

DNA Engineering and Hepatitis B Virus Replication

Chun-yang Gan¹, Jing Cui¹, Wen-lu Zhang¹, Yu-wei Wang², Ai-long Huang^{1*} and Jie-li Hu^{1*}

¹ Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China, ² Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China

Recombinant DNA technology is a vital method in human hepatitis B virus (HBV),

OPEN ACCESS

Edited by:

Chunfu Zheng, University of Calgary, Canada

Reviewed by:

Jiacheng Lin, Fujian Medical University, China Limin Chen, Chinese Academy of Medical Sciences and Peking Union Medical College, China

> *Correspondence: Ai-long Huang ahuang1964@163.com Jie-li Hu 102564@cqmu.edu.cn

Specialty section:

This article was submitted to Virology, a section of the journal Frontiers in Microbiology

Received: 25 September 2021 Accepted: 13 October 2021 Published: 11 November 2021

Citation:

Gan C-y, Cui J, Zhang W-I, Wang Y-w, Huang A-I and Hu J-I (2021) DNA Engineering and Hepatitis B Virus Replication. Front. Microbiol. 12:783040. doi: 10.3389/fmicb.2021.783040

producing reporter viruses or vectors for gene transferring. Researchers have engineered several genes into the HBV genome for different purposes; however, a systematic analysis of recombinant strategy is lacking. Here, using a 500-bp deletion strategy, we scanned the HBV genome and identified two regions, region I (from nt 2,118 to 2,814) and region II (from nt 99 to 1,198), suitable for engineering. Ten exogenous genes, including puromycin N-acetyl transferase gene (Pac), blasticidin S deaminase gene (BSD), Neomycin-resistance gene (Neo), Gaussia luciferase (Gluc), NanoLuc (Nluc), copGFP, mCherry, UnaG, eGFP, and tTA1, were inserted into these two regions and fused into the open reading frames of hepatitis B core protein (HBC) and hepatitis B surface protein (HBS) via T2A peptide. Recombination of 9 of the 10 genes at region 99-1198 and 5 of the 10 genes at region 2118-2814 supported the formation of relaxed circular (RC) DNA. HBV DNA and HBV RNA assays implied that exogenous genes potentially abrogate RC DNA by inducing the formation of adverse secondary structures. This hypothesis was supported because sequence optimization of the UnaG gene based on HBC sequence rescued RC DNA formation. Findings from this study provide an informative basis and a valuable method for further constructing and optimizing recombinant HBV and imply that DNA sequence might be intrinsically a potential source of selective pressure in the evolution of HBV.

Keywords: hepatitis B virus, recombination, replication, RNA splicing, DNA sequence optimization

INTRODUCTION

Infection with human hepatitis B virus (HBV) remains a public health problem around the world. More than 250 million people across the globe are estimated to be chronically infected with HBV (WHO, 2017; Polaris Observatory Collaborators, 2018; Schmit et al., 2020). Evidence shows that chronic HBV infection is a high-risk factor for the development of hepatocirrhosis and hepatocellular carcinoma.

HBV is a prototypical member of the Hepadnaviridae family, characterized by a relatively compact relaxed circular (RC) DNA genome and a special genomic replication mechanism via

reverse transcription of a redundant RNA intermediate (Summers and Mason, 1982). The RC DNA genome of HBV is repaired after infection, converted into covalently closed circular DNA (cccDNA) in the nucleus of hepatocyte, and transcribed to pregenomic mRNA (pgRNA), precore mRNA, preS1 mRNA, S mRNA, and X mRNA. PgRNA functions as a bicistronic mRNA directing the synthesis of hepatitis B core protein (HBC) and polymerase (Pol) and is the template for reverse transcription. HBV replication begins with the encapsidation of pgRNA, whereby Pol binds to the stem-loop structure, epsilon (ɛ), at the 5' end of pgRNA, triggering the assembly of HBC and packaging of the ribonucleoprotein complex into an icosahedral nucleocapsid (Bartenschlager et al., 1990; Bartenschlager and Schaller, 1992; Pollack and Ganem, 1993; Shin et al., 2002). The host chaperone proteins mediate encapsidation, and the nucleocapsid provides a microenvironment for reverse transcription (Shin et al., 2002). Briefly, the minus-strand primer, estimated at 3 or 4 nucleotides (nt) long, is synthesized in a protein primed process with the bulge of epsilon as a template. The minus-strand primer links to the tyrosine residue at the 63rd amino acid of Pol (Pol 63Y) via a covalent bond (Figure 1A; Nassal and Rieger, 1996; Lanford et al., 1997) and translocates to the complementary region, DR1, at the 3' end of pgRNA (Figure 1B; Rieger and Nassal, 1996), where the synthesis of minus-strand DNA resumes. Subsequently, pgRNA is reverse transcribed into minus-strand and simultaneously degraded by the RNase H domain of Pol, leaving the 11-16 oligonucleotides at 5'-terminal of pgRNA undigested (Figure 1C; Summers and Mason, 1982). These oligonucleotides function as primers for plus-strand synthesis. A fraction of plus-strand primers retained in situ extends to the 5' end of the minus-strand DNA and forms duplex linear DNAs (DL DNAs) (Figure 1D). Most plus-strand primers translocate to DR2 and extend to the 5' end of the minus-strand, copying a 10-nt redundant sequence named 5'r (Figure 1E; Haines and Loeb, 2007). Subsequently, the nascent 3' end of plus-strand pairs with the 3'-proximal redundant region (3'r) of minus-strand, continuing elongation of plus-strand to form RC DNA (Figures 1F,G).

cis-Elements, including epsilon (ε), direct repeat sequences (DR1 and DR2), terminal redundancy (5' r and 3'r), h5E, hM, h3E, and Φ , are essential in every step of HBV replication (**Figure 1H**). Epsilon (ε) is the encapsidation signal and the template for protein priming (Pollack and Ganem, 1993); DR2 (1588–1598) and DR1 (1822–1832) are essential for primer translocations; 5' r and 3'r, located at 1816–1824 of the minus-strand, are essential for circularization; h5E (1511–1568), hM (2820–2868), and h3E (1833–1844) play a critical role in plus-strand primer translocation (Liu et al., 2004; Lewellyn and Loeb, 2007); Φ (1767–1793) is essential for minus-strand primer translocation (Tang and McLachlan, 2002; Abraham and Loeb, 2006).

Recombinant DNA technology is a powerful tool for research in the field of HBV. The last 30 years have seen attempts by researchers to reconstruct HBV for different purposes. Insertion of differently sized exogenous genes, including HIV Tat, ZeoR, fluorescent proteins (GFP, EGFP, hrGFP, RFP, DsRed), Renilla luciferase (Rluc), Guassia luciferase (Gluc), NanoLuc luciferase (Nluc), and blasticidin S deaminase (BSD), into HBV genome has allowed for the construction of associated recombinant viruses (Kimura et al., 1994; Chaisomchit et al., 1997; Protzer et al., 1999; Yoo et al., 2002; Untergasser and Protzer, 2004; Liu et al., 2009, 2013; Hong et al., 2013; Nishitsuji et al., 2015, 2018). However, some of these efforts were unsuccessful (Bai et al., 2016), and no systematic analysis of HBV's engineering strategy has been done.

In this view, we herein systematically analyzed the strategy of HBV engineering. First, a scan on the whole genome with a 500-bp deletion from position 1919 to position 1198 revealed two regions, nt 2,118-2,814 and nt 99-1,198, welltolerable to deletion. Second, 10 exogenous genes, including puromycin N-acetyl transferase gene (Pac) (Lacalle et al., 1989), blasticidin S deaminase gene (BSD) (Kimura et al., 1994), Neomycin resistance gene (Neo) (Southern and Berg, 1982), Guassia luciferase (Gluc) (Verhaegent and Christopoulos, 2002), NanoLuc luciferase (NLuc) (England et al., 2016), copGFP (Shagin et al., 2004), mCherry (Shaner et al., 2004), UnaG (Kumagai et al., 2013), eGFP (Cormack et al., 1996), and tTA1 (Baron et al., 1997), were inserted at position 2120 and position 155, respectively, via Thosea asigna virus 2A peptide (T2A) (Wang et al., 2015). Insertion of a majority of these genes supported RC DNA formation. We also systematically analyzed HBV RNA transcribed from different constructs to provide insight into how engineering affects the formation of RC DNA. The results showed that pgRNA splicing is common among those deletion variants and recombinants. However, this can hardly explain the failure of RC DNA formation of some recombinants. We thus provided a hypothesis that secondary structures induced by some of these exogenous genes might be potentially associated with abolishing RC DNA. This hypothesis was supported because sequence optimization of the UnaG gene based on HBC sequence, which is predicted to relieve the nonoptimized UnaG on the structure of minus-strand DNA, rescued RC DNA formation.

MATERIALS AND METHODS

Constructs

HBV DNA was derived from HBV subtype ayw (GenBank accession number v01460) and numbered according to the only EcoRI site of the genome. The "C" of the EcoRI site (GAATTC) was designated as position 1. Pch9/3091, constructed by Nassal et al., transcribes pgRNA under the control of the cytomegalovirus immediate-early promoter (pCMV) (Nassal, 1992). All HBV variants were constructed based on Pch9/3091 using Golden Gate Assembly with a few modifications (Engler et al., 2009). Briefly, the Golden Gate Assembly system comprised the following components: $1 \times \text{NEB}$ buffer 3.1 (NEB), 5 mM DTT, 1 mM ATP, 0.5 units/µL of BsmBI, or BsmBI-v2 (NEB), 150 units/ μ L of T7 DNA Ligase (NEB), and 3–5 ng/ μ L of each DNA fragment. The reaction was performed with 60 cycles of 37°C for 5 min and 16°C for 5 min, followed by a 5-min incubation at 60°C. Plasmid pch9-G2016T contains a G2016T mutation, which terminates HBC translation at the 40th amino acid (HBC 40E). Pch9- $\Delta \varepsilon$ has a deletion between nt 1,858 and 1,863 and two

substitutions (G1877T and T1878A). PgRNA transcribed from this construct would not be encapsidated but be translated to both HBC and Pol.

Cell Culture and Transfection

HepG2 was cultured in DMEM/F12 supplemented with 10% fetal bovine serum and 10 μ g/mL ciprofloxacin, and the culture medium was refreshed every 3 days (25–50% confluence) or every day (100% confluence). HepG2 cells were seeded into 12-well plates 20 h before transfection. Transfection was performed with Lipo8000 (Beyotime, China), following the manufacturer's instructions.

Core DNA Extraction and Southern Blotting

Plasmids were cotransfected, respectively, with pCH9- $\Delta\epsilon$, which expresses HBC and Pol *in trans*. Cells were harvested on

day 5 posttransfection and washed once with phosphate-buffered saline (PBS). Core DNA was extracted as described previously (Abraham and Loeb, 2006). Briefly, cells in each well were lysed with 200 µL lysis buffer [50 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.2% NP40] and incubated at 37°C for 10 min. Lysed cells were centrifuged at 12,000 g for 5 min to remove the nuclei. The supernatant was supplemented with 5 mM CaCl₂ and 5,000 units/mL micrococcal nuclease (NEB) and incubated at 37°C for 1.5 h. Subsequently, the micrococcal nuclease was inactivated with 10 mM EDTA. The reaction systems were supplemented with 0.5% sodium dodecyl sulfate and 0.5 mg/mL pronase and incubated at 37°C for 1.5 h. Core DNA was extracted with phenol-chloroform precipitated with ethanol and dissolved into 20 μ L 1 \times EcoRI buffer. Core DNA (10 µL) was digested by EcoRI for 1 h and resolved with 10 µL undigested samples on 1.5% agarose gel at 4 V/cm for 1.5 h. Following electrophoresis, the gel was denatured by soaking into two volumes of 0.4 M NaOH for

15 min with gentle shaking and transferred onto a positively charged nylon membrane with 60 mL 0.2 M NaOH overnight. The membranes were neutralized by soaking into 100 mL neutralization buffer (2 × saline- sodium phosphate- EDTA (SSPE), 200 mM Tris-HCl, pH 7.5) for 15 min with shaking and then UV-crosslinked at $1,500 \times 100 \text{ }\mu\text{J/cm}^2$. Hybridization was performed via the DIG Easy Hyb (Roche, Germany) according to the manufacturer's protocol using a digoxin-labelled probe (nt 1,199-1,814) at 30 ng/mL and 46°C. Detection of digoxin was performed following the manufacturer's protocol (Roche, Germany), with some modifications according to a previously described method (Engler-Blum et al., 1993; McCabe et al., 1997). The NaCl concentration and the pH of the washing buffer were increased to 3 M and 8.0-9.0, respectively. In addition, 10 × blocking reagent was centrifuged at 13,000 g for 5 min, and the supernatant was added into washing buffer to reduce background.

Total RNA Extraction and Northern Blotting

Total RNA was extracted using the TIANGEN RNA extraction reagent (TIANGEN, China) with some modifications. Briefly, cells were harvested on day 2 posttransfection and washed once with PBS. Next, cells were lysed in 500 μ L/well Buffer RZ, and the lysate was supplemented with 1/5 volume of chloroform. The mixture was centrifuged at 13,000 g at 4°C for 10 min, and the supernatant was transferred into a new tube. Following phenol-chloroform extraction, total RNA was precipitated using ethanol and dissolved into 20 μ L 1 × RNA loading buffer (60–73% formamide deioned, 1 × DNA loading buffer, and 10 μ g/mL EtBr). RNA samples can be stored at -20°C for at least 1 month without degradation.

RNA samples were electrophoresed in TAE agarose gels according to a previously described method (Masek et al., 2005). The samples were first denatured at 65° C for 5 min and chilled on ice for 5 min before loading. Then, the samples were resolved on 1.2% 1 × TAE agarose gels at 4 V/cm and visualized under UV to examine the rRNAs. The gels were soaked into 120 mL 20 × saline sodium citrate (SSC) for at least 20 min. After that, RNA on the gels was transferred onto positively charged nylon membranes using 20 × SSC overnight. The membranes were UV-crosslinked directly on the next day. Hybridization and detection were performed by a similar method as the Southern blotting procedure except that the hybridization temperature was 60° C, and the low stringent washing temperature was 70° C.

Reverse Transcription and Polymerase Chain Reaction

Reverse transcription was performed with TIANGEN FastKing RT Kit (TIANGEN, China) according to the manufacturer's instructions with modifications. The incubation time was extended to 10 min in the DNA removal step and 30 min in the reverse transcription step. The reverse transcription primers included R HBV 1370, R HBV 1547, R HBV 1680, and R HBV 1800. Polymerase chain reaction (PCR) was performed

with PrimeStar Max Premix (Takara, Japan) according to the manufacturer's protocol.

Sequence Optimization and DNA Structure Prediction

Sequence optimization of the exogenous genes was performed with DNAMAN version 8, using HBC sequence as the reference. Briefly, the DNA sequence of HBC was translated into protein, and the two most frequently used codons were used as the reference to optimize the sequence of selected genes. For DNA structure prediction, the secondary structure of DNA is predicted via DNAMAN version 8 as follows: load the sequences into the channel; select "sequence" > "secondary structure" > "current sequence."

Luciferase Assay

Plasmids were transfected into HepG2 as described above. For the luciferase assay in medium, 10 μ L culture medium was collected on day 2 posttransfection and added to 30 μ L 1 × Gluc assay buffer [0.5 × coelenterazine (Promega) in PBS supplemented with 5 mM NaCl] (Tannous, 2009), or 30 μ L 1 × Nluc assay buffer [0.25 × furimazine (Promega) in PBS supplemented with 0.1% bovine serum albumin] (Boute et al., 2016). Chemiluminescence was detected by using a GloMax[®] 20/20 Luminometer (Promega). For the luciferase assay in cell lysate, cells in each well were lysed with 200 μ L lysis buffer (50 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.2% NP40) and incubated at 37°C for 10 min. Lysed cells were centrifuged at 12,000 g for 5 min to remove the debris. The supernatants (10 μ L) were analyzed as described above.

Blot Quantification and Statistical Analysis

According to the instructions on the website¹, Southern and Northern blots were quantified by ImageJ 1.53e. The relative intensity of RC DNA and that of pgRNA were analyzed via a two-tailed Student *t*-test. p < 0.05 was considered statistically significant. QQ PLOT was used to determine the frequency distribution of the data analyzed using GraphPad Prism 8 (GraphPad Software, United States).

