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A B S T R A C T   

Immune senescence in the elderly has been associated with chronic oxidative stress and DNA damage accu-
mulation. Herein we tested the hypothesis that increased endogenous DNA damage and oxidative stress in pe-
ripheral blood mononuclear cells of older adults associate with diminished humoral immune response to SARS- 
CoV-2 vaccination. Increased oxidative stress and DNA double-strand breaks (DSBs) were detected in 9 non- 
immunocompromised individuals aged 80–96 years compared to 11 adults aged 27–44 years, before, as well 
as on days 1 and 14 after the first dose, and on day 14 after the second dose of the BNT162B2-mRNA vaccine (all 
p < 0.05). SARS-CoV-2 vaccination induced a resolvable increase in oxidative stress and DNA damage, but in-
dividual DSB-repair efficiency was unaffected by vaccination irrespective of age, confirming vaccination safety. 
Individual titers of anti-Spike-Receptor Binding Domain (S-RBD)-IgG antibodies, and the neutralizing capacity of 
circulating anti-SARS-CoV-2 antibodies, measured on day 14 after the second dose in all participants, correlated 
inversely with the corresponding pre-vaccination endogenous oxidative stress and DSB levels (all p < 0.05). In 
particular, a strong inverse correlation of individual pre-vaccination DSB levels with both the respective anti-S- 
RBD-IgG antibodies titers (r = − 0.867) and neutralizing capacity of circulating anti-SARS-CoV-2 antibodies (r =
− 0.983) among the 9 older adults was evident. These findings suggest that humoral responses to SARS-CoV-2 
vaccination may be weaker when immune cells are under oxidative and/or genomic stress. Whether such 
measurements may serve as biomarkers of vaccine efficacy in older adults warrants further studies.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
pandemic has put great pressure on healthcare systems worldwide [1,2]. 
Following an impressive multidisciplinary international scientific effort 
over 250 vaccine candidates are currently under clinical or pre-clinical 
development and 4 vaccine platforms gained regular licensure or 
emergency use authorization by the FDA and the EMA, consisting of two 
mRNA-based vaccine platforms (Pfizer/BioNTech and Moderna) and 

two non-replicating viral vector-based vaccine platforms (Astra-Zeneca/ 
Oxford and Janssen), in less than a year [3–5]. Apart from the unprec-
edented vaccine development speed, vaccines based on the mRNA 
vaccine-technology, exhibit more than 90% effectiveness on the general 
population [6], in contrast to the yearly influenza vaccination effec-
tiveness, which does not exceed 60% [7]. Therefore, anti-SARS-CoV-2 
vaccination provides a promising control strategy not requiring 
repeated lockdowns [8], as exemplified by the cases of Israel and UK, in 
which rapid vaccination of the general population resulted in 
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substantially reduced cases of COVID-19 and the withdrawal of quar-
antine measures. 

Individuals of advanced age constitute a population highly vulner-
able to severe and life-threatening COVID-19 [9]. Specifically, older age 
is associated with increased mortality rates after SARS-CoV-2 infection 
[10], emphasized by the fact that frailty, an indicator of biological aging 
[11], is shown to be associated with increased mortality [12,13]. Taken 
together with the observed blunted antibody response in older in-
dividuals [14], these facts underline the exceptional threat that SARS- 
CoV-2 poses to this population. Recent studies examining the efficacy 
of SARS-CoV-2 vaccination in older individuals, reveal a sufficient yet 
decreased antibody response, which may undermine long term immu-
nity [15–17]. Age-associated immune dysregulation because of 
impaired humoral and cellular responses advances in tandem with 
organismal aging and results in less efficient antibody responses after 
vaccination amidst persistent inflammation; these phenotypes are in 
general described under the terms “immunosenescence” and “inflam-
maging” [18–23]. 

Oxidative stress, a term denoting an imbalance between the oxidant 
and antioxidant cellular systems after exposure to noxious stimuli, is 
shown to play a central role in the progression of aging [24]. Reactive 
Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), produced 
by several endogenous and exogenous processes, can significantly affect 
major cellular macromolecules if not neutralized by the designated 
antioxidant systems [25]. Particularly, the induction of oxidative stress 
may lead to the formation of oxidative DNA damage which then triggers 
the activation of the DNA damage response (DDR) network [26,27]. 

