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Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis.
The prognosis and survival are much worse for advanced gastric cancer (AGC).
Recently, immunotherapy has been widely promoted for AGC patients, and studies have
shown that tumor mutation burden (TMB) is closely related to immunotherapy response.
Here, RNA-seq data, matched clinical information, and MAF files were downloaded from
the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and
visual analysis of mutation data were implemented by the “maftools” package in R. We
calculated the TMB values for AGC patients and divided the patients into high- and low-
TMB groups according to the median value of TMB. Then, the correlation between high
or low TMB and clinicopathological parameters was calculated. Next, we examined the
differences in gene expression patterns between the two groups by using the “limma” R
package and identified the immune-related genes among the DEGs. Through univariate
Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the
two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate
the prognosis of AGC patients. ROC and survival curves and GEO data were used
as a validation set to verify the reliability of this risk model. In addition, the correlation
between TMB and tumor-infiltrating immune cells was examined. In conclusion, our
results suggest that AGC patients with high TMB have a better prognosis. By testing the
patient’s TMB, we could better guide immunotherapy and understand patient response
to immunotherapy.
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INTRODUCTION

Gastric cancer (GC) is a common malignant tumor worldwide,
with the fifth and third highest morbidity and mortality,
respectively, of all cancers (Chen, 2016). This disease seriously
threatens human health. The 5-year survival rate of advanced
gastric cancer (AGC) is less than 25% (Ajani et al., 2017). In recent
years, with the improvement of diagnosis and treatments, there
has been a steady decline in the incidence and mortality rates of
this cancer. However, despite the decline in incidence in most
countries, clinicians are still expected to see more cases of GC
in the future due to the aging population. On the other hand,
because the onset of gastric cancer is insidious, it is frequently at
an advanced stage at diagnosis, and resulting in a high mortality
rate (Cascinu, 2020). At present, the best treatment for patients
with GC is surgery, but aging patients cannot tolerate surgery,
and in some cases the tumor is discovered too late for surgery
to be effective. Therefore, palliative care is particularly important
for these patients. In addition to radiotherapy and chemotherapy,
immunotherapy has made great progress in recent years, and
bringing hope to patients with AGC.

Traditionally, patients with advanced inoperable gastric
cancer are treated with sequential chemotherapy, mainly
platinum and fluoropyrimidine combination drugs (Song et al.,
2017). However, the median survival is still less than 1 year.
Recently, immune checkpoint inhibitors (ICIs), such as anti-
programmed cell death-1 (PD-1) or programmed cell death
ligand-1 (PD-L1) monoclonal antibodies, have improved the
overall survival (OS) of various types of cancers, including AGC
(Kim and Oh, 2018). To date, two anti-PD-1 inhibitors have been
approved for AGC in Japan: nivolumab as third- or later-line
treatment for AGC and pembrolizumab for previously treated
patients with microsatellite instability-high tumors (Kawazoe
et al., 2020). However, some gastric cancers may not be sensitive
to immune checkpoint inhibitor monotherapies, so patients with
gastric cancer may require combination therapy to improve the
response to anti-PD-1 therapy. Therefore, methods to predict and
improve patient response to immunotherapy or novel treatment
methods are highly desired for AGC (Cascinu, 2020). A recent
study suggested that predicting the response to immunotherapy
on the basis of the tumor mutation burden (TMB) load may be a
new opportunity (Morrison et al., 2018).

Tumor mutation burden is defined as the total number of
somatic gene coding errors, base insertions, substitutions, or
deletion errors detected per million bases (Yarchoan et al., 2017).
Mutations in driver genes can lead to cancers. However, if a
large number of somatic cell mutations occur, new antigens will
be produced to activate CD8+ cytotoxic T cells, and triggering
T-cell-mediated antitumor activity (Bi et al., 2020). Therefore,
as the TMB increases, more new antigens are produced, and
the tumors are more easily recognized by immune cells in the
tumor microenvironment. TMB was used as a biomarker for
anti-PD-1 treatment in colorectal cancer, and a higher TMB was
associated with a better response to immunotherapy (Le et al.,
2015). Recently, Tian et al. (2020) constructed a novel TMB
estimation model that can be used as a prognostic biomarker for
patients with non-small cell lung cancer. TMB can predict not

only the response to immunotherapy but also patient survival.
However, there are few studies on the relationship between TMB
and immune infiltration in AGC.

