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Objectives: To characterize the temporal characteristics of clinical variables with time

lock to mortality and build a predictive model of mortality associated with COVID-19

using clinical variables.

Design: Retrospective cohort study of the temporal characteristics of clinical variables

with time lock to mortality.

Setting: Stony Brook University Hospital (New York) and Tongji Hospital.

Patients: Patients with confirmed positive for severe acute respiratory syndrome

coronavirus-2 using polymerase chain reaction testing. Patients from the Stony Brook

University Hospital data were used for training (80%, N = 1,002) and testing (20%, N =

250), and 375 patients from the Tongji Hospital (Wuhan, China) data were used for testing.

Intervention: None.

Measurements and Main Results: Longitudinal clinical variables were analyzed

as a function of days from outcome with time-lock-to-day of death (non-survivors)

or discharge (survivors). A predictive model using the significant earliest predictors

was constructed. Performance was evaluated using receiver operating characteristics

area under the curve (AUC). The predictive model found lactate dehydrogenase,

lymphocytes, procalcitonin, D-dimer, C-reactive protein, respiratory rate, and white-

blood cells to be early predictors of mortality. The AUC for the zero to 9 days

prior to outcome were: 0.99, 0.96, 0.94, 0.90, 0.82, 0.75, 0.73, 0.77, 0.79, and

0.73, respectively (Stony Brook Hospital), and 1.0, 0.86, 0.88, 0.96, 0.91, 0.62,

0.67, 0.50, 0.63, and 0.57, respectively (Tongji Hospital). In comparison, prediction

performance using hospital admission data was poor (AUC = 0.59). Temporal

fluctuations of most clinical variables, indicative of physiological and biochemical

instability, were markedly higher in non-survivors compared to survivors (p < 0.001).
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Conclusion: This study identified several clinical markers that demonstrated a temporal

progression associated with mortality. These variables accurately predicted death within

a few days prior to outcome, which provides objective indication that closer monitoring

and interventions may be needed to prevent deterioration.

Keywords: prediction, SARS-CoV-2, longitudinal, trend, clinical variables

INTRODUCTION

Coronavirus disease 2019 (COVID-19) has infected over 39
million people and killed more than 1 million people worldwide
(October 18, 2020) (1–3). The widespread outbreaks with
recent spikes across the states and the number of recurrences
have strained and will continue to strain healthcare resources.
There is an urgent need for effective tools for frontline
physicians to effectively manage COVID-19 patients and
anticipate resource needs under time-sensitive, stressful,
and potentially resource-constrained circumstances in
this pandemic.

Over a hundred commonly measured clinical variables
associated with COVID-19 infection have been identified [see
reviews (4–6)] including demographics, clinical signs and
symptoms, comorbidities, serial imaging data, serial vital sign
data, and serial laboratory blood tests, amongst others. A
few studies have used some clinical variables at admission
to the emergency department to predict likelihood of critical
illness or mortality (7–17). However, patients presenting to
hospitals are in various stages of disease severity. Prediction
of mortality and other outcomes far downstream using only
clinical variables at admission is likely inadequate. There is
no consensus as to which clinical variables are the earliest
predictors or most predictive of mortality (7–17). This is
in part because patients presenting to hospitals are of
variable disease severity and treatment of COVID-19 is still
evolving. To our knowledge, there has been no systematic
evaluation of the temporal characteristics of these clinical
variables leading to mortality in COVID-19 and how these
temporal characteristics are judiciously used to inform clinical
decision making.

The goal of this study was thus to characterize the
temporal progression of clinical and laboratory variables in
COVID-19 patients with time lock to the day of death or
discharge. We compared survivors and non-survivors to
determine the earliest predictors of mortality in the disease
progression. Based on these data, we then developed a
mathematical model to predict mortality at each day
prior to outcome using individual and combinations
of these clinical predictors. This predictive model was
developed and independently tested using data from Stony
Brook University Hospital in New York. To extend its
generalizability, we further tested this predictive model on
an independent COVID-19 patient cohort from Tongji Hospital,
Wuhan, China. To our knowledge, this is one of the first
longitudinal models to monitor the progression and mortality
in COVID-19.