RESULTS

Scanning of Hepatitis B Virus Genome for Desirable Recombination Sites

A series of deletion variants of the HBV genome was constructed based on Pch9/3091 to identify desirable regions for exogenous gene recombination (**Figure 2A**). Each variant had an approximated 500-bp deletion, spanning from 1919 to 1198 and skipping the *cis*-elements (**Table 1**). Pch9- $\Delta\epsilon$, in which the epsilon sequence was mutated to abort pgRNA encapsidation (**Figure 2C**), transcomplemented HBC and/or Pol for the damaged open reading frame (ORF) of HBC and/or Pol of some variants. The translation of HBC from Pch9-G2016T was

¹https://imagej.nih.gov/ij/docs/menus/analyze.html#gels

FIGURE 2 | Identification of two regions suitable for engineering. (A) Sequences that were deleted in different constructs. Deletion variants were named according to the sequences deleted. The black cycle and black triangle represent the start codon and the stop codon, respectively. The hybridization probe is shown (1199–1814). (B) The mutations of $pCH9-\Delta\epsilon$. Sequence from 1858 to 1863 was deleted, and two additional mutations, G1877T and T1878A, were introduced. (C) Representative Southern blotting of the deletion variants. The plus sign (+) denotes *Eco*RI digestion. RC, DL, SS DNA, and *Eco*RI digested fragments are indicated, respectively. (D) The relative intensity of RC DNA of deletion variants. The intensity of RC DNA of each sample was divided into the sum of RC DNA of all samples in the same membrane, respectively, to calculate the relative amount of RC DNA. N = 5. Asterisks (*) denote the difference between a deletion variant and pCH9-G2016T is statistically significant ($\rho < 0.05$). (E) Normal QQ plot of the relative amount of the RC DNAs.

TABLE 1	I Influence of deletion on the	e formation of RC DNA

Deletion region	Length of deletion (bp)	pgRNA splicing	Formation of RC DNA	
1919–2416	498	Nearly 100%	+, 7.0%	
2018–2515	498	Nearly 100%	+, 26.9%	
2118-2617	499	58%	+, 240.6%	
2217-2723	507	50%	+, 338.9%	
2315–2814	500	47%	+, 151.9%	
2899–197	481	Nearly 100%	_	
3099–396	480	74%	+, 94.8%	
99–596	498	40%	+, 221.4%	
300-800	501	17%	+, 260.2%	
499–996	498	35%	+, 171.3%	
700–1198	499	45%	+, 134.4%	
2121–2819	699	ND	+, 45.9%	

ND, not determined.

terminated at the 40th amino acid by introducing a stop codon. Cotransfection of Pch9-G2016T and Pch9- $\Delta\epsilon$ served as the positive control. All the variants were cotransfected with Pch9- $\Delta\epsilon$ into HepG2. Core DNA was extracted on day 5 posttransfection and subjected to Southern blotting.

Pch9-G2016T formed three major bands, including RC, DL, and single-stranded (SS) DNA (**Figure 2C**, lane 1). The smear below SS DNA was either uncompleted intermediates of SS DNA or spliced products reverse transcribed from spliced pgRNA (Abraham et al., 2008). As expected, the RC DNA was linearized via *Eco*RI digestion, migrating to the same position as the undigested DL DNA. DL DNA was cut into two smaller linear fragments by *Eco*RI, with expected lengths of 1,365 bp (1814–3178) and 1,825 bp (1–1825), respectively, as 1814 is the transcription starting site of pgRNA from Pch9/3091 (Liu et al., 2004). Notably, the 1,365-bp fragment was not detected because the probe hybridizes with region 1199–1814. The 1,825bp fragment migrated faster than SS DNA (**Figure 2C**, lane 2).

RC and DL DNA were detectable for all the variants except D2899-197 and D3099-396, which electrophoresed faster than their counterparts from Pch9-G2016T ascribed to a 500-bp deletion (**Figure 2C**). SS DNAs of these variants were not detected. Following *Eco*RI digestion, the RC DNAs of these variants migrated to the same position as the undigested DL DNA, providing evidence of their circular configuration. DL DNAs of D1919-2416, D2018-2515, D2118-2617, D2217-2723, and D2315-2814 were cut into two fragments, including one with an expected length of 1,825 bp and the other of 865 bp (nt 1,814–3,178 with a 500-bp deletion, undetectable). DL DNAs of D99-596, D300-800, D499-996, and D700-1198 were cut into two fragments, including one with a length of 1,325 bp (1814–3178, undetectable) (**Figure 2C**).

D3099-396 produced five bands (**Figure 2C**, lanes 15 and 16, bands a–e), all of which were resistant to *Eco*RI digestion because the *Eco*RI site was deleted (**Figure 2A**). Plasmid D3099-397*Eco*RI, in which an *Eco*RI site (GAATTC) was introduced between 3098 and 398, was constructed to verify whether D3099-396 formed RC DNA. Like D3099-396, five bands, indicated as a, b, c, d, and

e, were detected in D3099-397*Eco*RI (**Figure 3A**, lane 3). Band "a" moved to the same position as band "c" after *Eco*RI digestion, while bands "b," "d," and "e" remained unchanged (**Figure 3A**, lanes 3 and 4). These results demonstrated that band "a" is RC DNA, band "c" is DL DNA, band "e" is SS DNA, and bands "b" and "d" are likely to be spliced products. Thus, D2899-197 is the only variant that does not support the formation of RC DNA.

Deletions Associated With Hepatitis B Virus RNA Splicing

It is intriguing that D2899-197 formed only weak SS DNA (**Figure 2C**, lanes 13 and 14) without impairing known *cis*elements. One hypothesis is that the pgRNA expressed from this construct was spliced (Abraham et al., 2008). To address this question, we performed a systematic analysis of the influence of the deletions on HBV RNA splicing. Total RNA samples were assayed by Northern blotting and reverse transcribed into cDNA using primers R HBV 1370, R HBV 1547, R HBV 1680, and R HBV 1800, respectively, to identify whether the pgRNAs were spliced (**Figure 4A**). The cDNA was further amplified via PCR using primers F HBV 1821 or F HBV 1851 plus R HBV 1370, or R HBV 1547, or R HBV 1680, or R HBV 1800, respectively, and PCR products were gel-purified and sequenced.

Pch9-G2016T, as the positive control, is expected to transcribe pgRNA, preS1 mRNA, S mRNA, and X mRNA, regulated by cytomegalovirus immediate-early promoter (pCMV), S1 promoter, S2 promoter, and X promoter, respectively (Figure 5A; Panjaworayan et al., 2007). Notably, these RNAs presented as three major bands in Northern blotting (Figure 5B). Band "a" was pgRNA, and band "e" was X mRNA. Band "d," possibly comprised two close bands, was suggested to be preS1 and S mRNAs. Deletion variants D2118-2617, D2217-2723, D2315-2814, D3099-396, D99-596, D300-800, D499-996, and D700-1198 produced shorter pgRNAs than that of the control, owing to a 500-bp deletion for each (band "b," Figure 5B, lanes 7-12 and 15-24). However, variants D2899-197 showed no bands at position "b," but rather a smear at position "c." HBV RNA of this variant was reverse transcribed, and the corresponding DNA fragments were amplified and sequenced as described previously. Indeed, the sequencing results demonstrated that the pgRNA of D2899-197 was spliced with two patterns; one is 2065-487 (i.e., the sequence between nt 2065 and 487 is missing), and the other is spliced twice, from nt 2,445 to 280 and from nt 456 to 1,306 (Figures 4E,F).

Moreover, splicing was detected in other deletion variants. D1919-2416 showed one splicing pattern, from nt 2,445 to 487 (**Figure 4B**). D2018-2515 had two splicing patterns: one is from nt 2,983 to 487, and the other is spliced twice, from nt 2,983 to 280, and from nt 456 to 1,383 (**Figures 4C,D**). However, the splicing rates of pgRNAs of these two variants were not 100% because the two variants did support the formation of intact RC DNA (**Figure 2C**, lanes 3–6), which must be derived from complete pgRNA. Notably, the pgRNA of D3099-396 was spliced to a less extent but via a more complex mechanism. At least five splicing patterns, from nt 2,445 to 487, from nt 2,065 to 487, from nt 2,445 to 1,383, from nt 2,065 to 1,306, and from

FIGURE 3 | Influence of the recombination at 2120 on HBV DNA replication. (A) Representative Southern blotting results of the recombinants. The plus sign (+) denotes *Eco*RI digestion. RC, DL, SS DNA, and *Eco*RI digested fragments are shown. (B) Expression of the exogenous genes from the recombinants. Luciferase activity (Gluc and Nluc) or fluorescence (copGFP, eGFP, mCherry, and UnaG) was detected. (C) Representative Southern blotting of 2120-T2A-tTA1-2820 M. Notably, M denotes a deletion from nt 2064 to 2072 and a mutation in tetR (A426G). (D) The relative intensity of RC DNA of the recombinants. The intensity of each RC DNA was divided into the sum of RC DNA of all samples in the same membrane, respectively, to calculate the relative intensity of RC DNA of each sample. *N* = 4.

FIGURE 5 [RNA assay of the deletion variants. (A) The sequence of HBV transcripts. The wave lines represent RNA; the black rectangles represent 5' cap; the multiple arrowheads represent the poly-A tail. The black cycles and black triangles represent the start codon and the stop codon, respectively. The length of each transcript is an estimation without a poly-A tail. (B) Representative Northern blotting results of the deletion variants. (C) The relative intensity of pgRNA of the deletion variants. The intensity of each pgRNA/18s rRNA was divided into the sum of pgRNA/18s rRNA of all samples in the same membrane, respectively, to calculate the relative intensity of pgRNA of each sample. N = 4. Asterisks (*) denote the difference between deletion variants and pCH9-G2016T is significant ($\rho < 0.05$). (D) Normal QQ plot of the relative amount of the pgRNAs.

TABLE 2 | Influence of exogenous gene engineering on the formation of RC DNA.

Location	Exogenous gene	Length of gene (bp)	HBV region replaced	Expected change of pgRNA length (bp)	pgRNA splicing	Formation of RC DNA
Site 2120	T2A-Pac	663	2121–2783	0	++	Weak, 1.3%
(HBC and Pol region)	T2A-BSD	462	2121-2582	0	+	+, 52.9%
	T2A-Neo	858	2121-2819	+159	++	-
	T2A-Gluc	621	2121-2741	0	+	+, 10.2%
	T2A-Nluc	579	2121-2699	0	++	+, 33.8%
	T2A-copGFP	723	2121-2819	+24	++	-
	T2A-mCherry	774	2121-2819	+75	++	-
	T2A-UnaG	486	2121-2606	0	++	-
	T2A-eGFP	784	2121-2819	+83	+	-
	T2A-tTA1	840	2121-2819	+140	++++	Spliced, 117.3%
Site 155	T2A-Pac	663	156–518	0	+	Weak, 5.6%
(HBS region)	T2A-BSD	462	156-617	0	+	+, 64.4%
	T2A-Neo	858	156-1013	0	+	+, 33.8%
	T2A-Gluc	621	156-776	0	+	+, 76.2%
	T2A-Nluc	579	156–734	0	+	+, 79.7%
	T2A-copGFP	723	156-878	0	+	+, 18.9%
	T2A-mCherry	774	156-929	0	+	-
	T2A-UnaG	486	156-641	0	++	+, 33.9%
	T2A-eGFP	784	156–938	0	+	+, 25.0%
	T2A-tTA1	840	156–994	0	+	+, 25.5%

++++,> 75%; +++, 50% - 75%; ++, 25% - 50%; +, 10% - 25%.

nt 2,065 to 1,383, respectively, were revealed (**Figures 4G-K**). Some of these splicings are potential sources of the additional bands of D3099-396 detected via Southern blotting ("b" and "d" in **Figure 2C**, lane 15). Analysis of the splicing of pgRNA of D99-596, D300-800, D499-996, and D700-1198 is challenging because of the complicated bands.

In addition, the amount of pgRNA of deletion variants (except D1919-2416, D2018-2515, D2899-197, and D499-996) was significantly higher than Pch9-G2016T, respectively (p < 0.05) (**Figure 5C**). This observation provides evidence of these constructs' relatively higher amount of RC DNA (**Figures 2D, 5C**).

Deletions of 2,118–2,814 and 99–1,198 Produces More Relaxed Circular DNA Than Other Variants

Regions with the least impact on the formation of RC DNA were identified by comparing the relative amount of RC DNAs among these variants. Southern blotting was repeated five times, followed by analyzing the relative intensity of RC DNAs with ImageJ. Results demonstrated that the relative intensities of RC DNA of D2118-2617, D2217-2723, D99-596, and D300-800 were significantly higher than Pch9-G2016T (**Figure 2D**), whereas that of D1919-2416 and D2899-197 were significantly lower than Pch9-G2016T. Also, D2315-2814, D3099-396, D499-996, and D700-1198 produced a similar amount of RC DNA as Pch9-G2016T (**Figure 2D**). These results demonstrate that two regions are suitable for recombination, including 2,118–2,814 and 99–1,198.

Influence of Recombination of Exogenous Genes at 2120 on Relaxed Circular DNA Formation

Given the data above, two positions, 2120 and 155, located in the ORF of HBC and HBS, respectively, were selected to insert foreign genes. First, three selection genes (Pac, BSD, and Neo), two luciferase genes (Gluc and Nluc), four fluorescent genes (copGFP, mCherry, UnaG, and eGFP), and one transactivating gene (tTA1) were inserted right after the valine residue at the 74th amino acid of HBC (HBC 74V, site 2120) (**Table 2**). Each gene was fused via a T2A peptide at the N-terminal to separate its expression from the HBV genome. The focus was on the formation of RC DNA as it is the precursor of functional cccDNA.

Results revealed that 2120-T2A-Pac-2784, 2120-T2A-BSD-2583, 2120-T2A-Gluc-2742, and 2120-T2A-Nluc-2700 formed RC DNA, migrating similarly to that of Pch9-G2016T (Figure 3A). RC DNAs were verified through EcoRI digestion, whereby the RC DNAs were linearized to the same position as the undigested DL DNAs (Figure 3A). The expression of exogenous genes was confirmed by the detection of chemiluminescence or fluorescence (Figure 3B). As for the amount of RC DNA, less of RC DNA of these constructs was reported than Pch9-G2016T. Insertion of BSD and Nluc maintained more RC DNAs than the insertion of Pac and Gluc (Figure 3D). 2120-T2A-tTA1-2820 formed an RC DNA band migrating faster than Pch9-G2016T, 2120-T2A-BSD-2583, 2120-T2A-Gluc-2742, and 2120-T2A-Nluc-2700 (Figure 3A, lanes 1, 2, 7, 8, 11-14, 23, and 24). It was speculated that the shorter product was potentially synthesized from spliced pgRNA.

A part of constructs formed only DL and SS DNA, including 2120-T2A-Neo-2820, 2120-T2A-copGFP-2820, 2120-T2A-mCherry-2820, 2120-T2A-UnaG-2607, and 2120-T2A-eGFP-2820 (**Figure 3A**). *Eco*RI digestion yielded 1,825-bp fragments, confirming the identity of DL DNAs. Notably, SS DNAs of 2120-T2A-copGFP-2820 and 2120-T2A-eGFP-2820 electrophoresed slightly faster than others (**Figure 3A**, lanes 15 and 21).

Splicing of pgRNAs of the 2120 Recombinants

Different genes exert different effects on the formation of RC DNA. Therefore, to pursue the underlying reasons, we analyzed the RNAs from a part of the recombinants. All the recombinants tested, to some extent, showed pgRNA splicing (the bands right under pgRNA bands), although intact pgRNA was observed in all samples (Figure 6 and Table 2). The spliced pgRNAs possibly explain the small RC DNAs of 2120-T2A-BSD-2583, 2120-T2A-Gluc-2742, and 2120-T2A-Nluc-2700 (Figure 3A). However, for 2120-T2A-tTA1-2820, the pgRNA was spliced approximately 80% (band "b" Figure 6, lanes 21 and 22). Sequencing results demonstrated that this RNA was spliced between HBV nt 2,065 and tetR nt 428 (sequence from HBV nt 2,065 to nt 428 of tetR was missing) (Figure 4L), providing potential evidence on why the RC DNA of 2120-T2AtTA1-2820 electrophoresed faster than the RC DNA of Pch9-G2016T (Figure 3A, lanes 1 and 23). The splicing sites of 2120-T2A-tTA1-2820 were removed by deleting nt 2,064-2,072 and mutating A426 of tetR to G426. However, this manipulation did not rescue RC DNA formation (Figure 3C, lanes 5 and 6).