In this study, we calculated the TMB of 338 AGC patients
with complete clinical information, revealing the mutation
characteristics of AGC patients. Then, we studied the correlation
between the clinicopathological parameters and the normalized
TMB value. Two TMB-related gene signatures were used to
construct a risk model that could predict the survival of AGC
patients. Moreover, we explored the relationship between TMB
and the tumor microenvironment and provided new targets for
immunotherapy for GC.

MATERIALS AND METHODS

Data Acquisition and Processing
The transcriptome data were obtained using the Illumina (San
Diego, CA, United States) HiSeq 2000 RNA sequencing platform,
and the genetic mutation data were downloaded from the
cancer genome atlas (TCGA) database1. The transcriptome
profiles are HTseq-Count files. The mutation data are in
Annotated Somatic Mutation format, and the workflow type is
“VarScan2 Annotation.” Clinical data for the corresponding GC
patients were also retrieved from the STAD project in TCGA
database, which included age, tumor stage, sex, and survival
information. The patient’s clinical information was provided in
Supplementary Table 1. We excluded patients with incomplete
clinical information and a survival time of less than 30 days
and then selected patients with AGC for analysis based on the
clinical information. The “maftools” package in R software was
used to visually analyze the mutation annotation format (MAF)
file (Mayakonda et al., 2018). Gene chip data of gastric cancer was
downloaded from the NCBI (National Center for Biotechnology
Information) GEO database as the data for the validation set.
The chip number is GSE84437, submitted by Yong-Min Huh and
others. The study included transcriptome results and complete
clinical information of 433 gastric cancers. In addition, the list of
immune-related genes was obtained from the resources section of
the ImmPort database2.

Calculation of the Tumor Mutation
Burden
Tumor mutation burden was defined as the number of somatic
coding insertion/deletion mutations and non-synonymous base
replacements per megabase of the genome, and it was estimated
by estimating the number of somatic mutations and dividing the
total length of the exons. First, we used Perl scripts to extract
tumor mutation data from AGC patient sequences and then used
R software to calculate the TMB value according to the following
formula for each patient:

TMB = Sn× 1000000/n

1https://portal.gdc.cancer.gov/
2https://www.immport.org/
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where, Sn represents the absolute number of somatic mutations
and n represents the number of exon bases with coverage
depth ≥ 100× (Jiang et al., 2019). The calculated TMB value of
the patient is provided in Supplementary Table 2.

Prognostic Analysis of TMB Value
After calculating the TMB value for each patient, the TMB value
was combined with the patient clinical information, including
survival status and survival time. Then, all patients were assigned
to either the high- or low-TMB group, with the median value of
TMB as the cutoff. Kaplan-Meier (K-M) survival analysis and log-
rank tests were performed to evaluate the difference in the OS
rate between the above two groups. Additionally, we explored the
relationship between TMB and clinical features, including sex,
age, tumor grade, and TNM stage. The patients were divided into
two groups according to clinical characteristics, and the Wilcoxon
rank-sum test was used for statistical analysis.

Identification of TMB-Related
Differentially Expressed Genes and
Functional Enrichment Analysis
The gene expression data from AGC patients were standardized
by the “limma” R package, and then the DEGs between the
high- and low-TMB groups were identified using the Wilcoxon
test. | Log2−fold change (FC)| > 1.0 and false discovery rate
(FDR) < 0.05 were used as cutoffs to identify qualified DEGs for
subsequent analyses, and volcano maps and heat maps were used
for visual analysis using the “pheatmap” R package. In addition,
we carried out gene ontology (GO) and kyoto encyclopedia
of genes and genomes (KEGG) pathway functional enrichment
analyses by using the “clusterProfiler” R package and visualized
the enrichment results (Yu et al., 2012).