MATERIALS AND METHODS

Study Population
Our study followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD). Data came from two sites: The Stony Brook
University Hospital (New York) data were used for training
(80%) and testing (20%), while the Tongji Hospital (Wuhan,
China) data were used for just testing purposes. This was a
retrospective study approved by the Stony Brook University
Institution Review Board Office of Research Compliance,
approval number IRB2020-00207, and was exempt from
informed consent and Health Insurance Portability &
Accountability Act (HIPAA) waiver. The inclusion criteria
were: (i) patients who were diagnosed by positive tests of
real-time polymerase chain reaction (RT-PCR) for severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), and (ii)
patients who were hospitalized. Exclusion criteria were: (i)
COVID-19 patients who were under 18 years of age, and (ii)
patients who were still in the hospital at the time of analysis.
The COVID-19 Persons Under Investigation (PUI) registry
from the Emergency Department consisted of 5,766 patients
from February 7, 2020, and May 4, 2020. Of these patients,
2,594 were confirmed COVID-19 positive cases, of which
1252 were hospitalized. Primary analysis was performed on all
hospitalized patients (N = 1,252, 14.5% mortality rate), and
secondary analysis was performed on general floor (N = 1001,
8.09% mortality rate) and ICU (N = 251, 40.2% mortality rate)
patient groups.

The Tongji Hospital (Wuhan, China) data were obtained from
Jan 10, 2020 to Feb 24, 2020 (N = 485, of which 375 had the
needed clinical variables) with approval of their institutional
review board and waiver of informed consent (18). Of the 375
patients, 201 survived and 174 died (46.4% mortality rate).
Similar inclusion and exclusion criteria were applied to these
de-identified data. This dataset was used for “testing” only.

Data Collection
The clinical outcome was mortality at discharge. The input
variables included demographic information (age, gender,
ethnicity, and race), chronic comorbidities (smoking, diabetes,
hypertension, asthma, chronic obstructive pulmonary
disease, coronary artery disease, heart failure, cancer,
immunosuppression, and chronic kidney disease), serial
vital signs (heart rate, respiratory rate, pulse oxygen saturation
[SpO2], systolic blood pressure and temperature), and serial
laboratory tests (C-reactive protein [CRP], D-dimer, ferritin,
lactate dehydrogenase [LDH], lymphocytes, procalcitonin,
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alanine aminotransferase [ALT], brain natriuretic peptide
[BNP], and troponin).

Statistical Analysis and Predictive
Modeling
Statistical analysis was performed using SPSS v26 (IBM, Armonk,
NY) and SAS v9.4 (SAS Institute, Cary, NC). Group comparisons
of categorical variables in frequencies and percentages were
performed using the Chi-squared test or Fisher exact test. Group
comparison of continuous variables in medians and interquartile
ranges (IQR) used the Mann-Whitney U test. For all analyses,
a p < 0.05 was considered to be statistically significant with
correction for multiple comparisons with the false discovery rate
where appropriate.

Clinical variables were analyzed as a function of days from
outcome with time-locked to day of death (non-survivors) or
discharge (survivors). Clinical variables were compared between
groups at each time point with linear mixed models that
included demographic information such as sex, age, ethnicity,
and comorbidity as covariates. Within-subject correlation was
adjusted in the linear mixed models using covariance (i.e.,
compound symmetric, autoregressive, or unstructured) matrices.

The temporal fluctuation of each clinical variable between
groups was calculated by taking within-subject standard
deviation across time normalized by mean, excluding the three
time points closest to death or discharge to avoid possible
spikes closer to the day of death. The medians of within-subject
standard deviations were compared between the non-survivors
and survivors using the Mann-Whitney U test.

Univariable logistic regression models were first built using
individual clinical variables to predict outcomes on each day
separately. Prediction performance was evaluated by area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve. The Stony Brook University Hospital data were split
into 80% for training and 20% for testing. The average ROC
curve and AUC were obtained with five runs. Using ROC
analysis, the top earliest predictors were identified. Instead of
calibration measures (e.g., calibration slope), we demonstrated
consistency through internal and external validation and
systematically selected top variables for prediction. We started
with univariablemodels (single predictor) and evaluated different
combinations of 12 variables. We further constructed models
using combinations of top predictors that included top three, top
five, and top seven clinical variables. AUCs with the top 3, 5, or
7 variables for all three analysis cohorts were analyzed to verify
consistency of top predictors across models. These were done
for different days prior to outcome separately. For comparison,
prediction performance using clinical variables at admission of
the same dataset was also computed. In addition, Tongji Hospital
data were also used as a “testing” dataset for external validation.