Influence of Recombination of Exogenous Genes at 155 on Relaxed Circular DNA Formation

These 10 exogenous genes were also inserted right after the first methionine residue of HBS (site 155). Except for 155-T2AmCherry-930, all of these insertions supported RC formation (Figure 7A). All the RC DNAs electrophoresed at the same position as that of Pch9-G2016T. Following EcoRI digestion, the RC DNAs shifted to undigested DL DNAs, and DL DNAs moved to 1,825-bp fragments. The expression of exogenous genes was confirmed by the detection of chemiluminescence or fluorescence (Figure 7B). Regarding the amount of RC DNA, constructs with BSD, Gluc, and Nluc were higher than those with Neo, copGFP, UnaG, eGFP, tTA1, and Pac (Figure 7C). 155-T2AmCherry-930 only formed DL and SS DNA (Figure 7A, lanes 17 and 18). However, RNA assay demonstrated that 155-T2AmCherry-930 produced normal pgRNA (Figure 8), supporting that RC DNA formation failure is attributed to obstacles in DNA synthesis steps. Shortened DL bands from 155-T2A-Pac-819, 155-T2A-BSD-618, 155-T2A-Neo-1014, 155-T2A-Gluc-777, 155-T2A-copGFP-879, 155-T2A-UnaG-642, and 155-T2A-eGFP-939 could be reverse transcribed from spliced RNA (compare Figure 7A with Figure 8).

Sequence Optimization Improves Relaxed Circular DNA Formation for Some Recombinant Constructs

It was reported that insertion of UnaG aborted RC DNA formation at nt 2,120 but supported that at nt 155. Furthermore, recombination of UnaG maintained DL and SS DNA formation, suggesting the blockade of the translocation or circularization of

FIGURE 7 Influence of the recombination at 155 on RC DNA formation. (A) A representative Southern blotting is shown. The plus sign (+) denotes *Eco*RI digestion. RC, DL, SS DNA, and *Eco*RI digested fragments are indicated. (B) Expression of the exogenous genes from the recombinants. Luciferase activity (Gluc and Nluc) or fluorescence (copGFP, eGFP, mCherry, and UnaG) was detected. (C) The relative intensity of RC DNA of the recombinants. The intensity of RC DNA of each sample was divided into the sum of RC DNA of all samples in the same membrane, respectively, to calculate the relative intensity of RC DNA of each sample. *N* = 4.

the plus-strand primer, which is dependent on where the foreign genes were inserted. These results implied that the insertion of UnaG at nt 2,120 might form the undesirable secondary or higher-order structure of minus-strand DNA, which possibly affects either the translocation of the plus-strand primer or the circularization step. Guided by this hypothesis, we optimized the sequence of genes inserted according to the DNA sequence of HBC, expecting that a DNA sequence resembling HBC would reduce the influence on replication. Five genes (UnaG, Pac, Gluc, Nluc, and eGFP) were optimized (Table 3) and inserted into the same positions as the unoptimized genes, respectively. Of note, the construct with optimized UnaG (UnaGco) formed RC DNA in a similar amount as that of the positive control (Pch9-G2016T). This band migrated to the same position as the RC DNA of Pch9-G2016T (Figure 9A, lanes 17 and 18). EcoRI digestion generated a fragment that electrophoresed faster than undigested DL DNA but slower than SS DNA of 2120-T2A-UnaGco-2607 (Figure 9A, lanes 17 and 18). These findings affirmed RC DNA identity because there is an EcoRI recognition site in UnaGco. EcoRI digestion is expected to produce a detectable band of 2,145 bp (the other should be 759 bp undetectable by our probe). In contrast, 2120-T2A-UnaG-2607 formed only DL and SS DNA (Figure 9A, lanes 15 and 16). The weak DL DNA could be revealed solely via EcoRI digestion, which cut DL DNA to a detectable 1,825-bp fragment. Northern blotting assay of HBV RNA demonstrated a significantly lower relative amount of intact pgRNA of 2120-T2A-UnaGco-2607 than that of 2120-T2A-UnaG-2607, whereas a part of pgRNA of both could be spliced (Figures 10A,B) indicating that the improvement in RC DNA formation by sequence optimization must be explained by improvement in the steps after

pgRNA production. To address this, we analyzed the secondary structure of the sequence from the minus-strand DNAs by using DNAMAN 8. Three sequences corresponding to wild type HBV (nt 2,121-2,868), chimeric UnaG-HBV, and optimized UnaG-HBV (Figure 11) were predicted for secondary structure. Wildtype UnaG sequence profoundly impacts the overall structure of HBV (Figures 11A,B). Especially, the structure of *cis*-element hM is different between these two. On the contrary, optimized UnaG does not significantly influence the structure of HBV DNA fused (Figure 11C), with the hM showing a similar structure as that of wild-type HBV DNA. The influence of sequence optimization of Pac (Pacco) on HBV DNA replication seemed different. The SS DNA of 2120-T2A-Pac-2784 electrophoresed faster than the SS DNA of D3099-397 EcoRI (Figure 3A, lanes 3 and 5), demonstrating that the SS DNA of 2120-T2A-Pac-2784 was at least 487 bp shorter than the SS DNA of Pch9-G2016T. Evidence suggests that the shorter SS DNA is possibly an immature product paused by assumptive secondary RNA structures formed by the Pac gene, with a high content of "G and C" (72.8%). In line with this hypothesis, optimized Pac (Pacco, 2120-T2A-Pacco-2784) promoted SS DNA maturation (Figure 9A, lanes 3–6). The RC DNA intensity was only slightly enhanced without significance by Pac optimization (p > 0.05). 2120-T2A-Glucco-2742 and 2120-T2A-Nlucco-2700 formed RC, DL, and SS DNA (Figure 9A, lanes 7-14). At the same time, sequence optimization of Nluc and Gluc did not augment the amount of RC DNA further. Also, the pgRNA amount of 2120-T2A-Glucco-2742 and 2120-T2A-Nlucco-2700 were lower than the unoptimized counterparts (Figure 10).

Sequence optimization of eGFP (2120-T2A-eGFPco-2820) allowed for RC DNA formation, but with a shortened

TABLE 3 | The sequence of exogenous genes before and after optimization.