Construction and Verification of Risk
Score Model
We took the intersection of the previously obtained immune-
related gene list with the TMB-related differential genes and
obtained the immune genes that were differentially expressed in
the low- and high-TMB groups. Since these genes are related to
immunity and TMB in AGC, they were used for further analysis.
First, univariate Cox regression analysis was used to identify
candidate genes associated with survival. Next, the “glmnet”
package in R software was used to further filter the risk model
with least absolute shrinkage and selection operator (LASSO)
Cox regression analysis. Finally, multiple Cox regression analysis
was used to further screen the optimal prognostic genes for
the construction of risk models, and a time-dependent receiver
operating characteristic (ROC) curve was used to assess the
accuracy of the constructed model (Guo et al., 2020). The
expression of genes and the regression coefficients obtained in the
regression model were used to calculate the patients’ risk scores.
The calculation formula is as follows. Risk score (patients) =
6 Coefficient (gene i) ∗ expression value (gene i). Where, n,
i, coefficient, and expression value represent the number of
selected genes, gene number, regression coefficient value, and
gene expression value, respectively.

Meanwhile, the log-rank test was used to analyze the
survival data between the low- and high-TMB groups. In
addition, GSE84437 data were downloaded from the GEO
database as a validation set, and the risk model was used to
analyze the prognosis of gastric cancer patients. The clinical
information of patients in the GSE84437 database was provided
in Supplementary Table 3. A nomogram was constructed by gene
expression based on this model to predict the different annual
survival rates of patients for TCGA and GEO data.

Evaluation of Immune Cell Infiltration
CIBERSORT is a deconvolution algorithm that combines the
labeled genomes of different immune cell subpopulations to
calculate the proportions of 22 immune cells in tissues. The 22
types of immune cells include various myeloid cells, NK cells, 3
types of B cells, and 7 types of T cells (Bi et al., 2020). In this
study, we analyzed tumor immune cell infiltration in the tumor
microenvironment of AGC patients in the low- and high-TMB
groups. Samples with a CIBERSORT output p-value < 0.05 were
screened for further analysis.

Furthermore, the tumor immune estimation resource
(TIMER) web server was used to precalculate the abundance
of six tumor-infiltrating immune subsets (Kang et al., 2020).
The modules in TIMER were used to explore the association of
immune infiltration with gene expression and survival outcomes
in the current study3.

Evaluation of the Value of Genes in the
Model in a Pan-Cancer Panel
The cancer genome atlas pancancer data (ACC, BLCA, RCA,
CESC, CCA, COAD, DLBC, GBM, HNSC, KIRC, KICH, KIRP,
LGG, LAML, LIHC, LUSC, LUAD, MESO, OV, PAAD, PRAD,
PCPG, READ, SKCM, SARC, TGCT, THYM, THCA, UCS,
UCEC, and UVM), including RNA-Seq, stemness scores based
on mRNA (RNAss) and DNA methylation (DNAss) and matched
clinical information, were downloaded from the Xena browser4.
We calculated the expression of APOD and SLC22A17 in the 33
cancers in the pancancer dataset, and through univariate Cox
regression analysis, the risk values of these two genes for these
33 cancers were calculated. The Pearson correlation test method
was used to calculate the correlation between gene expression
and stromal scores, RNAss, and DNAss of 33 different cancer
types based on the ESTIMATE algorithm. The drug responses to
262 FDA-approved drugs or drugs in clinical trials were included
in the correlation analysis. The data were downloaded from the
NCI-60 database, which contains data on 60 different cancer cell
lines from 9 different tumors5 (Zhang X. et al., 2020).

Statistical Analyses
All data were processed with Perl (5.30.1) and R (version 3.6.2)
software. Survival analyses were performed using the K-M
method and the log-rank test. Pearson’s correlation test was used
for the correlation analysis between two groups. The Wilcoxon

3https://cistrome.shinyapps.io/timer/
4https://xenabrowser.net/datapages/
5http://bioinformatics.mdanderson.org/estimate/
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rank-sum test was used for differential analyses of subgroups.
All statistical tests were two-sided, and P < 0.05 was considered
statistically significant.