To avoid the potential of overfitting, for training, we
performed univariable analysis first and identified 12 laboratory
measures and vital signs to build the predictive model to predict
mortality. Then we performed variable selection and used top 3,
5, or 7 variables to present results. No more than 10 variables

TABLE 1 | All hospitalized patients.

Non-

survivors

(N = 182)

Survivors

(N = 1070)

p value

Demographics

Age 73.08 ±

14.56

59.87 ±

16.94

<0.0001***

Sex 0.021*

Female 65 (35.7%) 480 (44.9%)

Male 117 (64.3%) 590 (55.1%)

Ethnicity 0.002**

Hispanic/Latino 29 (15.9%) 290 (27.1%)

Non-hispanic/Latino 131 (72.0%) 632 (59.1%)

Unknown 22 (12.1%) 148 (13.8%)

Race 0.033*

Caucasian 114 (62.6%) 561 (52.4%)

African-American 9 (5.0%) 81 (7.6%)

Others 59 (32.4%) 428 (40.0%)

Comorbiditiesa

Smoking 69 (37.9%) 260 (24.3%) 0.0003*

Diabetes 60 (33.1%) 277 (25.9%) 0.060

Hypertension 120 (66.3%) 494 (46.3%) <0.0001*

Asthma 8 (4.4%) 62 (5.8%) 0.500

COPD 28 (15.5%) 83 (7.8%) 0.002*

Coronary artery disease 56 (30.9%) 133 (12.5%) <0.0001*

Heart failure 37 (20.4%) 64 (6.0%) <0.0001*

Cancer 23 (12.7%) 96 (9.0%) 0.140

Immunosuppression 13 (7.2%) 83 (7.8%) 0.780

Chronic kidney disease 25 (13.8%) 93 (8.7%) 0.050

Signs and symptomsa

Fever 99 (54.4%) 697 (65.1%) 0.020*

Cough 90 (49.5%) 720 (67.3%) <0.0001*

Shortness of breath 126 (69.2%) 688 (64.3%) 0.280

Fatigue 27 (14.8%) 251 (23.5%) 0.020*

Sputum 16 (8.8%) 70 (6.5%) 0.340

Myalgia 18 (9.9%) 250 (23.4%) 0.0002*

Diarrhea 32 (17.6%) 243 (22.7%) 0.190

Nausea or vomiting 12 (6.6%) 231 (21.6%) <0.0001*

Sore throat 7 (3.8%) 76 (7.1%) 0.180

Rhinorrhea 6 (3.3%) 48 (4.5%) 0.540

Loss of smell 7 (3.8%) 41 (3.8%) 0.990

Loss of taste 7 (3.8%) 52 (4.9%) 0.590

Headache 9 (4.9%) 99 (9.3%) 0.110

Chest discomfort 12 (6.6%) 188 (17.6%) 0.0007*

Demographics, comorbidities and symptoms of COVID-19 patients who did and did

not survive.
aP values were adjusted with the False Discovery Rate. *p < 0.05, **p < 0.01, ***p

< 0.001.
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FIGURE 1 | The time courses of the clinical variables of all hospitalized patients as a function of days to outcome, time lock to the day of death (“Non”: non-survivors)

or the day of discharge (“Sur”: survivors). Error bars are SEM. Two rows of numbers are sample sizes. * indicates significant difference with correction of multiple

comparison and covariate with sex, age, ethnicity, and comorbidities. BNP and troponin were not analyzed because their sample sizes were small and highly scattered.

were included in one model at any given time for a cohort of
1,252 patients.