Para 1 ATRACOGNACT SACABCOACC STREAGENCE CONSTRUCT CONSTRU	Genes	The sequence of exogenous genes before and after optimization						
61 COCADACTOR	Pac	1	ATGACCGAGT	ACAAGCCCAC	GGTGCGCCTC	GCCACCCGCG	ACGACGTCCC	CAGGGCCGTA
191 0.0000.00070AC 0.000070AC 0.000070AC 0.000070AC 0.000070AC 191 0.000070AC 0.000070AC <t< td=""><td></td><td>61</td><td>CGCACCCTCG</td><td>CCGCCGCGTT</td><td>CGCCGACTAC</td><td>CCCGCCACGC</td><td>GCCACACCGT</td><td>CGATCCGGAC</td></t<>		61	CGCACCCTCG	CCGCCGCGTT	CGCCGACTAC	CCCGCCACGC	GCCACACCGT	CGATCCGGAC
HBI A TENDERANGE TENEDOTIONE CORRECTOR CORRECTOR <th< td=""><td></td><td>121</td><td>CGCCACATCG</td><td>AGCGGGTCAC</td><td>CGAGCTGCAA</td><td>GAACTCTTCC</td><td>TCACGCGCGT</td><td>CGGGCTCGAC</td></th<>		121	CGCCACATCG	AGCGGGTCAC	CGAGCTGCAA	GAACTCTTCC	TCACGCGCGT	CGGGCTCGAC
241 AGGCTOLANAG COSGAGEGAST OTTOGACCAG OTTOGACCAG OTTOGACCAG OTTOGACCAG OTCOGACCAG OCCCAGACAGA OGCCAGACAGA 301 CCCCAGACAGA CCCCAGACAGA CCCCAGACAGA OCCCAGACAGA		181	ATCGGCAAGG	TGTGGGTCGC	GGACGACGGC	GCCGCGGTGG	CGGTCTGGAC	CACGCCGGAG
901 TUCGOGUIGE COCCOLAGEX ACAGATORA COCCOLACCA COLACCA COCCOLACCA COLACCA COLACCA <thcolacca< th=""> COLACCA <thco< td=""><td></td><td>241</td><td>AGCGTCGAAG</td><td>CGGGGGCGGT</td><td>GTTCGCCGAG</td><td>ATCGGCCCGC</td><td>GCATGGCCGA</td><td>GTTGAGCGGT</td></thco<></thcolacca<>		241	AGCGTCGAAG	CGGGGGCGGT	GTTCGCCGAG	ATCGGCCCGC	GCATGGCCGA	GTTGAGCGGT
361 CCCGCTGGT TCCGCGCCC CCCGCGCTC TCCGCCCACC ACTAGAGCCG CCCGCTCCC 461 GRAGCCGCG GCGCCGCACAA CCTCGCCTTC TACCAGCGCG CCGGCGCCACCA 941 ACCGCCGCGC GCGCCGCACCA CCTGCCCTTC TACCAGCGCG CCGGCGCACCA CCTGCCGCTACCA CCGGCGACCA ACCCGCGCGC GCGCCGCACCA ACCCGCGCGC GCGCGCCGCC GCGCCGCCGC GCGCGCGCGC GCGCGCGCGC GCGCGCGCGC GCGGCGCGC GCGGCGCGCC GCGCGCGCGC GCGGCGCGCC GCGGCGCGCC GCGGCGCGCC GCGGCGCGCC GCGGCGCGCC GCGGCGCGCC GCGGCGCGCC GCGGCGGCGC GCGGCGGCGC GCGGCGGCGCC GCGGCGGCGCC GCGGCGGCGCC GCGGGCGGCC GCGGGCGGCC GCGGGCGGCC GCGGGGGCGC GCGGGGGGCC GCGGGGGCC GCGGGGGCCC GCGGGGGCCCCGCGCGCCCCGGGGCGCCCCCCGCACCA GCGGGGGCCCCCC		301	TCCCGGCTGG	CCGCGCAGCA	ACAGATGGAA	GGCCTCCTGG	CGCCGCACCG	GCCCAAGGAG
421 ACCIGNIZION TECTENZONS ACCIGNIZION CONSISTENCI CO		361	CCCGCGTGGT	TCCTGGCCAC	CGTCGGCGTC	TCGCCCGACC	ACCAGGGCAA	GGGTCTGGGC
481 0.4040C0000 000000000000000000000000000000000000		421	AGCGCCGTCG	TGCTCCCCGG	AGTGGAGGCG	GCCGAGCGCG	CCGGGGTGCC	CGCCTTCCTG
541 GACCICLANGE TECCEGANGE ACCESCENACE TEGECALADEC CEGATECENE CEGATECALORIA ACCESCENACE CEGATECALORIA CEGATECALORIA ACCESCENACE CEGATECALORIA CECATECALORIA CEC		481	GAGACCTCCG	CGCCCCACAA	CCTCCCCTTC	TACGAGCGGC	TCGGCTTCAC	CGTCACCGCC
Peoco 1 ATGACTGAT ATGACACTAC CCTACACGAS ATGACTCOCC AAGACTCOCC 121 AGACACTOCTAC CCTOCACTAC CCTOCACTAC CCTACACGAS AAGACTOCTAC 121 AGGCACATTG AGAGACTTAC TGAATTGCAA GACCTATTCAC GACCTACAC TGGCACCGAC TGGCACGAC TGGCAGACAC TGGCAGACAC TGGCAG		541	GACGTCGAGG	TGCCCGAAGG	ACCGCGCACC	TGGTGCATGA	CCCGCAAGCC	CGGTGCCTGA
(aplimized) 61 AASACTCTOS CTOCCSCTTT TECCSACTAC CENTENCAA GACTACAST CEATTCCASA 121 AGORGATTG TATGGETGC CEAGCASTG CTETTGESGA GACTACCAST CEATTCCASA 181 ATGGETAGG TATGGETGC CEAGCASTG CTETTGESGA GACTACCAST CEATTCCASA 181 ATGGETAGG CCEAGCASTG CATGGATOSA GACGATTGCA	Pacco	1	ATGACTGAAT	ATAAACCTAC	CGTTAGACTA	GCTACACGAG	ATGATGTGCC	AAGGGCCGTA
121 AGAGAGETEG TGAGEGAGET GAGEATEGA GAGEATEGA GAGEATEGA GAGEATEGA 181 ATGEGGAGAGE COGGEGETEG CTTTGCCGAA ATTGGACCAA GGATGGETEG GAGEATEGAE 241 TETGTAGAGE CCGGETCAGEA ACAGATEGAA GGATGGETEG CCCCCATEGE ACAGATEGAA 301 TETAGACTOG CCGGETCAGEA ACAGATEGAA GGATGGETEGA CCCCCATEGE ACAGATEGAA 421 TETGEGETEG TECTACCABAC CCCCTAGETGAG CCCCAGAGEGAA TETAGACOGAC ACAGATEGAA 421 CARGETEGA ACCTACETAGA CCCCAGAGAA TETAGACOGAC CACCAAGEGAA ACAGCOTT TETAGACOGAC ACAGATEGAE ACA	(optimized)	61	AGAACTCTCG	CTGCCGCTTT	TGCCGACTAC	CCTGCTACCC	GACATACAGT	CGATCCAGAC
181 ATGOGCAMOC CACCONCOM COTECTORE CATTEGRACIA CATTEGRACIA GELTRECENA ATTEGRACIA GELTRECENA ATTEGRACIA GELTRECENA GELTRECENA <td></td> <td>121</td> <td>AGGCACATTG</td> <td>AGAGAGTTAC</td> <td>TGAATTGCAA</td> <td>GAGCTATTCC</td> <td>TCACCCGAGT</td> <td>GGGATTGGAT</td>		121	AGGCACATTG	AGAGAGTTAC	TGAATTGCAA	GAGCTATTCC	TCACCCGAGT	GGGATTGGAT
241 TCTBTAGAGE CCGGCGCETET CTTBTGCGAA ATTGBCCAA ATTGBCCAA GGATTGCTAA GGATTGCTAA GGATTGCTAA GGATTGCTAA GGATTGCTAA GGGCTGCGAA 361 CCTGGCTGGT TCCTGCCCAC CGTGGAGGC TCAACAGAAC ACCAAGCAA GGGCTTGGAA 421 CTGGCTGGA TCCTGACGAC CGTGGAGGC CGGGGGTGCC ACCAAGCAA GGGCTGGGC 431 GAACAGCAGA CCCTGACTGGA TGCCCATC TCACACAGAC CGGGGCAC ACGAACGAC CGGGCGAC CAAGAGCAC CGGGGGAC CAAGAGCAC CGGGCGAC CAAGAGCAC CGGGCGAC CAAGAGCAC CGGGCGAC CAAGAGCAC CGGGCGAC CAAGAGCAC CGGGCGAC CAAGAGCAC CGGGGCGCCC CAAGAGCAC CGGGCCACGC CAAGAGCAC CGGGCCACGC CAAGAGCAC CGGGCGCCCC CAAGAGCAC CGGGCGGCCC CCAAGGCAC CGGGCGGCGC CCAAGGCACC CGGGCGGCGC CCAAGGCACC CGGGCGCGCC CGGGCGGCGC CAAGAGCAC CGGCGCGCCCC CGGGCGGCGC CGGGCGGCGC CGGGCGGGCGC CGGGCGGGCGC CCAAGGGCGC CCAAGGGGCCCCCC CGGGCGGGGGC CCCAGGGG		181	ATCGGCAAGG	TATGGGTCGC	CGACGATGGA	GCTGCCGTTG	CTGTGTGGAC	AACTCCTGAA
301 TCARGACTOS CCGCTCACCA ACAGATAGGAA GGATTGASC ACCAAGANA 361 CCTGCTGGT TCCTCGCCAC CGTTGGGTGT TCACCAAGAC ACCAAGAAA 421 TTGCTGTAG TCCTCACTGG CGTTGGAGCG CCGGGAGGAC ACCAAGAAC 481 GAAACATCAG CCCCTAGAGA TTGCCCACTTC TATGGAGGAC TCGGGCGCGG 541 GATGGGAGAC AAGTTCGAGG TGCCCGCACC TGGGCGCGGC TGGAGCGCGG 61 GAGAACAACC AAGTTCGAA CATCGTGGCCACC TGGGCGCAGC CCAGGGAGC 241 AAGCAATG CCCCGGAAGC TGGGCGCGCA ACGTCGCCGC CCAGGACCT 301 AAAGACTCCG CCCGGAAGC CAAGGCCAGC CCAGGACGCA CCAGGACGCA CCAGAGCGCA 301 AAAGACTCCG GCCCCAACG GCTTGCCACC TGCAGCTGCA CCAGGAGCGA CCAGGAGGCA CCAGGAGGCA CCAGGAGGCA CCAGAGTGCA CCAGGAGCGA CCAGGAGGCA CCAGGAGGCA CCAGGAGGCA CCAGGCGGGA CCAGGCGGGA CCAGGCGGGA CCAGGCGGGA CCAGGGCGGA CCAGGCGGGA CCAGGGCGGA<		241	TCTGTAGAGG	CCGGCGCTGT	CTTTGCCGAA	ATTGGACCAA	GGATGGCTGA	GCTATCAGGC
981 CCENCITIGET TECENCECAC CERTIGENEST TECENARACE ACCANGGAA GEGETTEGET 421 TECENCETGG TECENCEGC GETTAGETC TATGAGEGC TAGETTTECT 451 GAACATEGA CECCETAGAMA TITGECATTE TATGAGEGC TAGEGACTAC 541 GARTEGAAG TECETARGE CECCETAGEGA TEGECETTAC TEGECETACC 61 GAAACAACG AAGATTCAA CATCGEGACG ACTTGEGAC CAAGGGATET 121 GAACTACA CATCGEGACG ACTTGEGAC CAAGGATET CECCEGACAGE ACTTGEGAC CAAGGATET 131 GAACTACAC CAGAGEGAG CACCAGEGAG CACTGEGAC CAAGGATET CECCEGACAGE ACTTEGEAC CAAGGATET CECCEGACAGE CECAAGEGAG CEAAGAGAC CAAGGATET CEAAGAGAC CEAAGAGAC CEAAGAGAC CEAAGAGAC CEAAGAGAC CECAAGEGAG CECAAGEGAG CEAACACCCC CEAAGAGAC CEAAGAGAC CEAAGAGAC CEAAGACACC CEAAGACACCC CEAAGACACCC CEAAGACACCC CEAAGACACCCC CEAAGACACCC CEAAGACACCC CEAAGACACCCC		301	TCTAGACTCG	CCGCTCAGCA	ACAGATGGAA	GGATTGCTAG	CCCCTCATCG	ACCAAAAGAG
421 TCENGCIGIAG TCENACCIGG CGETIGARGEC GETIGARGEG CAGENTICC TAGERGEGC AGETTICT 641 GAACATCAG CCCCTAGABAA TTTCCCATE TAGERGEGC TAGENCECC TGTALCCECC 611 GATGEGGAGAC TTCTCACAGEGAC TGCCCCARC CCCCGGCARG CACAGEGACC TGGAGCTCT CACAGEGACC TGGAGCTCT CACAGEGACC TGGAGCGCC CACAGEGACC CACAGEGACC TGGAGCGCC CACAGEGACC CACAGEGACC TGGAGCGCC CACAGEGACC <		361	CCTGCTTGGT	TCCTCGCCAC	CGTTGGCGTG	TCACCAGACC	ACCAAGGAAA	GGGCTTGGGA
481 GAACATCAG CCCCTGAGAGA TTECCATIC TAGECTTIAC TAGECTTIAC TAGECTTIAC 6lue 14 GAGGACTAC AATGCAGAGCA TGCTGAGGG ACCAAGGACA TGGTGTATGA CACCAGGACCA CACCAGGACCA CACCAGGACCA CACCAGGACCA AATGCACGCC CACAGGACCA CACCAGGACCA CACCGGACCA CACTCGCACC CACGGACCA CACCGGACCA CACTCGCACC CACAGGACCA CACAGCACA CACAGCACA CACAGCACA CACAGGACCA CACAGCCACA CATAGCCACA		421	TCTGCTGTAG	TCCTACCTGG	CGTTGAAGCC	GCTGAGAGGG	CCGGAGTGCC	AGCTTTTCTC
S41 GATGTCGAAG TTCCTGAGGG ACCAAGGACA TGGTGTATGA CTAGAAAACC TGGCCCTGT Glue 1 ATGGGATCA AAGTTCTTT TGCCCTAGTC TGGCCGACGC CAGAGCCCAC 121 GATGCTGACC GGGGGGAAGT GCCGGGCAAG AAGCTGCGC TGGGGCTGCC TGGGGGCAC TGGGGGCGC TGGGGGCAC TGGGGGCGC TGGGGGCGC TGGGGGCGC TGGGGGGCG TGATGTGCT GCAAGGGCGG GAAGCCACAT GCGAGGGGG CCAAGGGCGG CCAAGGGCGG CGAGGGCGT GGGCGGCGG TGGCGGCGCA GGGGCGGG TGCGGCGCAC GCGGGGGG TGGGGGGGG GCGGGGGG GCGGGGGG GCGGGGGGG CTAGGACGGG GCCGGGGGG CTAGGACGGG GCGGGGGGG CTAGGACGGG GCAGGTGGG CAAGCCCGC CAAGGCCGG GCGGCGCGG GCGGCGCGGG GCGGCGCGGG TTGGCGGCGGG TTGGCGGCGGG TGGCGCGCGG TTGGCGGCGGG TTGGCGGCGGG TTGGCGGCGGG TTGGCGGCGGG TTGGCGGCGG TTGGCGGCGG TTGGCGGGGG		481	GAAACATCAG	CCCCTAGAAA	TTTGCCATTC	TATGAGCGAC	TAGGCTTTAC	TGTAACCGCT
Glue 1 ATGGGAGTCA AAGTTCTGTT TGCCTGATC TGCATGCGTG TGGCCGAGGC CAAGCCCACC 121 GAGCACAGC AAGACTTCAA CATGGGACGC CAGGCCACCA ALTTCGCAC CAGGGACTT 121 GAGCCACAGC CCCGGAAGC TGCCGGACCT GGGGCGGCC TGATCTGCC CGGAGGCCC TGATCTGCC CGGAGGCCC GGCGAGCCC GGCGAGCCC GGCGACCTCG CAAGACCCAC GTCCCACAC 241 AAGTCCACCC CCCGGAAGTC CATGGCACG CCGACGTCG CAAGACCGC CATGGCACG CGCACCTGAC CAAGACCGC CAAGACCGC CAAGACCGC CAAGACCGC CAAGACCGC CAAGACCGCC CAAGACCGC CAAGACCGC CAAGACCGC CAAGACCGCC CAAAGACCCCCAAGACCCCCCCC CAAGCCGCCC <t< td=""><td></td><td>541</td><td>GATGTCGAAG</td><td>TTCCTGAGGG</td><td>ACCAAGGACA</td><td>TGGTGTATGA</td><td>CTAGAAAACC</td><td>TGGCGCCTGA</td></t<>		541	GATGTCGAAG	TTCCTGAGGG	ACCAAGGACA	TGGTGTATGA	CTAGAAAACC	TGGCGCCTGA
61 GAGAACAACG AAGACTTCAA CATGEGECC GEGECAAGA ACTTEGECAC CACGEAGTA 121 GATGETGACC GEGGGAAGT GCCCGCCAAG AAGGETGCCC TGCAGGTGCT CAAAGGACT 241 AAGGECCAATG CCCGGAAAGA GAAGGTCC GCGACACCT GCCACACCTA CGAAGGGAC 301 AAAGATCCG CCAAAGGCGG CAAAGGCCAG GCGACCCTG GACATTCCTGA GATCTCCTGA 301 AAAGATCCG CCCAAGGCGA GAGACTCAC GCGACCTCTG GACTTCCTGA GATCTCCTGA 301 AAAGACTCGC CCAACGGCGCG GAAAGGCAG TCCAAGGAC TCTGGACCAC GCGACTCTC CCAAGGACG TCTGAGAGCAC TCTGCGAAG TCTTCCTGA ATGCTCTCT TCGACGCAC GTCCCCAAG TCTGCCGAAG TCTTCCTCAG TCTGCGACCGC TCAAGGACCAC GTCCCCCAA ATTGCTGCT CAAGAGTCA TATGGCAGAC GCCCTCCAA ATTGCCGAGC TAAGGACCACC TAGGAGGACT TCTGCGAAG TCTGCCAAG TCTGCCAAG TCTGCCAAG TATGCCGAGC TAGGAGCCCCAA TATGCGAGCCC TAGGAGCACAT TACACGGCTGCT TACGCGAGCAT <td< td=""><td>Gluc</td><td>1</td><td>ATGGGAGTCA</td><td>AAGTTCTGTT</td><td>TGCCCTGATC</td><td>TGCATCGCTG</td><td>TGGCCGAGGC</td><td>CAAGCCCACC</td></td<>	Gluc	1	ATGGGAGTCA	AAGTTCTGTT	TGCCCTGATC	TGCATCGCTG	TGGCCGAGGC	CAAGCCCACC
121 GATGCTGACC GCGGGAAGT GCCCGGCAG AAGCTGCGC TGGAGGTGT CAAACAGATC 181 GAAGCCAATG CCCGGAAAGC TGGCTGCACC TGGAGGTGT TGATCTGCT GCGACACTT GTGCTGCACC 301 AAAGAGTCCG CCAAGGGCG CATAGCCAAG GCGATCGTG ACATTCCTGA GATCCTGGA 301 AAAGAGTCCG CCACAGGGCG CATAGCCAGC GCGATCGTGC ACATTCCTGA GATGCTGGAC 421 ACAATTGGCT GCGCCCAAC GCCTCTAAG GCGCCCCGGG CAAGAGTCA CCAAGGTGA CAAGATCAAC Glucco 11 ATGGCCGTGA AGTTCTTA CACGCTCAAC AAGCTCTCC TGGACGCCTCA AAGCTCCCC CAAGAGTAAT TGCGACCAGA ATTCGCATCC TAAGCGACC CAAGAGTAAT TGCGACCAGA ATTGCGACC TAAGCGACC TGCAGGCCCCCC CAAGAATATC CCCGGGGAAA AAGCTTCTCC TCGCAGGCGA AAGCTTCCTC TCGCAGGCGA ATTCCATCCT TGCAGCTCA AAGCTTCTCC CCAAGGTGGA TTGCAGCCCCC CAAGACATT TGCAGCCCCC CAAGACATT TGCAGCCCCC CAAGACATT TGCAGCCCCC CAAGACAT		61	GAGAACAACG	AAGACTTCAA	CATCGTGGCC	GTGGCCAGCA	ACTTCGCGAC	CACGGATCTC
181 GAAGCCAATG CCCCGGAAGC TGGCTGCACC AGGGGCTGC TGACTGCCT GCCACACTA 241 AAAGAGTCG CCAAGGGGGG GAAGTCACCC CCAGGGAGGT GCCACACCTA CCAAGGGCG 301 AAAGAGTCG CCAAGGGCG GCATAGCGAGG GCGATCGTGG ACACTCGCTG CCAAGAGTC 421 ACAACTGGCT GCGCCCAAAGG GCTGCCACC GTCGCACGGG CCAAGAGTGT 421 ACAACTGGCT GCGCCAAAGG GCTGCCACC GTCGCACTGT CTGCCCACGG CAAGAGTGT 421 ACAACTGGCT GCTGCCAAC GTCGCACCAG GTCGCACGGG CCAAGAGTGT 541 GGGGCCGGTG GTGACTAA TGCCCCACA ATTCGCACCA ATTCGCAGC AAAGCTCACA Glucoo 1 ATGGGCGTGA AAGTTCTTT CCCCAGGAAA AAGCTCCCC CAAGAAATAT AAGGTCACA ATTCCAGGG CTAAGAGAATAT AGGGTAAAT ATGCGACAA AAGCTCCCAC AAAGCTCACA ATAGCGACT AGGGAAATAT GGGCCGGGG TTACTCATAT TGCACTCACA ATTCCAGAG ATTCCAGA ATTCCAGAGAGA ATTCCAGAA AAGCTCCCCA <td></td> <td>121</td> <td>GATGCTGACC</td> <td>GCGGGAAGTT</td> <td>GCCCGGCAAG</td> <td>AAGCTGCCGC</td> <td>TGGAGGTGCT</td> <td>CAAAGAGATG</td>		121	GATGCTGACC	GCGGGAAGTT	GCCCGGCAAG	AAGCTGCCGC	TGGAGGTGCT	CAAAGAGATG
241 AAGTGCACCC CCAAGATGAA GAAGTTCATC CCAGGACCT GCCACACCTA CGAAGCCATA 301 AAAGASTCCC CCACAGGCGG CCATAGCCAG GCCATCGTCG ACATTCCTGA GATTCCTGA 361 TTCAAGGACT TGGAGCCAT GGAGCAGTTC ATCCGACACGG TCCAACGGG CCACAGGCGG CCACAGCGGG CCACAGCGAC CACATCCACG CACAGTCACG CACAGTCACG CACAGTCACGC CAAGATCACG CACAGTCACGC CAAGATCACG CACAGTCACGC CAAGATCACG CACAGTCACGC CAAGATCACG CACAGTCACGC CAAGATCACG CACAGTCACGC AAGGTCCCTC TGCACTGCGTGA ATTGCGCGACG TAGCGCGACGA AAGTTCCTCT TGCACGGCCA AAGTTCCTCT TGCACGGCGAC AAGTTCCTCT CCACAGGCAA AAGTTCCTCT TGCAGGGACA AAGTTCCTCT TGCAGGCAA AAGTTCCTCT TGCAGGGCAA AAGTTCCTCT TGCAGGCAA AAGTTCCTCT TGCAGGCGAA AAGTTCCTCT TGCAGGCGAA AAGTTCCTCT TGCAGGGCAA AAGTTCCTCT TGCAGGGCAA AAGTTCCTCT TGCAGGGCAA AAGTTCCTCT TGCAGGGAA AAGTTCCTCT TGCAGGGAA AAGTTCCTCA TGCAGGCAGAT TGCAGGCAAT <td></td> <td>181</td> <td>GAAGCCAATG</td> <td>CCCGGAAAGC</td> <td>TGGCTGCACC</td> <td>AGGGGCTGTC</td> <td>TGATCTGCCT</td> <td>GTCCCACATC</td>		181	GAAGCCAATG	CCCGGAAAGC	TGGCTGCACC	AGGGGCTGTC	TGATCTGCCT	GTCCCACATC
301 AAGAGTCCG CACAGGGCGG CATAGGCGAG GCGATCGTCG ACATTCCTGG GATTCCTGG 361 TTCAAGGACT TGGAGCCAT GGAGCATTC ACGACTGTG TCGAACGG TCGACTGGT TCGCACGG TCTGCGCCAG GTGCCCAAG GTGCCCCAAG GTGCCCCAC CAAGATCAA 421 ACACTGGCT GCTGCCGCAC GTGCCCCAC GTGCCCCAC CAAGATCAA 541 GGGGCCGGTG GTGACTAA TTCCCCGCAC TTGCCGCAC TAGCCGCAC TAGCCGCAC TAGCCGCAC (optimized) 61 GAGGCTAAT GAGGTAATT CCCCGGGCAA AAGTTCCTC TCGAGGTCC CAAAGAAAT 121 GACGCTGATA GAGGTAATT GCCGGGCCAA AAGTTCTCT TCGAGGTCT AAGATTCT 121 GACGCTGATA GAGGTAAATT GCCGGGCGCA AAGTTCCTC TCGAGCTCT AAGGGTCAT TGGAGCCAT TGTGCACCAT TGCGGCGAT ATTCCAGAT TGAGGGTCT TAAGGGACAT TGTCCTCT AAGATTCT TCAAGGGACAT TGTCCTCTC TCGAGCTGT TGTGCACCAT TGGAGTCT TAGGGGTCCT TGTCCCAGA AATTCCTGGAT		241	AAGTGCACGC	CCAAGATGAA	GAAGTTCATC	CCAGGACGCT	GCCACACCTA	CGAAGGCGAC
Nuc Nuclear Construction Nuclear Construction Nuclear Sit TTCAAGGACT GGAGCAGTT GGAGCAGTTC ATCGCACAGG TCGATCTGTG TCGTGACTGGT 421 ACAACTGGCT GCCTTGCGAC CTTTGCCAGC ATGGACCAGG CCAGGTGGA CAAGATCGAG 481 CTGCCGCAAC GCTGTCCAAC GTGCTTAC TGCGCCGTGT TTGCAGGCG TAGGCCGAGT GAAGATCAAC Glucco 1 ATGGGCGGTGA AAGTTCTT CGCTGCGCAA ATTCCCGCAA TTCCCACAGG TCGCAGGAAGC TCGCATCCAA ATTCCCAGG TCGCAGGCAAGC TCGCAGGCAAA TCGCAGGCAA AAGTTCCTAC TAGGGCGATGT TCAAGGACAAT TCAAGGACAAT TCAAGGACAAT TCGAGGCAAAGC TCGAGTTGGA AAAGTTCCTAC TCGAGGCAAT TCGAAGGCAAT TCGAGGCAAT <td< td=""><td></td><td>301</td><td>AAAGAGTCCG</td><td>CACAGGGGGG</td><td>CATAGGCGAG</td><td>GCGATCGTCG</td><td>ACATTCCTGA</td><td>GATTCCTGGG</td></td<>		301	AAAGAGTCCG	CACAGGGGGG	CATAGGCGAG	GCGATCGTCG	ACATTCCTGA	GATTCCTGGG
Active Active Active Active Active Active 421 Active GCCTCCAARGE GCTTGCCAAC GCTGCACGAC GCCAGGTGG CAAGATCCAGE GCCAGGTGGA CAAGATCCAGE 641 GGGGCCGGTG GTGACTAA GGCCCGCAC AAGTTCTCTT CGCTCCAARA AAGTTCCATC TGCCCGCAA ATTTCGCTAC TACCGGTCA ATTTCGCTAC TACCGGTCAC AAGTTCATC TGCCGCGCAA AATTCGCCAC TACCGGTCAA AATTCGCCAC CAAGAACTCA TACCGGTCAA AAGTTCCTC TCCAGGTCAC TAAGCCAGC CAAGAACTCAC TACCGGTCAA AAGTTCCTC CAAGAACTCAC TACCGGTCAA AAGTTCCCC CAAGAACTCAC TACCGGTCAA AAGTTCCCC CAAGAACTCAC TGCAGGTAC TGCAGGTACA TGCAGGTACA TGCACCACAT GGGGCGGTG TGCACCACAT GGGACAAT GGGGCGGGT TGCAGGTAC TGCAGGTAC TGCAGGTAC TGCAGGTAC TGCAGGTAC TGCAGGTAC TGCAGGTACA TGCAGGTAC TGCAGGTAC TGCAGGTAC TGCAGGTACA TGCAGGTACA TGCAGGTACA TGCAGGTAC TGCAGGTAC TGCAGGTACA TGCAGGTACA TGCAGGTAC TGCAGGTACA TGCAGGTACA TGCAGGTACA TGCAGGTACA TGCAGGTACA TGCAGGTACA <td></td> <td>361</td> <td>TTCAAGGACT</td> <td>TGGAGCCCAT</td> <td>GGAGCAGTTC</td> <td>ATCGCACAGG</td> <td>TCGATCTGTG</td> <td>TGTGGACTGC</td>		361	TTCAAGGACT	TGGAGCCCAT	GGAGCAGTTC	ATCGCACAGG	TCGATCTGTG	TGTGGACTGC
481 CTGCCGCAC CTTTGCCAC AAGATCCAG GCCAGGTGG CAAGATCAA Glucco 1 ATGGCCGTGA AAGATCCTT CGCCTCCATC TGCCCGAGC TAGCCGAGC TAGCCGAGC GCCAGGTGGA TAAGCCGACC GCCCGCTCA ATTTCGCTAC TAGCCGAGC TAGCCGACC TAGCCGACC TAGCCGACC TGCGGGCAA AAGATCCTC CGAGGAAAT GCCGGGGAAAA AAGCTCCCC TGCAGGTGAT TGAAGGAGAAAT TGCGGGGCAA AAGCTCCCC CAAAGAAAT TGCGGGGCAA AAGCTCCCC CAAAGAAAT TGCGGGGGAAA GCGAGTGGGA AAGCTCCCC AAGAGTCACT CGAAGGAAATT TGCGGGGACAA AAGCTCCCC TGGAAGAAT TGGGGGGAAA GCGATGGGAA GCGATGGGAA AACTCCCGAA AATTCCGAG TGTGGAGGA AATTCCGGA AATTCCGAG AAGATCCAAA AAATTCCAGG GGGACCGAT GTGACTAA TTTGAGGGGA GTGCCCCAA GGGGCCGGGAC AGAAGATCCAA AAAATTCAAG GAAGGAGCAAAATT AAGATCCAG GTGACCAAAT AAGATCCAGG GTGACCAAT GAACAAGCTCA AAAAATCCAAG GCGATGGGAA AAATTCCAGG GTGACCAAT GAAGAACCAAT GTGACCAAGTCAA AAATTCCAGGA <		421	ACAACTGGCT	GCCTCAAAGG	GCTTGCCAAC	GTGCAGTGTT	CTGACCTGCT	CAAGAAGTGG
541 GGGGCCGGTG GTGACTAA Glucco 1 ATGGGCGGGA AAGTTCTCTT CGCTCTCATC TGCACTGGCG TTGCCGAAGC TAAGCGCAC 121 GACGCTGATA AAGATTTTAA TATTGTGCT GCCGCGCTC TGCAAGAAC AAGGTCTCC TCAAGATCC 121 GACGCTGATA GAGGTAAATT GCCGGGCAAA AAGCTCCC TCAAGAGAC TGCAGGCACAT TGCAAGAAC AAGGGCTGTC TCAAGAGACC TGCAGGCGAT TGCAAGAAC AAGGGCTGTAC AAGGGGATGT TGAAGAGAA AATTCCTGGA AATTCCTGGA AATTCCTGGG AATTCCTGGG AATTCCTGGG AATTCCTGGG AATTCCTGGG AATTCCTGGG AATTCCTGGG AATTCCTGGG AAAATTCCAAGG AAAGTCCTG CAAAAAATCA AGAACATCCGG AAAAATCCAAG GGGCGGCGA AAAATTCCAAG GCCAAGTACG TGAACAAG TGGACTAA TGAACAAGC TGGACTAA TATAGGCAAT GAAAAATTAG GGGCGCGGCG GCTAACACT AAAAATTCAAG GCCAAGTACG TAAAAAAATCAAG GCCAAGTACGC TAAAAAAATTAG GCCAAGTACGC TAAAGGGC TGAACAAGCCGG TTAGCACAAG GTGCCTACA TAAAAAAATTAG GCCACAGTCCC TGAACAAGCG GCAAGTGCCGA AAAATTCAAG GCCAAGTCCCC TGAACAAGCC		481	CTGCCGCAAC	GCTGTGCGAC	CTTTGCCAGC	AAGATCCAGG	GCCAGGTGGA	CAAGATCAAG
Glucoo 1 ArGeGGTGA AAGTTCTCT CGCTCTATC TGCATCGCGA AATTCGCTAC TAGCGGACA (optimized) 61 GAGAATAATG AAGATTTAA TATTGTTGCT GTCGCCTCAA ATTCGCTAC TACGGACC 121 GACGCTGATA GAGGTAAAT GCCGGGCAA AAGCTTCCT CTCGGGGCTC CAAGAAAAT 181 GAGGGAAAG CCAGGAAAGC TGGCGTGACT AGGGGATGT TGATATGTCT ATCTCATAT 241 AAATGCACTC CAAAAATGAA AAAGTTCATT CCAGGTGAT GTCATACATA TGAAGAAAA 301 AAAGAATCTG CCCAAGAAGC TATTGGAGAA GCGATTGTGG ACATACCAGA AATTCCTGG 361 TTTAAGGATT TGGAACGAAT GGAACAATT ATTGCTCAA TAAAAATACA 301 AAAGAATCTG CCCAAGGAGG TATTGGAGAA GCGATTGTGG ACATACCAGA AATTCCTGG 361 TTTAAGGATT TGGAACGAAT GGAACAATT ATTGCTCAAG TAGACCATT GTGGGACTG 421 ACTACTGGAT GTTGAAGGG CCCACCCAT GTACAATGTA GTGACCTCT AAAAAAAAAA		541	GGGGCCGGTG	GTGACTAA	01110000000	1110111 001100	000110010011	01110111 01110