RESULTS

Somatic Mutation Analysis in Advanced
Gastric Cancer
To identify somatic mutations in AGC patients in the TCGA
database, we used the “maftools” package in R software to visually
analyze the mutation data. Complete somatic mutation data
were available for 251 AGC patients, of which 222 (88.45%)
had somatic mutations. The 30 genes with the highest mutation
rates in patients with AGC are displayed in the waterfall plot
(Figure 1A) and include well-known cancer-related genes such
as TTN (49%), TP53 (44%), and MUC16 (28%). Among them,
missense mutations were the most common variant classification,
single-nucleotide polymorphisms (SNPs) were the most common
variant type, and C > T mutations accounted for the vast
majority of single nucleotide variations (SNVs) (Supplementary
Figures 1A–C). The maximum number of mutations in one
sample was 5137 (Supplementary Figure 1D), and the median
number of mutations was 90 (Supplementary Figure 1E).
In addition, we showed the number of each variant in the
different samples through box plots (Supplementary Figure 1F).
And the correlation calculations for top 20 mutated genes are
shown in Figure 1B. Moreover, we classified these mutant
genes and identified their enrichment in different pathways
(Supplementary Figure 1G) and mutations in all samples of
AGC (Supplementary Figure 1H). The most mutated pathways
were RTK-RAS (77/85, 90.59%), WNT (66/68, 97.06%), and
NOTCH (57/71, 80.28%). In addition, 55.78% of the patients had
mutations in the RTK-RAS pathway (140/251), 43.82% (110/251)

had mutations in the WNT pathway, and 42.63% (107/251) had
mutations in the NOTCH pathway. These are the key signaling
pathways in cancer progression. The mutant genes in RTK-RAS,
WNT, and NOTCH pathway in patients with AGC are shown in
the waterfall chart, respectively (Supplementary Figures 1I–K).

Correlation Between TMB and
Clinicopathological Characteristics of
AGC Patients
To explore the prognostic function of TMB, we calculated and
visualized the TMB value of gastric cancer samples in the TCGA
database (Figure 2A). Then, we divided patients into low-TMB
and high-TMB groups according to the median value of TMB.
The TMB values for each patient were shown in Supplementary
Table 2. The survival rate of the two groups was plotted by
using K-M curves. Interestingly, we found that the survival rate
of patients in the high TMB group was superior to that of
patients in the low TMB group (Figure 2B). To further investigate
the correlation between TMB and the clinical characteristics of
gastric cancer patients. We downloaded the clinical information
and detected the relationship between TMB and clinical features.
The results showed that TMB is positively correlated with patient
age. In addition, TMB was negatively correlated with sex and
N stage. It means female patients with age < 65 have less TMB
value than the other people. In addition, patients with no lymph
node metastasis might have less TMB. There were no correlations
between TMB and T stage, M stage, stage, or tumor grade
(Figures 2C–I).

Variation in the Genes Related to TMB
and Functional Analysis
One of the ways in which TMB functions is to affect gene
expression. To obtain the DEGs related to TMB, we divided

FIGURE 1 | Analyses of somatic mutation profiles in advanced gastric cancer. (A) Waterfall plot of detailed mutation information of top 30 genes in each sample,
with various color annotations to distinguish different mutation types. (B) Correlation between the top 20 mutated genes.
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FIGURE 2 | Correlation between tumor mutation burden (TMB) and clinicopathological characteristics of AGC patients. (A) TMB value in advanced gastric cancer
samples. (B) Survival analysis between high-TMB and low-TMB patients. (C–I) Correlation between TMB and (C) age, (D) gender, (E) T, (F) M, (G) N, (H) Stage, and
(I) grade of patients.