RESULTS

Clinical Variables
Of the 1,252 hospitalized patients (Stony Brook Hospital),
1,070 survived and 182 did not (14.5% mortality rate). Table 1
summarizes the demographics, comorbidities, vital signs, and
laboratory data of the survivors and non-survivors. The non-
survivor group was older than the survivor group (73 ± 15 vs.
60 ± 17 years of age, p < 0.0001), with more males dying than
females (p= 0.021). Ethnicity and race were statistically different
between groups (p < 0.05). History of smoking, hypertension,
chronic obstructive pulmonary disease (COPD), coronary artery
disease, and heart failure were significantly different between
groups (p < 0.05, after correction for multiple comparisons).
Signs and symptoms such as fever, cough, fatigue, myalgia,
nausea or vomiting, and chest discomfort were significantly
different between groups (p < 0.05, after correction for multiple
comparisons). The non-surviving group had reported greater co-
morbidities, it was surprising to find that the surviving cohort
reported more signs and symptoms.

The time course of the clinical variables as a function of
days to outcome are shown in Figure 1. LDH, procalcitonin,
ferritin, ALT, and SpO2 of non-survivors changed sharply on the
day of or a day prior to death, relative to those of survivors.
By contrast, lymphocyte count, CRP, respiratory rate, WBCs,
and heart rate showed gradually increasing differences early on
prior to death. Unexpectedly though, in the surviving group,
ferritin and procalcitonin remained relatively elevated but stable
throughout the entire hospitalization until discharge, despite
being acute phase reactants. In addition, when looking at CRP
and respiratory rate, it was noted that in the surviving cohort the
values continued to decrease toward normal values rather than
stay elevated like in the mortality cohort. This kind of temporal
progression change was not evident in other temporal variables.
Overall, there were more temporal fluctuations in the group
that passed away as compared to the group that survived. We
also separated the temporal characteristics of clinical variables
of patients in the ICU cohort (N = 251, 40.2% mortality rate)
and the general floor cohort (N = 1,001, 8.09% mortality rate)
(Supplementary Figure 1). While there were some differences,
the majority of the temporal characteristics leading up to
mortality or discharge were overall similar amongst the ICU
cohort, general floor cohort and all hospitalized patients, except
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that LDH, ferritin, and ALT spiked in the ICU cohort but not
in the general floor cohort. As was supported by the trend of
variables for all hospitalized patients, lymphopenia continued to
be worse in the non-surviving cohort in both the ICU and the
general floor. CRP and respiratory rate also continued to down-
trend throughout hospital stay in the surviving cohort in the ICU
and general floor.

The within-subject standard deviations of the clinical variables
across time were computed to evaluate temporal fluctuation. For
all hospitalized patients, the ratio of temporal fluctuation of non-
survivors to survivors for D-dimer, procalcitonin, ferritin,WBCs,
LDH, respiratory rate, CRP, SpO2, heart rate, and systolic blood
pressure were 4.78, 3.75, 2.26, 2.15, 1.77, 1.63, 1.58, 1.55, 1.43,
and 1.37, respectively (p< 0.001), indicating higher physiological
instability amongst non-survivors compared to survivors. Similar
results were found when data were separated into general floor
and ICU patient groups.

For the Stony Brook Hospital data, the AUC predicting
mortality in all hospitalized patient cohort for individual clinical
variables at each day are illustrated in Figure 2. Overall, we
noticed the trend that the prediction performance, as determined
by a higher AUC value, increased the closer we were to the
outcome of death, with an AUC of 80–99% in days 0–4 prior
to death, and AUC >70% from days 5–10 prior to death,
with specificity higher than sensitivity. The earliest predictors
that showed high prediction performance by AUC were LDH,
lymphocytes, procalcitonin, D-dimer, CRP, respiratory rate, and
WBCs. The AUC of combined top 7 predictors from zero
to 9 days prior to outcome were: 0.99, 0.96, 0.94, 0.90, 0.82,
0.75, 0.73, 0.77, 0.79, and 0.73, respectively. The corresponding
specificity were >0.96 for all zero to 9 days prior to outcome.
The corresponding sensitivity was 0.80, 0.73, 0.68, 0.46, 0.34,
0.23, 0.12, 0.37, 0.33, and 0.29 respectively. The moderate to low
sensitivity was due to data asymmetry, namely, lowmortality rate
(14.5%, all hospitalized COVID-19 patients), as expected. The
sensitivity of ICU group with 40% mortality was excellent. With
more multi-institutional datasets, the model should yield better
sensitivity and generalizability.