(oplimized) 61 GAGAATAATG AAGATTITAA TATTGTTCCT GTGGCCTCAA ATTTGGCTAC TACGACCTAC 121 GAGAATAATG AAGATTITAA TATTGTTCCT GTGGCCTCAA ATTTGGATAC CAAAAGAAATG 181 GAGGCAAATG CCCAGGAAAGC TGGCTGTACT AGGGGATGTT TGATATGTCT ATTCGATACT 241 AAAGAATCG CCAAAATGAA AAAGTCTATT CCGGGCGAT GTGATCACTA TAGAGAGAAA 301 AAAGAATCG CCAAAATGAA AAAGTCTATT CCGAGGAGAA GCGATTGGA ACTACCAGA AATTCCTGGA 301 AAAGAATCG CCAAAATGAA GGAACAATT ATTGGCAGA ACATACCAGA AATTCCTGGA 421 ACTACTGGAT GTATGAAGGG CCTAGCCAAT GTACAATGTA GTACAATTA AAAAATTAA 541 GGCGCTGCG GTGACTAA TTTGACAGGA TTTGTTGTTC AGACACCGG AGCTGCTCT AAAAAAATTAA Nluc 1 ATGGCTCTCA CAACCGAGAG TTTCGTTGGG GACGGCGCGGGG CAACACGGCAC CAAATCGGGG CACCACGGGG CAACACGGCA CAACCCGGGG CAACACGGCGA CAACACGGCGA CAACACGGCGA CAACACGGCGA CAACACGGGGG <td>Glucco</td> <td>1</td> <td>ATGGGCGTGA</td> <td>AAGTTCTCTT</td> <td>CGCTCTCATC</td> <td>TGCATCGCTG</td> <td>TTGCCGAAGC</td> <td>TAAGCCGACA</td>	Glucco	1	ATGGGCGTGA	AAGTTCTCTT	CGCTCTCATC	TGCATCGCTG	TTGCCGAAGC	TAAGCCGACA
Nuc 121 GAGGCTGATA GAGGTANATT GCGGGGCAAA AAGCTTCCTC TCGAGGTCT AAAGAATGT 241 AAAGCACTC CAAAAATGAA AAAGTCATT CCAGGGAGAT GTCATACATA TAGAGGAGAA 301 AAAGGAATCG CCCAAGGAAGC TGGCTGGCAA GGCATTGTGG ACATACCAGA AAAGAATCTG 361 TTTAAGGATT TGGAACCAAT GGAACCAAT ACATACCAGA ACATACCAGA AAATTCCTGG 361 TTTAAGGATT TGGAACCAAT GGACCATTGT ATGGTCTGG AAAAAAAATG 421 ACTACTGGAT GTGTGAAGGA CCTAGCCAAT GTACACTAG TGTGCACAGA 481 CTTCCTCAA GATGTCTCA TTTGAAGGG CCTAGCGGAC AGAATCTGG GTACACATT Nluc 1 ATGGTCTCA CACTCGAAGG TTTGTTGGG GACGGCGGC CTACACCT AGAATGGCC AGACAGCCG AGATCTCGG GGCGCTGCCG CTACACCT AGAGCACGCG AGACTGCCGC CAACTACGGCG AGACTGCGGC CAACACAGGC AGACTGCCG CACCAGGGCG CTACACCT AAAATTAAA AAATACAG GGCCCTCT AAAATTAAA AAATTACAG GGCCCTCT AAAATTTTAAA AATCCAGGCGCG CTACAC	(optimized)	61	GAGAATAATG	ΔΔGΔTTTTΔΔ	TATTGTTGCT	GTCGCCTCAA	ATTTCGCTAC	TACTGATCTA
121 GAGGCHARTG CCAGGARAGC TGGCTGACT AGGGGATGTT TGATATGTT ATCTCATATI 181 GAGGCAAATG CCAGGARAGC TGGCTGACT AGGGGATGTT TGATATGTT ATTCATATI 241 AAAGAATCTG CCCAAGAGGG TATTGGAGA GCGATTGTGG ACATACCAGA AAATTCCTGGA 301 AAAGAATCTG CCCAAGAGGG TATTGGAGAA GCGATTGTGG ACATACCAGA AAATTCCTGGA 381 TTTAAGGATT TGGACCCAT GGAACAATTT ATTGCATAG TATAGGACTT AAAAATGA 421 ACTACTGGAT GGTGCTAC TTTTGGACCAAT GTACAATGTA GTACAATGTA TATAGGACTTA TATAGGACTAC 481 CTTCCTCAAA GATGTGCTAC TTTTGCATCA AAAATTCAAG GTACACCTT AAAATTAA 541 GGCCCTGGCG GTGACTAA TTTCGATGGG GACTGGCGAC AGGAAGCCGG CTACAACCTC Nluc 1 ATGGTCTCA CACTCGAAGG TTTCGTTGGG GACTGGCGAC AGAAATGGC TGAAATTTAA 21 ACCGCGACC TAAGGCCTCA CAACCAGCGC TAGACAGGC GAGAAGCCGA CAACACCGGC CAACACCGGC CAAACCGACCGC CACACCGGC <td></td> <td>121</td> <td>GACGCTGATA</td> <td>CACCTAAATT</td> <td>GCCGGGCAAA</td> <td>AACCTTCCTC</td> <td>TCGAGGTCCT</td> <td>CAAAGAAATG</td>		121	GACGCTGATA	CACCTAAATT	GCCGGGCAAA	AACCTTCCTC	TCGAGGTCCT	CAAAGAAATG
Nuc 241 AAATGCACTC CAAAAATGAA AAAGTTCATT CCAGGTCGAT GTCATACATA TGAAGGAGAA 301 AAAGAATCTG CCCAAGGAGG TATTGCACGAA GCGATTGTGG ACATACCAGA AAATTCCTGGG 361 TTTAAGGATT TGGAACCAAT GGAACAATT ATTGCTCAGG TAGTGCACTAC TAAAAATTAG 421 ACTACTGGAT GTTGAAGGG CCTAGCCAAT GTACAATGTA GTGACACTAT AAAAATTAG 481 CTTCCTCAAA GATGTGCTAC TTTGGTGGG GCCAAGTAGA TAAAATTAA 541 GGCGCTGCGG GTGACTAA AGGTGTGTCC AGATGTGCTCC AGATGTGCC TGAAGGACA GTGTGCCCT AGAATTTT AGAAGATCGG CTACAACCTG AAAAATTAA 541 GGCGCTGCGG GTGACTAA AGATGTGCC TGAAGGAGC AGATGTGTTCC AGATGTGCC TGAAGGAGG CAACCGGGG CTACAACCTG AAAGGATTG CCTGAGCGGC CAACAGGGGC CAACAGGGGC CAACAGGGGG CTACAACTGG GGTGTCCGTGG AGACGGCGGC CAACAGGGGG CAACAGGGGG CAACAGGGGG CAACAGGGGG CAACAGGGGG CAACACGGGGG CAACAGGGGGC CAACACGGGGG CAACAGGGGG <		181	GAGGCAAATG	CCAGGAAAGC	TEGETETACT	AGGGGATGTT	TGATATGTCT	ATCTCATATA
Nuc 1 AAAGATCGG CCAAGGAGG TATTGGAGAA GCGATGGGG ACATACCAGA AAATTCCGG 361 AAAGATCG CCCAAGGAGG TATTGGAGAA GCGATGGGG ACATACCAGA AAATTCCGG 421 ACTACTGGAT GTGACCAAT GGAACAATT ATTGCTCAG TAGATCTATG TGGACCCAT 481 CTTCCTCAAA GATGTGCTAC TTTTGCACA AAAATTCAAG GCCAAGTAGA TAAAATTAA 541 GGCGCTGGCG GTACTAA TTCGTTGGG GACTGGCGAC AGAATCTCGG GGTGCCGTZ Nluc 1 ATGGTCTCA CACTGGAGGA AGGTGTGTCC AGGTGGCGAC AGAATCTCGG GGTGCCGTZ 121 ACTCCCGATCC AAAGATTGT CGAGGGGGAC CAAATGGGC TAGACGAGAA AATTTTAA 241 GTGGTGTAC CTGTGGATGA TCATCACTT AAGGTGTC TGCACGGGC CAAATGGCC AGACAGCCC CACCCATGGG CACCCATGGG CACCCATGGG CACCCATGGG CACCCATGGG CACCCATGGG CACCCGTGT GAAAATGGC CACTGGGG CACCCATGGG CACCCATGGGG CACCCATGGG CACCCATGGG CACCCATGGG CACCCATGGG CACCCATGGGG CACCCATGGGG CACCCATGGGG		241	AATGCACTC	CAAAATGAA	AAGTTCATT	CCACCTCCAT	CTCATACATA	TGAAGGAGAC
361 ARAGARTETS CCCARGORAG FATIGUAGAT GCCATIGUES ACTACCASA AATTECTOR 361 TITAAGGATT TGGAACCAAT GGAACAATT ATTGCTAAG TATGCTATG TTGGAACCT 421 ACTACTGGAT GTTGGAACGC CCTAGCCAAT GTACAATGTA GTGGACCTCT AAAAAAAAG 481 CTTCCTCAAA GATGGCTAC TITTGCATCG AAAATTCAAG GCCAAGTAGA TAAAAATTAA 541 GGCGCTGCG GTGACTAA ATTGCAGGG AGACAGCCG CTACAACCTC 61 GACCAAGTCC TTGAACAGGG AGGTGTGTCC AGATTGTTC AGAAATCGG GGGTGTCCGTZ 121 ACTCCGATCC AAAGGATTGT CCTAAGCGGC CAAATGGGCC TGATGAAGGAC CATCCATGG 181 ATCATCCCGATC AAAGGATTGT CCTAAGCGGC CAAATGGGCC AGACTCGGC CACCCATGGA CATCCATGGA 241 GTGGTGTACC CTGGGGGAGA CATGCACATT AAGGCACCGC GGACCCAGGAC AAATTTAAC 241 GTGGTGTACC CTGGAGAGAT CATGCAGAC TATTGCGACG GGCGCTAGGC AGACACGGCA CAAAATTAT 241 GTGGGTGACC CTGG		301	AAAIGCACIC	CCCARCACC	TATTCCACAA	CCCATTCTCC	ACATACCACA	AATTCCTCCA
111 ACTACTGGAT GUARCEART GUARCEART GUARCEART GTACATGTA GTGACTATIS TABARCEART 421 ACTACTGGAT GTTGAAGGG CCTAGCCART GTACATGTA GTGACCTTT AAAAAAAGG 541 GGCGCTGGCG GTGACTAA TTTGGTGGG CACTCGAAGA TTTCGTTGGG GACTAGTGGCG CTACAACTCA Nlue 1 ATGGTCTCA CACTCGAAGA TTTCGTTGGG GACTAGTGGC AGAACTCTGG GGTGTCCGTZ 121 ACTCCCGATCC TTGAACAGGG AGGTGTGTCC AGAACTATGG CACTCCAGAAA AATTTTTAA 181 ATCATCCGGT ATGAAGGTCT GAGCGGCGAC CAAATGGGC AGGTGTCCAAA AATTTTTAA 241 GTGGTGTACC CTGGGGAGA TCATCACTTT AAGGTGATCC TGAAGGCA CATCCAGGC AGACTCGGC AGACTCGGAA CATCCAGGGC CACACTGGC AGGCGCAAAAAA AATTTTTAA 241 GTGGTGTACC CTGTGGAAA CATGTGAACA CATGTGAACA GGACGCCTGT GGAAAAAGAT CACGGACTCGC CACACTGGAC AAAATATGA AGGCGCAA CAAAAAGAT CATGTGAACA GGCCGTGTGC GGCCGTAGA CAAAAATTTTAA 421 GACGAGCGCC		361	TTTAACCATT	TCCAACCAAT	CCAACAATTT	ATTCCTCAAC	TACATCTATC	TCTCCACTCT
421 ACTACTORAN GATGTGCTAC TTAGAAGGG CETAGCCAAT GTACAATGA GTGACTICT AAAAATGA 481 CTCCTCAAA GATGTGCTAC TTTGGATCA AAAATTCAAG GCCAAGTAGA TAAAATTAAJ 541 GGCGCTGGCG GTGACTAA AGACAGCCGG CTACAACCTC Nluc 1 ATGGTCTTCA CACTCGAAGA TTTCGTTGGG GACTGGCGAC AGACAGCCGG CTACAACCTG 121 ACTCCGATCC ATGAAGGTCT CAGGCGCGGAC CAAAATGGGC TGAAGATCGA CATCCAATG 181 ATCACCCGT ATGAAGGTCT GAGCGGCGCAC CAAATGGGC AGACTATGG CACACTGGT 241 GTGGTGTACC CTGTGGATGA CATGATCGAC TATTTCGAAG GGGACCGCAA CAAATTTTAAC 241 GTGGTCGACG GCAAAAAGAT CACGATCGAC TATTTCGGAC GGGACCGCAA CAAAATTATC 301 ATCGACGGCGC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGAGCCC 421 GACGACGCCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGAGCC Nlucco 1 ATGGTTTTA <		421	ACTACTCCAT	CTTTCAACCAAT	CCTACCCAT	CTACAATCTA	CTCACCTCTT	AAAAAAATCC
401 CTICCICAAA GATGIGURC TITIGUALA AAAATTCAAG GCCAAGTAA 541 GGCGCTGGCG GTGACTAA SAGGTGTGTCC AGATGTGCTACA AGAAATTCAAG GCCAAGTAA Nluc 1 ATGGTCTTCA CACTCGAAGA TTTCGTTGGG GACTGGCGAC AGAAATGGGC CTACAACCTC 121 ACTCCGATCC AAAGGATGT CCTGGAGGGC CAAAATGGGC AGAATGGAC AAATTTTAAC 241 GTGGTGTACC CTGTGGAGAGA CATGACGCGA CATGACGCGA CAACATGGAC AGACTGCAAA AATTTTAAC 301 ATCGACGGGG TTACGCCGAA CATGATCGAC TATTTCGGAC GGGACCTGGC GGAAAATTATC 421 GACGACGCC TGATCAACCC CGACGGCGCC TTACGCCGAA CATGATCGAC GGGACCCTGT GGAACGCAA CAAAATTTTAC 421 GACGACGCC TGATCAACCC CGACGATCTG GCGTAA AAACTGCTGG ATAAATTTAC (optimized) 1 ATGGTTTTA CTCTCGAAGA AGGGTGTATCA TCTTTCTGGC GAAAATGGT CAAAATGGT CAAAATGGT CAAAATGGT CAAAATGGT CAAAATGGT CAAAATGGT CAAAATGGA ATATAATCT AAACTGCTGG ATA		421	CTTCCTCDDD	GITIGAAGGG	TTTTCCATCA	DADATTCAAC	GIGACCICII	TAAAAAAAIGG
Niuc1ATGGTCTTCACACTCGAAGATTTCGTTGGGGACTGGCGACAGAAACCGCGGCTACAACCTC61GACCAAGTCCTTGAACAGGGAGGTGTGCCAGTTTGTTCAGAAATCGGGGGTGTCCGTA121ACTCCGATCCAAAGGATTGTCCTGAAGCGGTGAAAATGGGCTGAAGATCGACATCCATGTC181ATCATCCCGTATGAGGGTCTGAGCGGCGACCAAATGGGCCAGATCGAAAAAATTTTTAAC241GTGGTGTACCCTGTGGATGATCATCACTTTAAGGGTGATCCTGCACTATGGCACACTGGTA301ATCGACGGGGTTACGCCGAACATGATCGACTATTTCGGACGGGAACGGCAACAAAATTATC421GACGACGCCTGATCAACCCCGGCGGTCCCTGCTGTCCGAACAGCCATCAACGGAGGC481ACCGGCTGGCGGCTGTGCGAACGCATTCTGGCGTAAATATAATCT(optimized)61GATCAAGTATTAGAACAGGAGGTGTATCATCTTTATTCAAAATTTAGGAGTATCATGT121ACTCCTATTCAAAGAATCGTTCTTTGTGGGAAAAAGGGTTGAAAATTTAGGAGTATCATGT(optimized)61GATCAAGTATTAGAACAGGAGGTGTATCATCTTTATTTAAAATTTAGGAGTATCATGT121ACTCCTATTCAAAGAATCGTTCTTCTGGCGAAAAGGGTTGAAAATGGAAATTTTTAA181ATCATTCCTATGAAGGACTCTCAGGAGGCAAATGGAAAAAATTTTTAA241GTGGTTTATCATGAAGGGTCTCAGGGGATCAAAATGGAAATTTTTAA241GTGGTTTATCAAGGAATCGTCTCAGGGGATCAAATGGAAAAATTTTTAA241GTGGTTTATCTAGAAGGGACT		401 541	CIICCICAAA	GAIGIGCIAC	IIIIGCAICA	AAAATICAAG	GCCAAGIAGA	IAAAAIIAAA
NiceIAlegretiticaCACTEGAAGAIntegriggeGACIGGEGACAGAACAGEGCHACAACEAG61GACCAAGTCCTTGAACAGGGAGGTGTGTCCAGTTTGTTTCAGAATCTCGGGGTGTCCGTA121ACTCCGATCCAAAGGATTGTCCTGAGCGGTGAAAATGGGCAGATCGAAAAAATTTTAAG181ATCATCCCGTATGAAGGTCTGAGCGGCGACCAAATGGGCCAGATCGAAAAAATTTTAAG241GTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCCTGCACTATGGCACACTGGTG301ATCGACGGGGTTACGCCGAACATGATCGACTATTTCGGACGGGAACGGCAACAAAATTATC421GACGAGCGCCTGATCAACCCCGACGGGCTCCCTGCTGTTCCGAGTAACCATCAACGGAGGGC481ACCGGCTGGCGGCTGTGCGAACGCATTCTGGCGTAACATTAATCTT(optimized)61GATCAAGTATTAGAACAAGGAGGTGTATCATCTTTATTCAAAATTTAGG181ATCATCCCTAAAGAATCGTTCTTCGGAGATCAAAATGGGACAAATTTAAGAGTATCGGT241GTGGTTTATCCTCTGAAGGACTCTTTCTGGCGAAAAGGACAAATTTAAGAATTTTAAG241GTGGTTATCATGAAGAATTCTTCGGAGATCAAATGGACAAATTGAAAAAATTTTAA241GTGGTTATCCATGAAGGACTCTCAGGAGATCAAATGGGACAAATGAAATGGACATTCATGT241GTGGTTATCCTGTAGAGGACTCTCACTTTAAAGGCATCCTACATTATGGAACTTCAGG201ATGATCCTCTCACTCCTCTCACCCTTTTAAAGGCATCCTACTTCCCAACCATTATGGC	Niluo	1	A TOOTOTTO	GIGACIAA	TTTCCTTCCC	CACTOCOCAC	ACACACCCCC	CTACAACCTC
b1 GACCAAGICC HIGAACAGGG AGGIGIGICCC AGHITIGTTIC AGAATCICGG GGIGICCGT 121 ACTCCGATCC AAAGGATTGT CCTGAGCGGGT GAAAATGGGC TGAAGATCGA CATCCATGTC 181 ATCATCCCGT ATGAAGGTCT GAGCGGCGAC CAAATGGGCC AGATCGAAAA AATTTTAAC 241 GTGGTGTACC CTGTGGGATGA TCATCACTTT AAGGTGTACC TGCACCATGGT 301 ATCGACGGGG TTACGCCGAA CATGATCGAC TATTTCGGAC GGCACCTGGT GGAACGGCAA CAAAATTATC 421 GACGAGCGCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGAGTCC 421 GACGGCGGCC TGATCAACCC CGACGGCTGTCC CTGCTGTTCC GAGTAACCAT CAACGGAGTCC 421 GACGAGCGCC TGATCAACCC CGACGGCTGTC CTGCTGTTCC GAGTAACCAT CAACGGGAGA Nlucco 1 ATGGTTTTTA CTCTCGAAGA TTTTGTTGGT GACTGGAC AAATTTAAC (optimized) 61 GATCAAGTAT TAGAACAGG AGGTGTATCA TCTTTATTC AAAATTTAGA AATTTTAAC 121 ACTCCTATTC AAAGAACGT	INIUC	61	AIGGICIICA	CACICGAAGA	LIICGIIGGG	GACIGGCGAC	AGACAGCCGG	CIACAACCIG
121 ACTECGATEC AAAGGATIGT CETGAGEGGT GAAAATGGEC TGAGATEGA CATECATEGA 181 ATCATECEGT ATGAAGGTET GAGEGGEGAC CAAATGGEC AGATEGAAAA AATTTTAAG 241 GTGGTGTACC CTGTGGGATGA TCATCACTTT AAGGTATEC TGCACTATGG CACACTGGT 301 ATCGACGGGG TTACGCCGAA CATGATCGAC TATTTCGGAC GGCACCTGT GGAACGGCAA CAAAATTATE 421 GACGAGEGCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGAGTC 421 GACGGCTGGC GGCTGTGCGA ACGCATTCTG GCGTAA CAACGGAGTC CAACGGAGAC CAAAATTATE 421 GACGGCTGGC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAACTGCTA CAACGGAGAC 181 ACCGGCTGGC GGCTGTGCGA ACGCATTCTG GCCTAA ACTTCTATTC AAAGAATCGT TCTTCTGGC GAAAATGGT TAAAATTAC (optimized) 61 GATCAAGTAT TAGAAGATCGT TCTTTCTGGC GAAAATGGGAC AAATTGAAA AATTTTAA 121 ACTCCTATTC AAAGAATCGT TCTTTCTGGC GAAATGGGAC AAATTGAA		10	GACCAAGICC	I I GAACAGGG	AGGIGIGICC	AGIIIGIIIC	AGAAICICGG	GGIGICCGIA
181 ATCATCCCGT ATGAAGGTCT GAGGGGCGAC CAAATGGCCC AGATCGAAAA AATTTTTAA 241 GTGGTGTACC CTGTGGATGA TCATCACTTT AAGGTGATCC TGCACTATGG CACACTGGT 301 ATCGACGGGG TTACGCCGAA CATGATCGAC TATTTCGGAC GGCCGTATGA AGGCATCGCC 361 GTGTTCGACG GCAAAAAGAT CACTGTAACA GGGACCCTGT GGAACGGCAA CAAAATTATC 421 GACGGCGCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGAGGC 481 ACCGGCTGGC GGCTGTGCGA ACGCATTCTG GCGTAA AAATTTAAC Nlucco 1 ATGGTTTTTA CTCTCGAAGA TTTTGTTGGT GACTGGAGC AAAATTAACTT (optimized) 61 GATCAAGTAT TAGAACAAGG AGGTGTATCA TCTTTATC AAAATTTAG AGTATCGGTG 121 ACTCCTATTC AAAGAATCGT TCTTCTGGC GAAAATGGTT TGAAAATGGA CATTCATGT 181 ATCATCCCT ATGAAGGACT CTCAGGGAAT CAAATGGACC TAATTATAA 241 GTGGTTATC CTGTGAGAGA TACTTCCC TAGCATTCC TAA		121	ACTCCGATCC	AAAGGATTGT	CCTGAGCGGT	GAAAATGGGC	TGAAGATCGA	CATCCATGTC
241 GTGGTGTACC CTGTGGATGA TCATCACTTT AAGGTGATCC TGCACTATGG CACCACTGGT 301 ATCGACGGGG TTACGCCGAA CATGATCGAC TATTTCGGAC GGCCGTATGA AGGCATCGCC 361 GTGTTCGACG GCAAAAAGAT CACTGTAACA GGGACCCTGT GGAACGGCAA CAAAATTATC 421 GACGAGCGCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGGAGGC 481 ACCGGCTGGC GGCTGTGCGA ACGCATTCTG GCGTAA CATTATACTTG Nlucco 1 ATGGTTTTA CTCTCGAAGA TTTTGTGGT GACTGGAGC AAAATTTAGG AGTATCGTT (optimized) 61 GATCAAGTAT TAGAACAAGG AGGTGTATCA TCTTTCTGGC GAAAATGGT TGAAAATTAG AATTTAAT 121 ACTCCTATTC AAAGAATCGT TCTTTCTGGC GAAAATGGAT TAAATTTAAT 241 GTGGTTTATC CTGTAGGAGA TCTTCTGGC GAAATGGAC AAATTGAAA AATTTTAAT 241 GTGGTTATC CTGTAGGATGA TCACCATTTT AAAGTACCC TACATTATGG ACCTTTAGG 201 ATACATTCCC TGACGTCTAA <td< td=""><td></td><td>181</td><td>ATCATCCCGT</td><td>ATGAAGGTCT</td><td>GAGCGGCGAC</td><td>CAAATGGGCC</td><td>AGATCGAAAA</td><td>AATTTTTTAAG</td></td<>		181	ATCATCCCGT	ATGAAGGTCT	GAGCGGCGAC	CAAATGGGCC	AGATCGAAAA	AATTTTTTAAG
301 ATCGACGGGG TTACGCCGAA CATGATCGAC TATTTCGAC GGCCGTATGA AGGCATCGCC 361 GTGTTCGACG GCAAAAAGAT CACTGTAACA GGGACCCTGT GGAACGGCAA CAAAATTATC 421 GACGAGCGCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGAGTGC 481 ACCGGCTGGC GGCTGTGCGA ACGCATTCTG GCGTAA GCGTAA STATAATCTZ Nlucco 1 ATGGTTTTA CTCTCGAAGA TTTTGTTGGT GACTGGAGC AAACTGCTGG ATATAATCTZ (optimized) 61 GATCAAGTAT TAGAACAAGG AGGTGTATCA TCTTTATTC AAAATTTAGG AGTATCGGTZ 121 ACTCCTATTC AAAGAATCGT TCTTCTGGC GAAAATGGTT TGAAAATCGA CATTCATGTZ 181 ATCATCCCT ATGAAGGACT CTCAGGAGAT CAAATGGAC AAATTGAAAA AATTTTAAZ 241 GTGGTTTATC CTGAAGAGAG TACCATTTT AAAGTACCC CACCTTATCG ACCATTAGG 201 ATACATCGTC TCACCTTAA TATCACCACC TATTATCCCAA TACTTCCCT ACCATTATCC AACCATTATGG		241	GTGGTGTACC	CTGTGGATGA	TCATCACTTT	AAGGTGATCC	TGCACTATGG	CACACTGGTA
361 GTGTTCGACG GCAAAAAGAT CACTGTAACA GGGACCCTGT GGAACGGCAA CAAAATTATC 421 GACGAGCGCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGAGTGC 481 ACCGGCTGGC GGCTGTGCGA ACGCATTCTG GCGTAA GCGTAA GCGTAA Nlucco 1 ATGGTTTTA CTCTCGAAGA TTTTGTTGGT GACTGGAGAC AAACTGCTGG ATATAATCTA (optimized) 61 GATCAAGTAT TAGAACAAGG AGGTGTATCA TCTTTATTC AAAATTTAGG AGTATCGGTA 121 ACTCCTATTC AAAGAATCGT TCTTGTGGC GAAAATGGTA TGAAAATCGA CATTCATGTA 181 ATCATTCCCT ATGAAGGACT CTCAGGAGAT CAAATGGGAC AAATTGAAAA AATTTTAAA 241 GTGGTTATCC CTGAAGATGA TATCACCCAC TATTATCCCA AACTTTAGG ACCTTATGG		301	ATCGACGGGG	TTACGCCGAA	CATGATCGAC	TATTTCGGAC	GGCCGTATGA	AGGCATCGCC
421 GACGAGCGCC TGATCAACCC CGACGGCTCC CTGCTGTTCC GAGTAACCAT CAACGGAGTGC 481 ACCGGCTGGC GGCTGTGCGA ACGCATTCTG GCGTAA Nlucco 1 ATGGTTTTTA CTCTCGAAGA TTTTGTTGGT GACTGGAGAC AAACTGCTGG ATATAATCTA (optimized) 61 GATCAAGTAT TAGAACAAGG AGGTGTATCA TCTTTATTC AAAATTTAGG AGTATCGGTA 121 ACTCCTATTC AAAGAATCGT TCTTGTGGC GAAAATGGTT TGAAAATCGA CATTCATGTA 181 ATCATTCCCT ATGAAGGACT CTCAGGAGAT CAAATGGGAC AAATTGAAAA AATTTTAAT 241 GTGGTTTATC CTGTAGATGA TCACCATTTT AAAGTACCC TACATTAGG ACTTTAGG 301 ATACATCCTC TCACCTCATA TATCACCAT TATCACCAT TATCACCATTTT AAAGTACCC ACCATTATCO		361	GTGTTCGACG	GCAAAAAGAT	CACTGTAACA	GGGACCCTGT	GGAACGGCAA	CAAAATTATC
481 ACCGGCTGGC GGCTGTGCGA ACGCATTCTG GCGTAA Nlucco 1 ATGGTTTTA CTCTCGAAGA TTTGTTGGT GACTGGAGAC AAACTGCTGG ATATAATCTA (optimized) 61 GATCAAGTAT TAGAACAAGG AGGTGTATCA TCTTTATTTC AAAATTTAGG AGTATCGGTA 121 ACTCCTATTC AAAGAATCGT TCTTCTGGC GAAAATGGTT TGAAAAATCGA CATTCATGTA 181 ATCATTCCCT ATGAAGGACT CTCCAGGAGAT CAAATGGGAC AAATTGAAAA AATTTTAAA 241 GTGGTTATCC TGACTGCTCA TATCATTCCCA TATCATTCCCA ACCATTTG AAAGTCATCC TACATTATGG ACCATTTAGG		421	GACGAGCGCC	TGATCAACCC	CGACGGCTCC	CTGCTGTTCC	GAGTAACCAT	CAACGGAGTG
Nucco 1 ATGGTTTTTA CTCTCGAAGA TTTTGTTGGT GACTGGAGAC AAACTGCTGG ATATAATCTA (optimized) 61 GATCAAGTAT TAGAACAAGG AGGTGTATCA TCTTTATTTC AAAATTTAGG AGTATCGGTA 121 ACTCCTATTC AAAGAATCGT TCTTTCTGGC GAAAATGGTT TGAAAATCGA CATTCATGTA 181 ATCATTCCCT ATGAAGGACT CTCCAGGAGAT CAAATGGGAC AAATTGAAAA AATTTTAAA 241 GTGGTTTATC CTGTAGATGA TCACCATTTT AAAGTCATCC TACATTAGG ACCTTTAGT 301 ATACATCCTC TCACTCTAA TATCATCCCAC TATCATCCCAA TATTTTGCAA		481	ACCGGCTGGC	GGCTGTGCGA	ACGCATTCTG	GCGTAA		
Image: state stat	NIUCCO (optimized)	1	ATGGTTTTTA	CTCTCGAAGA	TTTTGTTGGT	GACTGGAGAC	AAACTGCTGG	ATATAATCTA
121 ACTECTATTE AAAGAATEGT TETTTETGGE GAAAATEGTT TGAAAATEGA CATTEATTE 181 ATEATTECET ATGAAGGAET CTCAGGAGAT CAAATGGGAC AAATTGAAAA AATTTTTAA 241 GTGGTTTATE CTGTAGATGA TEACCATTTT AAAGTEATEC TACATTAGG AACTTTAGT 301 ATACATECET TEACTECTAA TATEATECEAC TATEATECEAA CACETATEC ACCATTEGEA	(optimized)	61	GATCAAGTAT	TAGAACAAGG	AGGTGTATCA	TCTTTATTTC	AAAATTTAGG	AGTATCGGTA
181 ATCATTCCCT ATGAAGGACT CTCAGGAGAT CAAATGGGAC AAATTGAAAA AATTTTTAAA 241 GTGGTTTATC CTGTAGATGA TCACCATTTT AAAGTCATCC TACATTAGG AACTTTAGT 301 ATACATCCTC TCACTCATCA TATCATCCCAC TATTTCCCAA CACCTTATCA		121	ACTCCTATTC	AAAGAATCGT	TCTTTCTGGC	GAAAATGGTT	TGAAAATCGA	CATTCATGTA
241 GTGGTTTATC CTGTAGATGA TCACCATTTT AAAGTCATCC TACATTATGG AACTTTAGT 301 ATACATCCTC TCACTCCTAA TATCATCCAC TATTTCCCCAA CACCTTATCA ACCAATTCC		181	ATCATTCCCT	ATGAAGGACT	CTCAGGAGAT	CAAATGGGAC	AAATTGAAAA	AATTTTTAAA
201 δταρατόστο τραρτόρας τατροδοία τα τα τραστάσεια το πραγτάσεια το πραγματία το πραγματία το προστάσεια το πραγματία προστάσεια προστ		241	GTGGTTTATC	CTGTAGATGA	TCACCATTTT	AAAGTCATCC	TACATTATGG	AACTTTAGTG
OUT AIAGAIGGIG IGACICCIAA IAIGAICGAC IAIIICGGAA GACCIIAIGA AGGAAIIGC.		301	ATAGATGGTG	TGACTCCTAA	TATGATCGAC	TATTTCGGAA	GACCTTATGA	AGGAATTGCT
361 gtatttgacg gcaagaaaat tactgttact ggtactctgt ggaatggaaa taaaattato		361	GTATTTGACG	GCAAGAAAAT	TACTGTTACT	GGTACTCTGT	GGAATGGAAA	TAAAATTATC