patients into a high TMB group and a low TMB group according
to the median TMB value. Then, the “limma” package in R
software was used to identify genes that were differentially
expressed between the two groups. We found 847 DEGs,
including 796 upregulated genes and 51 downregulated genes, in
the high TMB group compared with the low TMB group. The top
40 most DEGs were visualized by using a heat map (Figure 3A).
A volcano map was plotted to exhibit the DEGs (Figure 3B).
For GO analysis, we revealed that DEGs were mainly enriched in
muscle system process, collagen-containing extracellular matrix
and receptor ligand activity processes (Figure 3C). In addition,
we conducted KEGG analysis based on DEGs. We found

that DEGs mainly belonged to the neuroactive ligand-receptor
interaction, cAMP signaling pathway, calcium signaling pathway,
and vascular smooth muscle contraction and cell adhesion
molecules categories (Figure 3D).

Construction and Validation of
Prognostic Model
To determine the relationship between TMB and immune
infiltration in patients with AGC, we obtained immune-related
DEGs by intersecting the 847 DEGs related to TMB with
1881 immune-related genes. A total of 107 immune-related
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FIGURE 3 | Variation in the genes related to TMB and functional analysis. (A) The differentially expressed genes (DEGs) related to TMB. (B) Volcano ma2p of DEGs.
(C) Go and (D) KEGG analysis of DEGs related to TMB. The abscissa represents the number and proportion of genes, respectively.

DEGs were identified for further analysis (Figure 4A). Then,
we identified 15 genes as candidate prognosis-related genes
by using univariate analysis (Figure 4B). The hazard ratio of
prognostic genes was shown in Table 1. LASSO regression was
subsequently performed on 15 candidate prognosis-related genes,
and two genes were retained for constructing the prognostic
model (Figures 4C,D). TCGA and GEO data were downloaded
to verify the accuracy of the model. We first validated the
accuracy of the model in the TCGA dataset. After ranking
the patients according to the calculated risk score, patients
were divided into a low-risk group and a high-risk group
according to the median risk score. Low-risk group patients had
better outcomes in terms of survival probability (Figure 4E).
A ROC curve was plotted to validate the accuracy of the
prognostic model (Figure 4F). Then, patients were ranked
based on risk score (Figure 4G). The risk score for each
patient was provided in Supplementary Table 4. We found that
patients had longer survival times in the low-risk group, and
more patients died in the high-risk group (Figure 4H). The
expression of the two genes in each group was visualized by a
heat map, and gene expression increased in parallel with the
risk score (Figure 4I). Then, the GSE84437 data in the GEO
database was used as the validation set, and we got similar

results (Supplementary Figures 2A–E). This confirmed the
reliability of our model.

APOD and SLC22A17 Are Related to
Patient Survival, TMB, and Patient
Clinical Characteristics
We obtained two key genes, APOD and SLC22A17, from the
prognostic model. To determine whether APOD and SLC22A17
affect the survival probability of patients, we performed K-M
survival analysis to explore the survival rates of the two
groups. It can be observed that higher expression of ADPO
and SLC22A17 correlated with worse prognosis (Figures 5A,B).
In addition, we found that patients in both the APOD low
group and SLC22A17 low group had the better prognosis.
Conversely, if the two genes both are highly expressed at the
same time, the patient prognosis is even worse (Figure 5C).
The expression of SLC22A17 and APOD in TMB-high and
TMB-low group was shown in Supplementary Figure 4. These
results indicated that APOD and SLC22A17 can be applied
simultaneously for predicting patient prognosis. We further
detected the relationship among the expression level of the two
genes, TMB and clinical characteristics. The results showed that
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FIGURE 4 | Construction and validation of prognostic model. (A) Venn analysis of immune-related differentially expressed genes. (B) 15 candidate prognosis-related
genes were obtained using univariate analysis. (C,D) Two prognosis-related genes were obtained by using LASSO regression and used for the construction of
prognostic model. (E,F) High-risk group correlated with poor survival outcome, with p = 0.014. (E) Survival analysis of high-risk and low-risk groups. (F) ROC curves
of 1, 2-, and 5-year survival prediction, with AUC = 0.707, 0.715, and 0.883, respectively. (G,H) The distribution of risk score and gene expression levels among
patients in the cancer genome atlas (TCGA) data. (I) The expression of two prognostic genes between high-risk and low-risk patients in TCGA training set.