Similar predictive models were built for the general floor
cohort and the ICU cohort (Figure 3). The AUCs of top 7
predictors for all hospitalized cohort were better than that
of ICU group, which in turn were better than general floor
cohort. Prediction performance was consistent for the ICU group
because data were more balanced (mortality rate of 40.2%)
compared to the general floor group (mortality rate of 8.09%).

To determine the best predictive model, we built and tested
predictive models with different combination of top clinical
variables. AUC for predicting mortality from top 3 clinical
variables (LDH, lymphocytes, and procalcitonin), top 5 clinical
variables (LDH, lymphocytes, procalcitonin, D-dimer, and CRP)
and top 7 clinical variables (LDH, lymphocytes, procalcitonin,
D-dimer, CRP, respiratory rate, and WBCs) are listed in Table 2.

These models were designed by a statistical logistic regression
model utilizing ROC analysis to identify which of the clinical
variables or combination of clinical variables were the most
predictive. It is not a scoring system. As a result, having missing
variables like procalcitonin would likely reduce the prediction

FIGURE 2 | AUC for all hospitalized COVID-19 patients as a function of days

to outcome, time lock to the day of death (non-survivors) or the day of

discharge (survivors) for individual and top earliest predictors of mortality

(“testing” data).

FIGURE 3 | AUC comparisons of all hospitalized (N = 1252), ICU (N = 251),

and general floor (N = 1,001) as a function of days to outcome, time lock to

the day of death (non-survivors) or the day of discharge (survivors) for the

seven earliest predictors of mortality (20% “testing” data).

performance, but does not invalidate the use of these models.
Prediction using the top 7 variables performed better thanmodels
using the top 5, which performed better than models using the
top 3 variables. As a result, if a hospital is not able to collect
certain lab values on patients, they could use the top 3 or top 5
variable prediction models, with the knowledge that it would not
be as accurate if all seven variables were collected. This model
requires further validation using large and multi-institutional
dataset to achieve generalizability. With more data, the model
should become more accurate.

By comparison, the prediction performance of the top
individual clinical variables at admission to the emergency
department yielded an AUC ranging from 0.50 to 0.61, and
the combined earliest predictors at admission yielded an AUC
of 0.59.
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TABLE 2 | Predictive performance of top 3, 5, and 7 clinical variables for all hospitalization, general floor, and ICU cohorts.

All (N = 1,252) General Floor (N = 1,001) ICU (N = 251)

Day AUC Top 3 AUC Top 5 AUC Top 7 AUC Top 3 AUC Top 5 AUC Top 7 AUC Top 3 AUC Top 5 AUC Top 7

0 0.88 0.90 0.99 0.80 0.84 0.90 0.91 0.92 1.00

−1 0.79 0.81 0.96 0.70 0.74 0.94 0.89 0.85 0.93

−2 0.77 0.76 0.94 0.71 0.74 0.95 0.84 0.81 0.94

−3 0.66 0.67 0.90 0.58 0.53 0.77 0.87 0.72 0.75

−4 0.53 0.56 0.82 0.50 0.48 0.82 0.71 0.58 0.81

−5 0.56 0.61 0.75 0.57 0.53 0.58 0.61 0.69 0.78

−6 0.57 0.58 0.73 0.52 0.53 0.45 0.72 0.74 0.83

−7 0.59 0.59 0.77 0.50 0.50 0.60 0.77 0.69 0.81

−8 0.60 0.64 0.79 0.50 0.50 0.73 0.66 0.76 0.76

−9 0.59 0.58 0.73 0.52 0.52 0.65 0.59 0.56 0.44

−10 0.52 0.57 0.69 0.49 0.56 0.60 0.61 0.74 0.70

The top 3-variable model includes LDH, lymphocytes, and procalcitonin, the top 5 variable model includes LDH, lymphocytes, procalcitonin, D-dimer, and CRP. The top 7 variable model

includes LDH, lymphocytes, procalcitonin, D-dimer, CRP, respiratory rate, and WBCs.