TABLE 3 | (Continued)

Genes	The sequence of exogenous genes before and after optimization							
	421	GATGAGCGGT	TAATCAACCC	TGATGGATCA	CTACTTTTCC	GAGTTACCAT	TAATGGGGTT	
	481	ACCGGTTGGA	GACTCTGTGA	ACGCATTCTA	GCGTAA			
UnaG	1	ATGATCCTGG	AAAAATTCGT	CGGCACTTGG	AAGATCGCCG	ACAGCCACAA	CTTCGGCGAG	
	61	TACCTGAAGG	CCATCGGCGC	CCCCAAGGAG	CTGTCTGACG	GCGGCGACGC	CACCACTCCC	
	121	ACCCTGTATA	TCTCCCAGAA	AGACGGCGAC	AAGATGACCG	TGAAGATCGA	GAACGGCCCC	
	181	CCCACTTTCC	TGGACACCCA	GGTAAAGTTC	AAGCTGGGCG	AGGAGTTCGA	CGAGTTCCCC	
	241	AGCGACCGCC	GCAAGGGCGT	GAAGAGCGTC	GTGAACCTGG	TGGGGGAAAA	GCTGGTGTAT	
	301	GTGCAAAAGT	GGGATGGGAA	GGAGACCACC	TACGTGCGCG	AGATCAAGGA	TGGCAAGCTG	
	361	GTCGTGACCC	TCACCATGGG	CGACGTGGTG	GCCGTCCGCA	GCTACCGTCG	CGCCACCGAG	
	421	TAA						
UnaGco	1	ATGATTCTAG	AAAAATTTGT	TGGAACTTGG	AAGATCGCTG	ACTCTCATAA	TTTCGGCGAG	
(optimized)	61	TATCTCAAAG	CCATTGGAGC	TCCTAAGGAA	TTGTCAGATG	GCGGAGATGC	CACCACACCA	
	121	ACTCTATACA	TCTCTCAAAA	AGATGGCGAC	AAGATGACCG	TGAAAATTGA	GAACGGACCT	
	181	CCAACATTTC	TCGATACTCA	GGTAAAGTTC	AAATTGGGCG	AAGAGTTTGA	CGAATTCCCT	
	241	TCAGATAGAC	GAAAGGGAGT	CAAATCTGTT	GTGAATCTAG	TAGGCGAGAA	GCTCGTCTAT	
	301	GTTCAAAAAT	GGGACGGAAA	GGAAACCACA	TACGTGAGGG	AGATCAAAGA	TGGCAAGTTG	
	361	GTAGTCACTC	TAACCATGGG	AGATGTTGTG	GCTGTAAGAT	CATATCGAAG	GGCCACAGAG	
	421	TAA						
eGFP	1	ATGGTGAGCA	AGGGCGAGGA	GCTGTTCACC	GGGGTGGTGC	CCATCCTGGT	CGAGCTGGAC	
	61	GGCGACGTAA	ACGGCCACAA	GTTCAGCGTG	TCCGGCGAGG	GCGAGGGCGA	TGCCACCTAC	
	121	GGCAAGCTGA	CCCTGAAGTT	CATCTGCACC	ACCGGCAAGC	TGCCCGTGCC	CTGGCCCACC	
	181	CTCGTGACCA	CCCTGACCTA	CGGCGTGCAG	TGCTTCAGCC	GCTACCCCGA	CCACATGAAG	
	241	CAGCACGACT	TCTTCAAGTC	CGCCATGCCC	GAAGGCTACG	TCCAGGAGCG	CACCATCTTC	
	301	TTCAAGGACG	ACGGCAACTA	CAAGACCCGC	GCCGAGGTGA	AGTTCGAGGG	CGACACCCTG	
	361	GTGAACCGCA	TCGAGCTGAA	GGGCATCGAC	TTCAAGGAGG	ACGGCAACAT	CCTGGGGCAC	
	421	AAGCTGGAGT	ACAACTACAA	CAGCCACAAC	GTCTATATCA	TGGCCGACAA	GCAGAAGAAC	
	481	GGCATCAAGG	TGAACTTCAA	GATCCGCCAC	AACATCGAGG	ACGGCAGCGT	GCAGCTCGCC	
	541	GACCACTACC	AGCAGAACAC	CCCCATCGGC	GACGGCCCCG	TGCTGCTGCC	CGACAACCAC	
	601	TACCTGAGCA	CCCAGTCCGC	CCTGAGCAAA	GACCCCAACG	AGAAGCGCGA	TCACATGGTC	
	661	CTGCTGGAGT	TCGTGACCGC	CGCCGGGATC	ACTCTCGGCA	TGGACGAGCT	GTACAAGTAG	
EGFPco	1	ATGGTTTCCA	AGGGGGAGGA	GCTATTTACA	GGTGTCGTCC	CTATTCTTGT	TGAATTGGAC	
(optimized)	61	GGAGATGTCA	ATGGACACAA	ATTTTCTGTC	TCCGGGGAGG	GAGAGGGAGA	CGCAACATAT	
	121	GGCAAACTCA	CTCTCAAGTT	TATCTGCACC	ACTGGCAAGT	TACCTGTGCC	ATGGCCTACG	
	181	CTTGTGACTA	CTCTAACATA	TGGTGTGCAA	TGTTTCTCTC	GCTATCCAGA	CCACATGAAA	
	241	CAACACGATT	TTTTCAAATC	AGCTATGCCT	GAAGGGTATG	TTCAAGAGAG	GACTATCTTT	
	301	TTCAAAGACG	ACGGAAATTA	TAAGACCAGA	GCAGAAGTCA	AATTCGAAGG	TGATACTCTG	
	361	GTGAATCGAA	TCGAACTTAA	GGGTATTGAC	TTTAAGGAAG	ATGGTAATAT	TTTGGGCCAC	
	421	AAATTAGAGT	ATAACTATAA	CTCTCATAAT	GTCTATATTA	TGGCAGACAA	ACAAAAAAAC	
	481	GGGATAAAGG	TGAATTTTAA	AATTAGACAT	AACATCGAAG	ATGGGTCAGT	TCAACTCGCT	
	541	GACCATTATC	AACAGAATAC	TCCIATCGGT	GAIGGTCCTG	TICIACTCCC	IGATAATCAC	
	661	TAICIAICCA	TTCTTACTCC	CCCACCAATT	GAULUAAAIG	AGAAAAGGGA	LUACAIGGTG	
	001	I I GC I AGAG I	TIGITACIGC	GGCAGGAAII	ACACIAGGAA	IGGACGAGCI	AIAIAAGIAG	