the expression of the two genes was lower in the high-TMB group
(Figure 5D). The relationship between SLC22A17 and APOD
gene expression and each clinical feature such as age, gender,
grade, stage, and TNM-stage were shown in Supplementary
Figure 3. We only found that the expression of SLC22A17
is related to the patient’s age. In addition, a nomogram was
further constructed according to the gene expression levels of
APOD and SLC22A17 in the TCGA datasets. The patients’
1-, 2-, and 3-year survival could be predicted by using a
nomogram (Figure 5E). At the same time, the calibration curves
of the model also confirmed that the predicted 1-year survival

rate was relatively consistent with the actual 1-year survival
rate (Figure 5F).

Relation of TMB and Prognostic Model
Genes With Immune Cell Infiltration
Patients with higher TMB scores have been reported to manifest
better response to immunotherapy. However, whether TMB is
associated with immune infiltration remains unclear. In order
explore the underlying association, we detected the proportions
of 22 types of infiltrating immune cells in gastric cancer samples
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TABLE 1 | Univariate COX regression analysis of TMB related prognostic genes in
advanced gastric cancer.

Gene symbol HR (95%CI) p-Value

S100A1 1.0301 (1.0012–1.0597) 0.0404

SLC22A17 1.0627 (1.0184–1.1089) 0.0051

APOD 1.0022 (1.0009–1.0035) 0.0006

CCL14 1.4825 (1.1003–1.9974) 0.0096

FAM19A4 1.1536 (1.0536–1.2631) 0.0019

GDF6 2.1123 (1.4587–3.0587) 7.52e-05

INHA 1.0304 (1.0096–1.0516) 0.0039

NRG2 1.4612 (1.0064–2.1214) 0.00160

SCGB3A1 1.0012 (1.0003–1.0022) 0.0088

GHR 1.1847 (1.0390–1.3509) 0.0113

GLP2R 1.3403 (1.0274–1.7486) 0.0307

NPR3 1.0725 (1.0083–1.1408) 0.0261

FGF10 1.0897 (1.0080–1.1779) 0.0306

AMHR2 1.1091 (1.0381–1.1849) 0.0021

ESRRG 1.2509 (1.0767–1.4532) 0.0034

HR, hazard ratio; CI, confidence interval.

by using the CIBERSORT algorithm. The results are shown in a
bar plot map (Figure 6A). Then, we compared the distributions
of the 22 types of infiltrating immune cells in the high-
TMB and low-TMB groups. The results were visualized in a
heat map (Figure 6B). We found that naive B cells, resting
memory CD4 T cells, regulatory T cells (Tregs), activated NK
cells, monocytes, resting dendritic cells and resting mast cells
had higher levels of infiltration in the low-TMB group. In
contrast, activated memory T cells, follicular helper T cells,
resting NK cells, M0 macrophages, M1 macrophages, activated
mast cells, and neutrophils were more abundant in the high-
TMB group (Figure 6C). Next, we detected the correlations
among 22 types of infiltrating immune cells and visualized
them in a matrix based on the Pearson correlation coefficient
(Figure 6D).

Furthermore, we calculated the correlation between the
infiltration of each of the 22 types of immune cells and the
expression of APOD and SLC22A17 (Figure 7A). Based on
the correlation matrix, we found that APOD (R = −0.28,
p = 9.4E-06) and SLC22A17 (R = −0.22, p = 0.00072)
were negatively associated with T cell CD4 memory activation
(Figures 7B,C). The TIMER, containing the abundance of
six tumor-infiltrating immune subsets, was further utilized to
detect the correlation between copy number variation and
the infiltration level of immune cells. We found that the
infiltration level was broadly decreased in patients with APOD
and SLC22A17 copy number variation compared with the
diploid/normal group (Figures 7D,E). To determine whether
the infiltration levels of these six immune cells affect patient
survival rate, we performed survival analysis to explore
the association of immune infiltration with gene expression
and survival outcomes. We observed that patients with low
levels of macrophage infiltration had better survival outcomes
(Figure 7F).