Herein, we sought to investigate the hypothesis that augmented 
oxidative stress and/or increased DNA double-strand breaks (DSBs) in 
circulating immune cells may predict lower antibody titers after SARS- 
CoV-2 vaccination. To this end, we examined critical oxidative stress 
and DDR parameters in peripheral blood mononuclear cells (PBMCs) 
from aged individuals undergoing vaccination against SARS-CoV-2, 
while younger adults were studied in parallel. 

2. Material and methods 

2.1. Subjects 

Nine non-immunocompromised older individuals (median age: 83 
years; range: 80–96 years; Table 1) and eleven young, apparently 
healthy, members of the Laiko Hospital personnel (median age: 32 years; 
range: 27–44 years), who received the Pfizer/BioNTech mRNA-vaccine 
(Comirnaty/BNT162B2), were recruited between January–April 2021 
and January 2022. Exclusion criteria from participating in the study 
included cancer, pregnancy, personal or family history of autoimmunity, 
and active or recent (last 2 weeks) infection. Peripheral blood samples 
were collected immediately before, 24 h after the first dose of the mRNA 
SARS-CoV-2 vaccine, and 14 days after both the first and second dose. 
All volunteering individuals provided written informed consent ac-
cording to the declaration of Helsinki. The study was approved by Laiko 
Hospital Ethics Committee (Protocol Nr.1110). 

2.2. Cells isolation 

Peripheral blood mononuclear cells (PBMCs) were isolated and pu-
rified using the Ficoll gradient centrifugation, as previously described 
[28]. Cells were resuspended in Freezing Medium [90% Fetal Bovine 
Serum (FBS), 10% Dimethyl sulfoxide (DMSO)] or lysed in TRITidy G 
(AppliChem, Germany) and stored at − 80 ◦C until further processing. 

2.3. Oxidative stress quantification and detection of abasic sites 

Endogenous oxidative stress levels were measured using a 
luminescence-based system that quantifies total glutathione (GSH), 
oxidized glutathione (GSSG) and the GSH/GSSG ratio, according to 
manufacturer's experimental protocol (GSH/GSSG-Glo™ Assay, Prom-
ega, UK) [29]. ROS are capable of inducing various types of DNA 
damage, including oxidized purines and pyrimidines, single-strand 
breaks (SSBs), double-strand breaks (DSBs) and abasic (AP; apurinic/ 
apyrimidinic) sites [30,31]. Therefore, the endogenous abasic site levels 
(Cell Signaling Inc., UK) were also measured as previously described 
[29]. 

2.4. Measurement of DSBs and DSB-R efficiency 

DSB levels in PBMCs were assessed using immunofluorescence 
quantification of γH2AX (H2AX phosphorylated at Ser139; #9718T, Cell 
Signaling Technology) as previously described [32]. For the evaluation 
of DSB-R efficiency, PBMCs were treated with 100 μg/ml melphalan for 
5 min at 37 ◦C in complete RPMI medium. Subsequently PBMCs were 
incubated in drug-free medium for 0, 8 and 24 h, adhered to coverslip, 
fixed and analyzed as previously described [28]. 

2.5. Measurement of anti-spike (S)-receptor binding domain (RBD) IgGs 
against SARS-CoV-2 

Serum and plasma were isolated, following venipuncture, and stored 
at − 80 ◦C until further processing. We measured SARS-CoV-2 antibodies 
using the FDA-approved Elecsys©anti-SARS-CoV-2 electro-
chemiluminescence immunoassay in human serum 14 days after the 
second dose of the SARS-CoV-2 vaccine, according to the manufacturer's 
protocol (Roche Diagnostics GmbH, Germany) as previously described 
[33]. The Elecsys© assay is a SARS-CoV-2 antibody assay primarily 
detecting IgG antibodies. In this assay we used a modified double- 
antigen sandwich immunoassay using a recombinant SARS-CoV-2 
Spike (S) Receptor Binding Domain (RBD) polypeptide, to specifically 
detect late, mature, high affinity antibodies targeting the S-RBD. 