Temporal characteristics of clinical variables were also
described and compared between non-survivors and survivors
for data from the Tongji Hospital, Wuhan, China (N = 375)
(Figure 4). The mortality rate of this cohort was 46.4%. Some
temporal characteristics were similar, and others were different
from the Stony Brook data. In particular, LDH, lymphocytes,
CRP and D-dimer showed significant differences between non-
survivors and survivors from the onset and these differences
were time-invariant. For external validation, a logistic regression
model trained on the Stony Brook hospital data and tested on
the Tongji Hospital data using the significant variables LDH,
lymphocytes, CRP and D-dimer demonstrated the AUC for the
zero to 9 days prior to death as follows: 1.0, 0.86, 0.88, 0.96, 0.91,
0.62, 0.67, 0.50, 0.63, and 0.57, respectively.

DISCUSSION

With widespread COVID-19 outbreaks, improved
understanding of the temporal disease progression can guide
prognosis and treatment, as well as anticipate resource needs.
This study characterized the temporal progression of clinical
variables in COVID-19 patients with time lock to the day of
death or discharge. The major findings were: (i) the earliest
predictors of mortality were lactate dehydrogenase, lymphocyte
count, procalcitonin, D-dimer, C-reactive protein, respiratory
rate, and white-blood cells, (ii) there is a down-trending CRP
(normal limit <10 mg/L) and respiratory rate (normal limit
12–16 breaths/minute) to normal values in the survival cohort
that is not evident in other temporal variables, (iii) the temporal
fluctuations of most clinical variables, indicative of physiological
and biochemical instability, were markedly higher in non-
survivors compared to survivors, (iv) the overall performance of
predictive models was better in the days leading up to the day
of death, (v) the best predictive models were those using the top
7 variables, followed by the top 5 variables, and then by the top
3 variables, (vi) these predictive models were further tested on
data from another hospital, and showed similar performance

accuracy, and (vii) by comparison, prediction performance of the
top individual clinical variables at hospital admission was poor.

While there are many COVID-19 prediction models (7–17),
this study is novel because: (i) our predictive model assesses
predictions at multiple time points with time locked to death,
and (ii) it evaluated models using all hospitalized, general floor
and ICU patients as well as data from another hospital to
improve generalizability. This is in contrast to most previous
COVID-19 prediction models that lacked external validation
and used only admission data (one time point) which is less
informative because patients come to hospitals at different
degrees of severity. To our knowledge, this is the first study
that systematically characterizes the longitudinal progression
of commonly measured clinical variables over the course of
hospitalization of COVID-19 patients.

Temporal Progression of Clinical Variables
We characterized commonly measured clinical parameters into
three categories: the variables that changed early on during
the hospital course then gradually worsened (CRP, lymphocyte
count, WBCs, respiratory rate, and heart rate), the variables
that spiked before death (LDH, procalcitonin, ferritin, alanine
aminotransferase, and SpO2 levels), and others that were
time invariant.

CRP and lymphocyte count were found to be early warning
signs of COVID-19 mortality. CRP, an acute inflammatory
marker, was significantly elevated early in the hospitalization in
the non-survivor group than the survivor group. In addition,
patients who survived had declining levels of CRP throughout
the hospital stay. These findings are consistent with previous
reports on the predictive value of CRP in hospitalized COVID-19
patients (19, 20). However, our results suggest that the dynamic
trend of CRP over time, rather than a single value, is predictive
of outcome. One other study also correlated upward trending
CRP with the eventual need of intubation and suggests that early
rise in CRP predicts worse prognosis (21). As trending CRP
is a widely accessible clinical tool, early CRP trends can assist
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FIGURE 4 | Tongji data: The time courses of the clinical variables as a function of days to outcome, time lock to the day of death (“Non”: non-survivors) or the day of

discharge (“Sur”: survivors). Error bars are SEM (N = 375). Two rows of numbers are sample sizes. * indicates significant difference with correction of multiple

comparison and covariate with sex and age.
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physicians to stratify patients and determine the need for further
medical intervention vs. symptomatic management alone.

Lymphopenia was also found to be an early predictor
of mortality, consistent with literature review (22, 23). We
found that in non-survivors, lymphocyte count is lower early
in admission, and continues to trend downwards during the
hospitalization. As lymphocytes play a significant role in the
immune defense to viral infection, lymphopenia may reveal
disease mechanisms of COVID-19 and suggest therapeutic
targets. Presumed theories of lymphopenia include: (1) the virus
directly damaging lymphocytes through coronavirus receptors,
or lymphatic organs such as the lymph nodes and the spleen;
(2) lymphocyte apoptosis induced by either inflammatory
cytokine, metabolic derangements, or both (22, 24). Persistent
lymphopenia causing mortality from COVID-19 infection could
be a result of any one of these possible mechanisms and deserves
further research. Nevertheless, our results confirmed the clinical
utility of trending CRP and lymphocyte count in monitoring
COVID-19 severity and risk stratification.