Evaluation of the Value of TMB-Related
Prognostic Model Genes Across Cancers
APOD and SLC22A17 are dysregulated and can be used for
prognosis in gastric cancer patients. However, whether these
two genes exert functions in other cancers is not known.
To detect the value of the two genes in other cancers, we
downloaded TCGA pancancer data. Then, we analyzed the
expression levels of APOD and SLC22A17 in 33 types of cancers.
We observed that APOD was dysregulated in 17 types of cancers
and that SLC22A17 was dysregulated in 16 types of cancers, with
significant p-values (Figures 8A,B). Univariate Cox regression
analysis was subsequently used to identify the prognostic value in
the 33 cancers (Figure 8C). The ESTIMATE algorithm was used
to detect the correlation between gene expression and stromal
scores, RNAss, and DNAss in 33 different cancer types. Not
surprisingly, we found that APOD and SLC22A17 have a wide
range of stromal scores in association with 33 different cancer
types. In addition, in terms of the correlation between the two
genes and cancer stemness, APOD and SLC22A17 had various
degrees of association with the RNAss and DNAss in 33 types of
cancers (Figure 8D). Interestingly, we observed that the APOD
and SLC22A17 genes were negatively correlated with RNAss and
DNAss in almost all of the cancer types. In contrast, SLC22A17
and APOD were positively associated with RNAss in patients with
ACC, GBM, LGG, PCPG, and DLBC. In addition, SLC22A17
is strongly positively associated with DNAss in GBM, HNSC,
THYM, USC, and UVM patients. APOD was strongly positively
related to DNAss in CHOL, DLBC, KIRC, READ, SKCM, THCA,
THYM, UCEC, and UVM patients.

Pearson correlation was subsequently performed to detect
the correlation coefficient between the two genes and RNAss,
DNAss, StromalScore, ImmuneScore, and ESTIMATEScore in
patients with STAD. The SLC22A17 and APOD genes were
negatively associated with RNAss and DNAss, which is consistent
with the results of univariate Cox regression analysis. However,
SLC22A17 and APOD had positive relationships with the
StromalScore, ImmuneScore and ESTIMATEScore (Figure 8E).
For the correlation between SLC22A17, APOD, and tumor
drug resistance, we next determined the effect of SLC22A17
and APOD on drug sensitivity. Drugs approved by the FDA
or drugs in clinical trials were selected for the correlation
analysis. Interestingly, APOD exerts a greater role in drug
sensitivity analysis. We found that APOD is positively related to
sensitivity to vemurafenib, PD-98059, dabrafenib, hypothemycin,
selumetinib, bafetinib, denileukin diftitox (Ontak), cobimetinib,
and okadaic acid. By contrast, APOD is negatively associated
with sensitivity to pyrazoloacridine, pralatrexate, batracylin,
docetaxel, and floxuridine. However, SLC22A17 only had a
negative relationship with the sensitivity to palbociclib and
sunitinib (Figure 8F).

DISCUSSION

Gastric cancer is a malignant tumor with a high recurrence rate
and ranks as the third leading cause of cancer-related death
worldwide (Al-Mahrouqi et al., 2011). In recent years, enormous
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FIGURE 5 | Two genes in prognostic model were associated with patients’ survival and clinical characteristics. (A,B) Survival analysis of (A) SLC22A17 and
(B) APOD genes in patients with AGC. (C) Survival analysis of AGC patients with different expressions group of SLC22A17 and APOD. (D) The expression of
SLC22A17 and APOD are associated with patients’ TMB and clinical characteristics. (E) The patients’ 1-, 2-, and 3-year survival were predicted by using a
nomogram. (F) Calibration curves for the survival probability at 1 year.

progress has been made in the diagnosis and treatment of gastric
cancer. However, the mortality of GC, and especially of AGC,
remains high. Therefore, it is of great significance to explore the
molecular subtypes of AGC and find effective targeted therapy
strategies for specific subtypes.