2.6. Measurement of neutralizing antibodies against SARS-CoV-2 

Neutralizing antibodies (NAbs) against SARS-CoV-2 were assayed 
using the surrogate virus neutralization assay cPass™ SARS-CoV-2 
Neutralizing Antibody detection kit (GenScript, USA), as previously 
described [29,33]. 

2.7. Statistical analysis 

Variable distribution was examined by D'Agostino-Pearson and 
Shapiro-Wilk tests. Continuous variables are presented as mean ± SD. 
Paired comparisons were performed with the use of Wilcoxon signed- 
rank test and independent comparisons were performed with the use 
of Mann-Whiney U test. Correlations were examined with the use of the 
non-parametric Spearman's test. The level of statistical significance was 
set at p = 0.05. Statistical analysis was performed in SPSS v.26(IBM, 
USA) and GraphPad Prism v.8.02 (GraphPad, USA). 

Table 1 
Demographics and clinical characteristics of the older adults population.  

Characteristic Older adults 

Age, median (range) 83 years (80–96) 
Smoking ever (%) 2/9 (22%) 
Diabetes melitus (%) 3/9 (33%) 
Arterial hypertension (%) 7/9 (78%) 
Coronary artery disease (%) 2/9 (22%) 
Chronic heart failure (%) 4/9 (44%) 
Chronic obstructive pulmonary disease (%) 2/9 (22%) 
Dementia (%) 6/9 (66%) 
Charlson comorbidity index (median, range) 7 (range: 5–10) 
Clinical frailty scale index (median, range) 5 (range: 3–7)  
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3. Results 

3.1. Increased oxidative stress induction in PBMCs of older individuals 

First, we investigated whether SARS-CoV-2 vaccination, acting as an 
acute immune stimulant in the PBMCs of older and younger individuals, 
induces an increase in intracellular oxidative stress levels. Increased pre- 
vaccination oxidative stress levels, as indicated by the reduction of total 
glutathione (GSH) to oxidized glutathione (GSSG) ratio (p < 0.001), and 
the increased formation of abasic sites (p < 0.001), were observed in the 
aged compared to younger individuals, as was previously reported [28]. 
Additionally, we found that SARS-CoV-2 vaccination elicited a transient 
increase in oxidative stress among the older individuals 24 h after 
vaccination, as depicted by both the reduction of GSH to GSSG ratio (p =
0.008 vs baseline; Fig. 1a) and the increase of AP-site formation (p =
0.007 vs baseline; Fig. 1b), which were subsequently restored to pre- 
vaccination levels. Of note, SARS-CoV-2 vaccination also induced a 
similar transient increase of oxidative stress in young adults (glutathione 
oxidation: p = 0.05 vs baseline; AP-site formation: p = 0.003 vs 

baseline), as was shown in detail previously [28]. 

3.2. Oxidative stress drives DNA damage formation 

Next, we investigated whether the augmented oxidative stress levels, 
being observed at all studied timepoints in older individuals compared 
to younger individuals, could lead to DDR activation, since oxidative 
stress is a crucial factor of DNA damage formation [26]. DNA damage 
was assessed by measuring the phosphorylation of histone H2AX at 
serine 139, an initial response induced after the formation of DNA DSBs. 
We found that PBMCs from older individuals exhibit increased DSB 
levels before (p < 0.001) and after every vaccination timepoint studied 
(1d: p < 0.001, 14d: p < 0.001, 35d: p < 0.001) compared to young 
individuals (Fig. 2). Notably, SARS-CoV-2 vaccination caused a transient 
DSBs accumulation in both older and young individuals (p = 0.008 and 
p = 0.013 respectively), which were effectively repaired 14 days after 
the second dose of SARS-CoV-2 vaccination (Fig. 2), showing the 
vaccination safety. 