length. 2120-T2A-eGFPco-2820 formed a band, "f," which electrophoresed slightly faster than the RC DNA of Pch9-G2016T (**Figure 9A**, lane 21). Notably, this band disappeared after *Eco*RI digestion and was suggested to be a shortened RC DNA from a spliced RNA. However, we reported a substantial intact pgRNA in samples of 2120-T2A-eGFPco-2820 (**Figure 10A**, lane 22), demonstrating potential defects in DNA synthesis. It is possible that the band, "g," is the intact SS DNA, which is reverse transcribed from the intact pgRNA of 2120-T2A-eGFPco-2820 (**Figure 9A**, lanes 21 and 22).

DISCUSSION

Previous studies indicate that HBV recombinant virus expressing foreign genes can be constructed successfully. However, a systematic exploration of the influence of different strategies of engineering on HBV replication is lacking. In the present study, the whole genome of HBV was scanned for regions suitable for engineering. "Suitable here" means supporting the formation of RC DNA, the precursor of functional cccDNA. This criterion allowed for the identification of two regions, 2118– 2814 and 99–1198. Region 2118–2814 covers the C-terminal of

HBC and the N-terminal of TP domain of Pol, and its deletion efficiently supports RC DNA formation. Notably, this region partially overlaps the region (nt 2,124–2,712) previously utilized to recombine NanoLuc into an HBV of genotype C (accession number AB246345) (Nishitsuji et al., 2015). Region 2118-2814 can hardly extend further because the hM (2820-2868) region must be retained. Previously, researchers successfully inserted a 52-aa polypeptide into 1982–2312 (Wang et al., 2002, 2014; Deng et al., 2009). Even so, we think that extending the recombination region toward the N-terminal of HBC is undesirable. In the present analysis, deletion of 1919-2515 formed only weak RC and DL DNA, and the relatively lower level of core DNA was potentially associated with a low amount of intact pgRNA. Intriguingly, 1919-2515 deletion resulted in almost complete pgRNA splicing. A similar phenomenon was evident for D2899-197, which formed only weak SS DNA and showed a large part of pgRNA splicing. Elsewhere, a study revealed that 55%

pgRNA of wild-type HBV suffered from splicing in HepG2 cells (Abraham et al., 2008). Taken together, significantly higher splicing of D1919-2515 and D2899-197 implies that the two regions are functional to protect authentic pgRNA from splicing. It is speculated that such protection is potentially associated with secondary or higher-order RNA structures that can hide the splicing sites.

