

llyin SE, Belkowski SM, Plata-Salamén CR. Biomarker discovery and
validation: technologies and integrative approaches. Trends Biotechnol.
2004,22(8):411-6.

Saeys Y, Inzal, Larrahaga P. A review of feature selection techniques in
bioinformatics. Bioinformatics. 2007,23(19):2507-17.

Diamandis EP. Cancer biomarkers: can we turn recent failures into
success? J Natl Cancer Inst. 2010;102(19):1462-7.

Pearson ES, Neyman J. On the problem of two samples. In: Neyman J,
Pearson ES, editors. Joint Statistical Papers (1967). Cambridge: Cambridge
University Press; 1930. p. 99-115.

Zhang L, Xu X, Chen G. The exact likelihood ratio test for equality of two
normal populations. Am Stat. 2012;66(3):180-4.

Foroughi pour A, Dalton LA. Optimal bayesian feature filtering for
single-nucleotide polymorphism data. In: IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). Kansas: [EEE; 2017. p. 2290-2.
Shen J, LiZ, Song Z, Chen J, ShiY.Genome-wide two-locus interaction
analysis identifies multiple epistatic snp pairs that confer risk of prostate
cancer: A cross-population study. Int J Cancer. 2017;140(9):2075-84.

Han S-A, Song J-Y, Min S-Y, Park WS, Kim M-J, Chung J-H, Kwon KH. A
genetic association analysis of polymorphisms, rs2282695 and
rs12373539, in the FOSB gene and papillary thyroid cancer. Exp Ther Med.
2012;4(3):519-23.

Samuels ME. Saturation of the human phenome. Curr Genomics.
2010;11(7):482-99.

Plan Y, Vershynin R. One-bit compressed sensing by linear programming.
Commun Pur Appl Math. 2013;66(8):1275-97.

PlanY, Vershynin R. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. IEEE Trans Inf Theory.
2013;59(1):482-94.

Ai A, Lapanowski A, PlanY, Vershynin R. One-bit compressed sensing
with non-Gaussian measurements. Linear Algebra Appl. 2014;441:222-39.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995,57(1):289-300.

LuT-P, Lai L-C, Tsai M-H, Chen P-C, Hsu C-P, Lee J-M, Hsiao CK, Chuang
EY. Integrated analyses of copy number variations and gene expression in
lung adenocarcinoma. PloS ONE. 2011;6(9):24829.

Edgar R, Domrachev M, et al. Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res.
2002;30(1):207-10.

Abbruzzese C, Mattarocci S, Pizzuti L, Mileo AM, Visca P, Antoniani B,
Alessandrini G, Facciolo F, Amato R, D'Antona L, et al. Determination of
sgk1 mrna in non-small cell lung cancer samples underlines high
expression in squamous cell carcinomas. J Exp Clin Cancer Res.
2012;31(1):4.

Matschke J, Wiebeck E, Hurst S, Rudner J, Jendrossek V. Role of sgk1 for
fatty acid uptake, cell survival and radioresistance of nci-h460 lung cancer
cells exposed to acute or chronic cycling severe hypoxia. Radiat Oncol.
2016;11(1):75.

Zhang B, Jia W-H, Matsuda K, Kweon S-S, Matsuo K, Xiang Y-B, Shin A,
Jee SH, Kim D-H, Cai Q, et al. Large-scale genetic study in east asians
identifies six new loci associated with colorectal cancer risk. Nat Genet.
2014;46(6):533.

Cortese R, Hartmann O, Berlin K, Eckhardt F. Correlative gene expression
and dna methylation profiling in lung development nominate new
biomarkers in lung cancer. Int J Biochem Cell Biol. 2008;40(8):1494-508.
Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, Gere
S, Kageyama S-I, Fukuoka J, Nagata T, et al. Identification of novel gene
amplifications in breast cancer and coexistence of gene amplification
with an activating mutation of pik3ca. Cancer Res. 2009;69(18):7357-65.
Santuario-Facio SK, Cardona-Huerta S, Perez-Paramo YX, Trevino V,
Hernandez-Cabrera F, Rojas-Martinez A, Uscanga-Perales G,
Martinez-Rodriguez JL, Martinez-Jacobo L, Padilla-Rivas G,
Mufoz-Maldonado G, Gonzalez-Guerrero JF, Valero-Gomez J,
Vazquez-Guerrero AL, Martinez-Rodriguez HG, Barboza-Quintana A,
Barboza-Quintana O, Garza-Guajardo R, Ortiz-Lopez R. A new gene
expression signature for triple-negative breast cancer using frozen fresh
tissue before neoadjuvant chemotherapy. Mol Med. 2017;23(1):101-11.
V Broude E, Gyorffy B, A Chumanevich A, Chen M, SJ McDermott M,
Shtutman M, F Catroppo J, B Roninson I. Expression of cdk8 and
cdk8-interacting genes as potential biomarkers in breast cancer. Curr
Cancer Drug Targets. 2015;15(8):739-49.

39.

Page 22 of 22

Miyagawa Y, Matsushita Y, Suzuki H, Komatsu M, Yoshimaru T, Kimura R,
Yanai A, Honda J, Tangoku A, Sasa M, et al. Frequent downregulation of
Irrc26 by epigenetic alterations is involved in the malignant progression
of triple-negative breast cancer. Int J Oncol. 2018;52(5):1539-58.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	High dimensional model representation
	Second order HDMR for categorical observations
	HDMR expansion for binary classification
	Sobol indices, HDMR expansion, and variable selection
	The Sobol indices and feature filtering
	Pairwise SNP interactions


	Algorithm
	Initial filtering
	Classification algorithm
	Feature pair construction
	Removing weak features
	Removing weak feature pairs
	Feature block construction
	Estimating classifier parameters


	Results
	HAPGEN2 data
	Lung cancer
	Breast cancer

	Discussion
	Conclusion
	Nomenclature
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12920-020-00774-1.
	Additional file 1

	Abbreviations
	Acknowledgments
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