3.3. Unaffected DNA damage repair efficiency after SARS-CoV-2 
vaccination 

Next, we examined whether the observed DNA damage accumula-
tion following vaccination may be attributed to defective repair mech-
anisms, apart from the increased DNA damage formation. Thus, we 
studied a primary DDR mechanism, namely double-strand breaks repair 
(DSB-R) [34]. In order to measure DSB-R capacity, PBMCs were treated 
with 100 μg/ml melphalan for 5 min. and, subsequently, incubated in 
drug-free medium for 0, 8 and 24 h; the DSB-R capacity was measured by 
calculating the Area Under the Curve (AUC) of γH2AX formation/ 
removal kinetics at the aforementioned timepoints. We found that older 
individuals exhibit diminished DSB-R capacity compared to the younger 
individuals (p < 0.001 at each time-point; Fig. 3a), although SARS-CoV- 
2 vaccination did not influence DSB-R capacity in any of the two pop-
ulations (young adults: p = 0.594 vs baseline; Fig. 3b; aged adults: p =
0.097 vs baseline; Fig. 3c), again confirming its safety. 

3.4. Pre-vaccination oxidative stress and DNA damage levels in PBMCs 
inversely correlate with post-vaccination humoral response 

We then measured humoral responses following BNT162B2 vacci-
nation at 14 days after the second dose. We measured the IgG antibodies 
targeting the S-RBD, as well as the neutralizing capacity of the circu-
lating anti-SARS-CoV-2 antibodies. Individual anti-S-RBD antibody ti-
ters were found to strongly associate with the neutralizing capacity of 
circulating antibodies (r = 0.793, p < 0.001). Interestingly, the anti-S- 
RBD IgG antibody titers inversely correlated with pre-vaccination 
oxidative stress (GSH/GSSG: r = 0.699, p = 0.001; Fig. 4a) and AP- 
site levels (r = − 0.713, p < 0.001; Fig. 4b). Similarly, we found that 
post-vaccination neutralizing capacity inversely associated with pre- 
vaccination oxidative stress (GSH/GSSG: r = 0.580, p = 0.007; 
Fig. 4c) and AP-sites (r = − 0.539, p = 0.014; Fig. 4d). 

Finally, pre-vaccination DSB levels inversely correlated with both 
the anti-S-RBD IgG titers (r = − 0.869, p < 0.001; Fig. 5a) and the 
neutralizing capacity of circulating antibodies (r = − 0.640, p = 0.002; 
Fig. 5b). In particular, a strong inverse correlation of pre-vaccination 
DSB levels with both S-RBD-IgG antibodies titers (r = − 0.867) and 
neutralizing capacity of circulating anti-SARS-CoV-2 antibodies (r =
− 0.983) among the 9 older adults was evident. 

4. Discussion 

It is generally accepted that most vaccines are less immunogenic and 
efficient in older adults, which are characterized by a progressive and 
irreversible accumulation of oxidative stress and unrepaired DNA 
damage, leading to immunosenescence and worse antigen-specific 

Fig. 1. Resolvable oxidative stress induction after BNT162B2vaccination in 
PBMCs of older individuals. Tukey boxplots representing oxidative stress levels 
expressed as (a) the ratio of reduced Glutathione (GSH) to oxidized glutathione 
(GSSG) and (b) the number of AP-sites in PBMCs of older adults (n = 9) before 
and after SARS-CoV-2 vaccination. P-values are derived from Wilcoxon signed- 
rank test. **P < 0.01. 
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immunity [25]. Regarding, recent studies have also shown a reduction 
in vaccination efficiency after SARS-CoV-2 vaccination in older adults 
[35–37]. Moreover, previous studies have shown that Influenza and 
Salmonella typhi vaccines lead to a systematic increase of oxidative stress 
[38–40]. Guided by these data, in this study, we investigated the 
mechanistic basis for the link between aging and the response to SARS- 
CoV-2 vaccination, by analyzing the oxidative stress and the accumu-
lation of DNA damage in aged individuals before and after vaccination. 
We found that the baseline intracellular pro-oxidant imbalance was 
associated with reduced humoral responses following vaccination, 
independently of the vaccination-mediated oxidative stress. In support, 
the robust antibody responses after vaccination observed in few older 
individuals were coupled with their relatively lower intracellular 
oxidative burden. Reportedly, oxidative stress can impact on cellular 
macromolecules (DNA, proteins and lipids) functionality through the 
increased formation of ROS and RNS [25,40]. In fact, oxidative stress is a 
major contributor of DNA damage formation, thus activating the DDR 
network, as seen in patients with Systemic Lupus Erythematosus, Sys-
temic Sclerosis and Rheumatoid Arthritis [28,32,41]. Along this line, 