Region 99-1198 covers the C-terminal of the spacer, RT, and RNaseH domains of Pol, overlapping preS2 and S ORF. In a previous study, BSD was inserted into the preS2 region, between *XhoI* (C^TCGAG, nt 125) and *Bsr*GI (T^GTACA, nt 766) (Liu et al., 2009). Moreover, Untergasser et al. inserted GFP between nt 1,446 and 2,347 (Untergasser and Protzer, 2004). This region contains h5E (nt 1511–1568), which has been reported to play a crucial role in RC DNA formation (Lewellyn and Loeb, 2007). The deletion of h5E (nt 1,511–1,568) was responsible for the poor RC DNA formation in this construction of HBV. Preserving h5E

(nt 1,511–1,568), region 99–1198 is efficient for foreign genes recombination with a size < 1,000 bp.

Herein, in D3099-396, an additional band was detected between the RC and DL DNA. This band was likely pseudo-RC DNA, reverse transcribed from one of the spliced pgRNAs of D3099-396, because only spliced RC DNA could electrophorese faster than the unspliced RC DNA and slower than the unspliced DL DNA. Of note, all spliced pgRNAs of D3099-396 lacked hM (2820–2868), which was reported to be crucial for RC DNA formation (Lewellyn and Loeb, 2007). Furthermore, we fused 10 foreign genes, via T2A peptides, into the ORF of HBC and HBS, at 2120 and 155, respectively. This inframe arrangement allowed for the expression of foreign genes from two RNAs, preC RNA and pgRNA, or preS1 mRNA and S mRNA. T2A peptide fused at the N-terminal of the foreign genes reduced the potential impact of the fused HBV peptides on the function of foreign genes. The findings demonstrate that site 155 may be more tolerable to recombination than site 2120. Of the 10 genes, 9 were successfully inserted at site 155 without abolishing RC DNA formation, whereas 5 of the 10 genes inserted at site

2120 abrogated that. Besides, the deletion of HBV 2121-2819 did not abort RC DNA formation. Therefore, the failure of RC DNA formation of insertions of Neo, copGFP, mCherry, UnaG, and eGFP at 2120 was unlikely to be associated with deleting any *cis*elements. Notably, the recombination of these genes still allowed for DL DNA formation. As such, the genes must interfere with the plus-strand primer translocation or the circulation step. Inserting the foreign genes close to hM (nt 2,820–2,868) implies that this arrangement could interfere with the base pairing between hM and h3E. These events are crucial for the translocation of

plus-strand primer (Lewellyn and Loeb, 2007), contributing to the abortion of RC DNA formation.

The most intriguing finding of this work is that optimization of the sequence of recombinant genes may improve RC DNA formation. Usually, codon optimization is used to improve the expression of proteins as this approach accommodates the codon bias of the host organism. However, we do not think the alteration in protein (UnaG) expression ameliorated RC DNA formation in the present case. First, the HBC and Pol were provided by transcomplementation. Second, the expression of UnaG or UnaGco was not essential for RC DNA formation. Third, 2120-T2A-UnaG-2607 produced a higher level of pgRNA and SS DNA than 2120-T2A-UnaGco-2607. These findings relay evidence that UnaG recombination has no adverse effects on the steps preliminary to synthesizing minus-strand DNA. However, it is plausible that UnaG impeded RC DNA formation by limiting the step of plus-strand synthesis or circularization at the DNA sequence level, for example, through the formation of some secondary structures. In line with this, structure prediction of the minus-strand DNA showed that wild-type UnaG sequence does disrupt the original structure of minusstrand DNA, whereas UnaGco profoundly ameliorates this impact (Figure 11). An interesting implication of our findings is that the primary sequence of minus-strand DNA intrinsically serves as a selection pressure during evolution. That is, mutations adversely impacting the secondary structure of minus-strand DNA would have less fitness and be weeded out.

CONCLUSION

In conclusion, the current study provides an informative basis and a valuable method for constructing and optimizing

REFERENCES

- Abraham, T. M., and Loeb, D. D. (2006). Base Pairing between the 5' Half of ε and a *cis*-Acting Sequence, F, Makes a Contribution to the Synthesis of Minus-Strand DNA for Human Hepatitis B Virus. *J. Virol.* 80, 4380–4387. doi: 10.1128/JVI. 80.9.4380-4387.2006
- Abraham, T. M., Lewellyn, E. B., Haines, K. M., and Loeb, D. D. (2008). Characterization of the contribution of spliced RNAs of hepatitis B virus to DNA synthesis in transfected cultures of Huh7 and HepG2 cells. *Virology* 379, 30–37. doi: 10.1016/j.virol.2008.06.021
- Bai, W., Cui, X., Xie, Y., and Liu, J. (2016). Engineering Hepadnaviruses as reporterexpressing vectors: recent progress and future perspectives. *Viruses* 8:125. doi: 10.3390/v8050125
- Baron, U., Gossen, M., and Bujard, H. (1997). Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. *Nucleic Acids Res.* 25, 2723–2729. doi: 10.1093/nar/25.14.2723
- Bartenschlager, R., and Schaller, H. (1992). Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. *EMBO J.* 11, 3413–3420. doi: 10.1002/j.1460-2075.1992.tb05420.x
- Bartenschlager, R., Junker-Niepmann, M., and Schaller, H. (1990). The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J. Virol. 64, 5324–5332. doi: 10.1128/JVI.64.11.5324-5332. 1990
- Boute, N., Lowe, P., Berger, S., Malissard, M., Robert, A., and Tesar, M. (2016). NanoLuc Luciferase - a multifunctional tool for high throughput antibody screening. *Front. Pharmacol.* 7:27. doi: 10.3389/fphar.2016. 00027

recombinant HBV. Efforts are being taken to obtain and characterize reporter HBV based on the recombinants constructed in the study.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

C-YG contributed to the implementation of the research. JC, W-LZ, Y-WW, A-LH, and J-LH contributed to the design of the research, the analysis of the results, and the writing of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (81871635, 81671997, U20A20392, and 81902060), the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0764 and cstc2020jscx-dxwtBX0022), the Science and Technology Commission of Yuzhong district, Chongqing (20180141), the 111 Project (No. D20028), and Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University (No. 202104).

- Chaisomchit, S., Tyrrell, D. L., and Chang, L. J. (1997). Development of replicative and nonreplicative hepatitis B virus vectors. *Gene Ther.* 4, 1330–1340. doi: 10.1038/sj.gt.3300544
- Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). *Gene* 173, 33–38. doi: 10.1016/0378-1119(95)00685-0
- Deng, Q., Mancini-Bourgine, M., Zhang, X., Cumont, M. C., Zhu, R., Lone, Y. C., et al. (2009). Hepatitis B virus as a gene delivery vector activating foreign antigenic T cell response that abrogates viral expression in mouse models. *Hepatology* 50, 1380–1391.
- England, C. G., Ehlerding, E. B., and Cai, W. (2016). NanoLuc: a small luciferase is brightening up the field of bioluminescence. *Bioconjug. Chem.* 27, 1175–1187. doi: 10.1021/acs.bioconjchem.6b00112
- Engler, C., Gruetzner, R., Kandzia, R., and Marillonnet, S. (2009). Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. *PLoS One* 4:e5553. doi: 10.1371/journal.pone.0005553
- Engler-Blum, G., Meier, M., Frank, J., and Müller, G. A. (1993). Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. *Anal. Biochem.* 210, 235–244. doi: 10.1006/abio.1993.1189
- Haines, K. M., and Loeb, D. D. (2007). The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus. J. Mol. Biol. 370, 471–480. doi: 10.1016/j.jmb.2007.04.057
- Hong, R., Bai, W., Zhai, J., Liu, W., Li, X., Zhang, J., et al. (2013). Novel recombinant hepatitis B virus vectors efficiently deliver protein and RNA encoding genes into primary hepatocytes. J. Virol. 87, 6615–6624. doi: 10.1128/ JVI.03328-12

- Kimura, M., Takatsuki, A., and Yamaguchi, I. (1994). Blasticidin S deaminase gene from Aspergillus terreus (BSD): a new drug resistance gene for transfection of mammalian cells. *Biochim. Biophys. Acta* 1219, 653–659. doi: 10.1016/0167-4781(94)90224-0
- Kumagai, A., Ando, R., Miyatake, H., Greimel, P., Kobayashi, T., Hirabayashi, Y., et al. (2013). A bilirubin-inducible fluorescent protein from eel muscle. *Cell* 153, 1602–1611. doi: 10.1016/j.cell.2013.05.038
- Lacalle, R. A., Pulido, D., Vara, J., Zalacaín, M., and Jiménez, A. (1989). Molecular analysis of the pac gene encoding a puromycin N-acetyl transferase from Streptomyces alboniger. *Gene* 79, 375–380. doi: 10.1016/0378-1119(89)90 220-5
- Lanford, R. E., Notvall, L., Lee, H., and Beames, B. (1997). Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase. *J. Virol.* 71, 2996–3004. doi: 10.1128/jvi.71.4.2996-3004.1997
- Lewellyn, E. B., and Loeb, D. D. (2007). Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus. *J. Virol.* 81, 6207–6215.
- Liu, J. X., Sun, D. X., and Cao, Z. C. (2009). [Stable cell line for secretion of replication-defective hepatitis B virus vector expressing blasticidin resistant gene]. *Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi* 23, 316–318.
- Liu, J., Cheng, X., Guo, Z., Wang, Z., Li, D., Kang, F., et al. (2013). Truncated active human matrix metalloproteinase-8 delivered by a chimeric adenovirushepatitis B virus vector ameliorates rat liver cirrhosis. *PLoS One* 8:e53392. doi: 10.1371/journal.pone.0053392
- Liu, N., Ji, L., Maguire, M. L., and Loeb, D. D. (2004). cis-Acting sequences that contribute to the synthesis of relaxed-circular DNA of human hepatitis B virus. *J. Virol.* 78, 642–649. doi: 10.1128/jvi.78.2.642-649.2004
- Masek, T., Vopalensky, V., Suchomelova, P., and Pospisek, M. (2005). Denaturing RNA electrophoresis in TAE agarose gels. *Anal. Biochem.* 336, 46–50. doi: 10.1016/j.ab.2004.09.010
- McCabe, M. S., Power, J. B., de Laat, A. M., and Davey, M. R. (1997). Detection of single-copy genes in DNA from transgenic plants by nonradioactive Southern blot analysis. *Mol. Biotechnol.* 7, 79–84. doi: 10.1007/bf02821545
- Nassal, M. (1992). The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J. Virol. 66, 4107–4116. doi: 10.1128/ JVI.66.7.4107-4116.1992
- Nassal, M., and Rieger, A. (1996). A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous firststrand DNA synthesis. J. Virol. 70, 2764–2773. doi: 10.1128/JVI.70.5.2764-2773. 1996
- Nishitsuji, H., Harada, K., Ujino, S., Zhang, J., Kohara, M., Sugiyama, M., et al. (2018). Investigating the hepatitis B virus life cycle using engineered reporter hepatitis B viruses. *Cancer Sci.* 109, 241–249. doi: 10.1111/cas.1 3440
- Nishitsuji, H., Ujino, S., Shimizu, Y., Harada, K., Zhang, J., Sugiyama, M., et al. (2015). Novel reporter system to monitor early stages of the hepatitis B virus life cycle. *Cancer Sci.* 106, 1616–1624. doi: 10.1111/cas.12799
- Panjaworayan, N., Roessner, S. K., Firth, A. E., and Brown, C. M. (2007). HBVRegDB: annotation, comparison, detection and visualization of regulatory elements in hepatitis B virus sequences. *Virol. J.* 4:136. doi: 10.1186/1743-422X-4-136
- Polaris Observatory Collaborators (2018). Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. *Lancet Gastroenterol. Hepatol.* 3, 383–403.
- Pollack, J. R., and Ganem, D. (1993). An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. J. Virol. 67, 3254–3263. doi: 10.1128/jvi. 67.6.3254-3263.1993
- Protzer, U., Nassal, M., Chiang, P. W., Kirschfink, M., and Schaller, H. (1999). Interferon gene transfer by a hepatitis B virus vector efficiently suppresses wild-type virus infection. *Proc. Natl. Acad. Sci. U.S.A.* 96, 10818–10823. doi: 10.1073/pnas.96.19.10818
- Rieger, A., and Nassal, M. (1996). Specific hepatitis B virus minus-strand DNA synthesis requires only the 5' encapsidation signal and the 3'-proximal direct repeat DR1. J. Virol. 70, 585–589. doi: 10.1128/JVI.70.1.585-589. 1996

- Schmit, N., Nayagam, S., Thursz, M. R., and Hallett, T. B. (2020). The global burden of chronic hepatitis B virus infection: comparison of country-level prevalence estimates from four research groups. *Int. J. Epidemiol.* 50, 560–569. doi: 10.1093/ije/dyaa253
- Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., et al. (2004). GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. *Mol. Biol. Evol.* 21, 841–850. doi: 10.1093/molbev/msh079
- Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from *Discosoma* sp. red fluorescent protein. *Nat. Biotechnol.* 22, 1567–1572. doi: 10.1038/nbt1037
- Shin, H. J., Kim, S. S., Cho, Y. H., Lee, S. G., and Rho, H. M. (2002). Host cell proteins binding to the encapsidation signal epsilon in hepatitis B virus RNA. *Arch. Virol.* 147, 471–491. doi: 10.1007/s007050200001
- Southern, P. J., and Berg, P. (1982). Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1, 327–341.
- Summers, J., and Mason, W. S. (1982). Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. *Cell* 29, 403–415. doi: 10.1016/0092-8674(82)90157-x
- Tang, H., and McLachlan, A. (2002). A pregenomic RNA sequence adjacent to DR1 and complementary to epsilon influences hepatitis B virus replication efficiency. *Virology* 303, 199–210. doi: 10.1006/viro.2002.1645
- Tannous, B. A. (2009). Gaussia luciferase reporter assay for monitoring biological processes in culture and *in vivo*. *Nat. Protoc.* 4, 582–591. doi: 10.1038/nprot. 2009.28
- Untergasser, A., and Protzer, U. (2004). Hepatitis B virus-based vectors allow the elimination of viral gene expression and the insertion of foreign promoters. *Hum. Gene Ther.* 15, 203–210. doi: 10.1089/104303404772680001
- Verhaegent, M., and Christopoulos, T. K. (2002). Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. *Anal. Chem.* 74, 4378–4385. doi: 10.1021/ ac025742k
- Wang, L., Kaneko, S., Honda, M., and Kobayashi, K. (2002). Approach to establishing a liver targeting gene therapeutic vector using naturally occurring defective hepatitis B viruses devoid of immunogenic T cell epitope. *Virus Res.* 85, 187–197. doi: 10.1016/s0168-1702(02)00043-6
- Wang, Y., Wang, F., Wang, R., Zhao, P., and Xia, Q. (2015). 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori. *Sci. Rep.* 5:16273. doi: 10.1038/srep16273
- Wang, Z., Zhu, K., Bai, W., Jia, B., Hu, H., Zhou, D., et al. (2014). Adenoviral delivery of recombinant hepatitis B virus expressing foreign antigenic epitopes for immunotherapy of persistent viral infection. J. Virol. 88, 3004–3015. doi: 10.1128/JVI.02756-13
- WHO (2017). Hepatitis B. Available online at: https://www.who.int/news-room/ fact-sheets/detail/hepatitis-b (accessed August, 2017).
- Yoo, J., Rho, J., Lee, D., Shin, S., and Jung, G. (2002). Hepatitis B virus vector carries a foreign gene into liver cells *in vitro*. *Virus Genes* 24, 215–224. doi: 10.1023/a: 1015320314201

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Gan, Cui, Zhang, Wang, Huang and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.