In contrast to the early indicators, LDH, procalcitonin,
ferritin, alanine aminotransferase spiked by a few orders of
magnitude prior to death but largely remained temporally stable
and elevated during hospitalization. Elevation of these markers
indicate significant oxidative stress and systemic inflammation,
particularly prior to death. LDH, in particular, has been found to
be associated with mortality in respiratory epidemics of MERS-
CoV, H7N9, and H5N1 (25). Together with procalcitonin and
ferritin, the spikes of these physiological parameters demonstrate
that the dynamic inflammatory response elicited by COVID-
19 has a key role affecting disease severity and outcome.
Ferritin and procalcitonin are acute phase reactants, so it
is logical that they would spike with the deterioration of
patients. Unexpectedly, in the surviving group, ferritin and
procalcitonin remained relatively elevated but stable throughout
the entire hospitalization until discharge, despite being acute
phase reactants. This suggests that patients with COVID-19
remain at a hyper-inflammatory state even upon discharge, which
has implications for post-discharge follow-up and treatments.
Multiple studies have also demonstrated elevation of additional
inflammatory markers such as IL-6, IL-8, IL-10, and TNF-
α in COVID-19 patients (26, 27). Our results suggest that
severe COVID-19 infection is more inflammatory than milder
disease, and that mortality from COVID-19 is associated with an
overwhelming inflammatory response.

Variables Predictive of Outcome
Understanding the temporal progression of these clinical
markers allowed us to construct a prediction model with
remarkable performance. Our model identified the earliest
predictors of death to be LDH, lymphocytes, procalcitonin, D-
dimer, CRP, respiratory rate, and WBCs. The predictive model
using these combined predictors yielded a remarkable prediction
performance: 80–99% AUC 0 to 4 days prior to death, and >70%
AUC from 5 to 10 days prior to death, with specificity higher
than sensitivity.

Compared to existing prediction models of COVID-19,
our model has several strengths. This is the first time that

temporal progression of clinical variables is considered into a
prediction model. Most published models used clinical data at
admission (7–9, 9–17, 28). However, we found that prediction
using the admission timepoint has relatively poor accuracy
compared to a few days prior to outcome. While this finding
is intuitively logical, we provided evidence that roughly 4 days
prior to outcome, our current model can yield a highly accurate
prediction. Therefore, our prediction model may aid clinicians to
anticipate patient’s care escalation with a concrete timeline. From
the top 7 predictors, we also derived prediction using the top 3,
and top 5 predictors. Depending on the availability of laboratory
tests, the number of input clinical variables can be customized at
different resource settings for wider applicability.

We also sought external validation on a dataset from
Tongji hospital in Wuhan, China. Some temporal characteristics
were similar, and others were different from the Stony Brook
data. LDH, lymphocytes, CRP and D-dimer showed differences
between non-survivors and survivors from the onset and these
differences were time-invariant, which may be indicative of a
more severely ill cohort. This is also consistent with a higher
mortality rate of 46.4% in Tongji cohort, compared to 14.5%
in the Stony Brook cohort. Nevertheless, using our predictive
model, the AUCs for the zero to 9 days prior to death were
better than AUCs of Stony Brook data. This may be attributive
to the high mortality rate. Despite the different populations of
COVID-19 patients, external validation of our model supports
the notion that these top earliest predictors of mortality are
likely generalizable.