patients with systemic autoimmune diseases may develop lower anti-
body responses after vaccination as compared to healthy controls, as 
observed after vaccination with either “traditional” vaccines (e.g., 
against influenza or pneumococcal) or the latest vaccine against SARS- 
CoV-2 [42–45], which could be related to the constantly increased 
oxidative stress burden and the subsequent chronic DDR activation. 

Another functional link between oxidative stress and reduced hu-
moral responses comes from obese patients. Obesity is associated with 
systematic low-grade inflammation, similar to what is observed in aged 
individuals [46]. Multiple vaccines show reduced antibody responses in 
obese patients, while obesity has been recognized as an independent risk 
factor for worse COVID-19 prognosis [47–51]. 

Persistent DDR activation and elevated oxidative stress can lead to 
stress-induced premature (cellular) senescence (SIPS), a state of per-
manent cell cycle arrest [52]. SIPS in human cells is accompanied by a 
specific secretory phenotype, mainly expressing pro-inflammatory che-
mokines (e.g., CXCL8) and cytokines (e.g., TNF-α, IL-6), along with 
increased resistance to cellular death [21,53]. Accordingly, vaccination 
efficacy in aged recipients is limited mainly due to senescence of the 

Fig. 2. DNA damage accumulation and repair 
following BNT162B2vaccination in young and older 
individuals. (a) Tukey boxplots representing the 
endogenous DSB levels (expressed as mean γH2AX 
foci per nucleus) in PBMCs from young (n = 11) 
(blue) and aged (n = 9) (red) individuals before and 
after vaccination. P-values are derived from Wilcoxon 
signed-rank test and Mann-Whitney U test. **P <
0.01 (b) Confocal microscopy images showing γH2AX 
staining at each time-point after SARS-CoV-2 vacci-
nation in a representative older and young donor. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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immune system (immunosenescence) that is also accompanied by an 
increased baseline inflammatory status (inflammaging) [21,54]. This 
chronic, low-grade inflammation can inhibit antigen-specific immunity, 
as suggested by the negative correlation between baseline TNF-α levels 
and antibody production after Influenza vaccination in previous studies 
[55]. Moreover, PBMCs of frail individuals exhibit elevated gene 
expression associated with T-cell exhaustion and oxidative stress 
compared with non-frail subjects, which may partly account for reduced 
efficacy of Influenza vaccination [56]. In line with these observations, 
we observed herein that increased baseline oxidative stress and 

accumulation of toxic DNA DSBs, which could both induce the immu-
nosenescence, were associated with less efficient antibody production 
following vaccination. 

Targeting senescence and inflammaging may prove beneficial for 
vaccine responses in older individuals or patients with chronic inflam-
matory diseases, where exhaustion of the immune system affects the 
response to vaccination. In support of this notion, a short treatment of 
co-cultured CD4+ T cells and B cells with anti-TNF agents greatly 
enhanced immunoglobulin secretion [55]. Moreover, a phase II clinical 
trial showed treatment with senolytic drugs (e.g., mTOR inhibitors) 

Fig. 3. Double-strand breaks repair (DSB-R) capacity in older and young individuals is unaffected after BNT162B2 vaccination. (a) Tukey boxplots representing the 
melphalan-induced DNA double-strand breaks repair (DSB-R) kinetics, as assessed by measuring γH2AX foci via confocal microscopy, and expressed as AUC (0-24 h 
after melphalan treatment) in PBMCs of young (n = 11, blue) and older individuals (n = 9, red). P-values are derived from Wilcoxon signed-rank test and Mann- 
Whitney U test. ***P < 0.001 (b-c) Line graphs representing DSB-R capacity, by showing the formation and removal of γH2AX foci (mean ± standard error) 
after ex vivo melphalan treatment in PBMCs of young (n = 11) and aged (n = 9) adults before and after SARS-CoV-2 vaccination. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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enhanced antiviral gene expression and antibody responses to Influenza 
vaccination [57]. In support, pre-treatment of older individuals with an 
oral small-molecule p38 MAPK inhibitor, which reduced baseline sys-
temic inflammation, led to increased immune responses to cutaneous 
VZV antigen challenge [58]. Nonetheless, future randomized controlled 
trials are warranted to examine the safety and benefit of using short- 
term senolytic or anti-inflammatory treatment to boost vaccine re-
sponses in this population. 

The observed aberrations in the PBMCs of older individuals (i.e., 
increased oxidative stress and DNA damage accumulation) may also 
provide insights into the clinical course of SARS-CoV-2 infection. Age is 
among the strongest prognostic factors of adverse outcomes among 
patients with COVID-19 [47] while biological age (frailty) has additive 
prognostic value over well-established algorithms such as the Sequential 
Organ Failure Assessment (SOFA) score [59]. 

Further, in the present study, we assessed the relationship of vacci-
nation against SARS-CoV-2 with humoral adaptive immunity, by eval-
uating the neutralizing antibody formation effectiveness. Previous 
studies have revealed that cell-mediated adaptive immune responses are 
altered in the older individuals due to immunosenescence [54,60]. An 
age-associated decrease in naive (CD45ROnull) T cells with a 

simultaneous increase in memory (CD45RO+) T cells is observed, partly 
due to the thymic involution and the persistent antigenic stimulation 
[60–62]. In addition, there are distinct deficiencies in the B-cell 
compartment with significant decreases in peripheral mature B-cells, 
influencing the antibody production [63,64]. Previous studies have 
shown that SARS-CoV-2 vaccination can successfully elicit a robust cell- 
mediated immune response [65,66]. Therefore, it would be particularly 
useful to examine whether cell-mediated adaptive immune response 
after SARS-CoV-2 vaccination is influenced by aging. 

In summary, herein we show that all examined individuals showed 
an adequate response to the mRNA BNT162B2 vaccine, although anti-
body levels were higher in young compared to old subjects. The effec-
tiveness of the antibody response strongly correlated with intracellular 
oxidative status. A question generated by our results is whether 
endogenous oxidative stress levels could act as a useful predictor for 
post-vaccination antibody production efficiency. A significant limitation 
of this study is the small sample size of vaccinated participants; 
increasing the number of participants will thus greatly increase the 
confidence of the generated data. However, our main finding that pre- 
existing oxidative stress and/or DSB levels correlate with neutralizing 
antibody response effectiveness further corroborates previous studies 

Fig. 4. Anti-S-RBD IgG antibody titers and neutralizing capacity of circulating antibodies following SARS-CoV-2 vaccination strongly correlate with endogenous 
oxidative stress markers. Scatterplots showing the relationship between endogenous oxidative stress, expressed as GSH to GSSG ratio and (a) anti-S-RBD IgG antibody 
titers or (b) neutralizing capacity of circulating antibodies (%) in PBMCs of young and older individuals. Scatterplots showing the relationship between endogenous 
AP-sites and (c) anti-S-RBD IgG antibody titers or (d) neutralizing capacity of circulating antibodies (%) in PBMCs of young and aged individuals. Correlation co-
efficients are derived from Spearman's test. 
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showing that aging is associated with lowered antibody responses after 
vaccination [67]. 

5. Conclusions 

To conclude, our study demonstrates that SARS-CoV-2 vaccination 
effectiveness may be influenced by the pre-existing intracellular oxida-
tive stress levels. Older individuals demonstrate an increased pre- 
vaccination oxidative burden, accompanied by augmented DNA dam-
age accumulation as compared to younger individuals. Interestingly, 
SARS-CoV-2 vaccine acted as an acute immune stimulant, inducing a 
transient oxidative stress and DNA damage accumulation in all partici-
pants. Of note, DNA repair mechanisms were not influenced by this 
acute stimulation, although a pre-existing repair deficiency in older 
individuals is observed. Whether such measurements may serve as 
biomarkers of vaccine efficacy warrants further studies in larger 
samples. 
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