Clinical Implications
While the focus of our paper was to analyze the temporal
progression of clinical variables to find which ones were
predictive of mortality, we believe our findings have clinical
relevance. Our prediction model can assist physicians to make
decisions based on common laboratory values in as early as
10 days prior to death. As a result, these variables may serve
as an early warning of the poor prognosis later on and the
need to intervene now, whether by initiating dexamethasone
treatment or starting prone positioning, if not already done so,
as early intervention has been associated with lower mortality
(29, 30). Currently, as there is no curative drug yet, symptomatic
treatment through Supplementary oxygen or anticoagulation
has been the mainstay methodology of treatment in hospitals.
With the knowledge that COVID-19 induces a hyper-coagulable
state, anticoagulation (i.e., low molecular weight heparin) has
become an important treatment in the acute and long-term
setting (31). However, because the use of anticoagulation comes
with side effects such as bleeding, the decision of when to initiate
anticoagulation has been contentious (31). With our predictive
model, physicians may objectively weigh the risk and benefit
of initiating anticoagulation with the predicted outcome. In
addition, our findings suggests that the trend of key clinical
variables such as CRP and lymphocytes can be used as treatment
response to monitor treatment progress.

While our model and other similar models to date are not yet
be able to predict mortality of an individual patient at this time,
it is nonetheless important to objectively determine which set of
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variables are most predictive of outcomes. These variables were
determined from group data analysis instead of depending on
the variable experience of each individual physician.With further
testing and validation as more standardized COVID-19 datasets
or predictivemodels are shared publicly, predictingmortality and
other outcomes on an individual patient may be possible.

Our study has several novelties: This is the first study that
systematically characteristic the temporal progression of clinical
variables with time-lock to the day of death or discharge. Most
previous studies (7–17) reported similar laboratory variables to
be prediction of mortality but based on only laboratory variables
at hospital admission, which we believe to be less accurate
because they were far downstream.

Using these temporal characteristics, we determined that
the earliest predictors of mortality were lactate dehydrogenase,
lymphocyte count, procalcitonin, D-dimer, C-reactive protein,
respiratory rate, and white-blood cells, and that they could
accurately predicted a few days prior to death. Another novelty
is that we have designed prediction models using the top 7
variables, the top 5 variables, and the top 3 variables. We
found that accuracy, as determined by a higher AUC value,
was highest when using the top 7 variables, and lowest when
using just the top 3 variables to predict outcome. Another
interesting finding is that the high temporal fluctuations
of many clinical variables, indicative of physiological and
biochemical instability, were associated with higher likelihood
of mortality. These findings were replicated on data from
another hospital.

LIMITATIONS

Our study has several limitations. A major limitation of the
current study is its retrospective nature which could have
unintentional patient selection bias. This study design is also
subject to residual confounding factors that were unaccounted
for. Our predictive model is based on data from two medical
centers and requires further, multi-center prospective validation.
We did not compare clinical variables to normal ranges in
order to focus the analysis on differences between survivors and
non-survivors. Our use of the logistic regression model instead
of a proportional hazard model did not allow for evaluating
survival time and comparison of variables across time points.
In a future model, we will look at multiple time points across
time and survival time. Radiological imaging data are not
included (32–37). AUROC is not actionable for clinicians. We
believe that given the large complexity and multiple clinical
parameters, there is unlikely to be a single (or two) variable
that can provide actionable insights for the bedside clinician.
A model of collection of variables will likely be needed to
predict mortality and we will provide a user-friendly Excel
to provide insights that are potentially actionable. This model
may have more utility in the general floor patients than ICU
patients because unlikely ICU patients who are more closely
monitored so their physiologic derangements are more evident
rapidly, general floor patients are not monitored as closely.
On the general floor, our predictive model could provide early

warning signs for escalate care, and our knowledge of the
temporal change in variables could be used to trend efficacy
of treatment.

CONCLUSION

This study characterized the temporal progression of readily
available clinical and laboratory variables associated with
COVID-19 infection, providing important insights in
disease pathogenesis. The earliest clinical predictors of
mortality were identified, and they accurately predicted
death a few days prior to outcome. The indicators
that change early on and gradually worsen can serve
as early warning signs because they allow physicians
to intervene and, thus, should be closely monitored in
COVID-19 patients. This approach may prove useful
for management of COVID-19 patients and allocation
of hospital resources in time-sensitive, stressful, and
resource-constrained circumstances.
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Error bars are SEM. Two rows of numbers are sample sizes. ∗ indicates significant

difference with correction of multiple comparison and covariate with sex, age,

ethnicity and comorbidities. Patients upgraded to ICU from a general floor were

included in the ICU group.
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