Gene mutation is closely associated with the initiation and
development of cancer (Ikediobi et al., 2006). For example, it

has been reported that mutation in BRCA2 is closely related to
patient survival, chemotherapy response, and genome instability
(Yang et al., 2011). APC mutations are common in colorectal
cancers (Nishisho et al., 1991). In addition, mutation of APC
is related to the stage of colorectal cancer (Robles et al.,
2016). Mutations in cancer-related genes also affect treatment
strategies (Hu H. et al., 2018). TMB is a vital biological indicator
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FIGURE 6 | Patients with various degree of TMB have different features of immune cell infiltration. (A) Proportion of immune infiltrating cells in gastric cancer
samples. (B) Heat map and (C) bar graph of immune infiltrating cells between high-TMB and low-TMB patients. (D) Correlation analysis of 22 kinds of immune cells.

reflecting the degree of tumor mutation. TMB varies widely
among cancer patients. Alexandrov LB reported that TMB could
affect the immunotherapy effect of cancer (Alexandrov et al.,
2013). Recently, TMB was identified as an immunotherapy

biomarker (Chan et al., 2019). With regard to how TMB affects
immunotherapy outcomes, Chen DS reported that there are more
proteins produced by high-TMB patients, and these proteins can
be recognized by the immune system. Immune cells are more
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FIGURE 7 | Relation of TMB and prognostic model genes with immune cell infiltration. (A) Correlation between prognostic related immune infiltrating cells and
prognostic model constructed by SLC22A17 and APOD. (B,C) T cells CD4 memory activated was negative associated with the expression of (B) SLC22A17 and
(C) APOD. (D,E) Immune infiltration level among gastric cancer patients with diverse degree of copy number variation. (F) Survival probability of patients with low
and high immune infiltration level of six immune cells. *p < 0.05, **p < 0.01, and ***p < 0.001.

easily able to identify and eliminate those tumor cells with high
TMB (Chen and Mellman, 2017; Chan et al., 2019). Further
research on the association of TMB and immunity will be helpful
to identify the critical biomarkers and pathways of AGC.

To explore the association of TMB with AGC, we analyzed
somatic mutations in AGC patient samples. A total of 222
(88.45%) patients were identified to have somatic mutations. We
ranked the top 30 most common mutations in these patients.
The TTN, TP53, and MUC16 genes had the highest mutation
frequencies. TTN mutation has been reported to be correlated
with prognosis in lung cancer and gastric cancer (Cheng et al.,
2019; Yang et al., 2020). MUC16 has also been reported to
be associated with prognosis and immunotherapy efficiency in
gastric cancer (Yang et al., 2020). TP53 mutation is common
and affects treatment strategies in various cancers (Jiao et al.,
2018; Kaur et al., 2018; Barbosa et al., 2019; Ahn et al., 2020).
The mutant genes are enriched in key pathways involved in
cancer progression. The WNT, NOTCH, and RTK-RAS signaling
pathways are often dysregulated and can be employed as
therapeutic targets in diverse cancers (Nusse and Clevers, 2017;
Imperial et al., 2019; Krishna et al., 2019). According to the
degree of TMB, we divided patients into a high-TMB group and

a low-TMB group. Patients in the high-TMB group had better
survival outcomes, which is consistent with the results in other
cancers (Devarakonda et al., 2018). Patients aged over 65 have
higher TMB. We attributed this to the weak ability of patients
aged over 65 to eliminate mutations. The DEGs related to TMB
were identified according to the degree of TMB. The results
showed that these genes were mainly enriched in neuroactive
ligand-receptor interactions, the cAMP signaling pathway and
the calcium signaling pathway.

Differentially expressed genes related to TMB were intersected
with 1881 immune-related genes. Then, we constructed a
prognostic model with two prognostic genes, SLC22A17 and
APOD. Based on the prognostic model, TCGA and GEO datasets
were used to test the efficiency of the model. As expected,
patients in the two low-risk cohorts had better survival outcomes.
These results indicated that the prognostic model of differentially
expressed TMB-related genes combined with immune-related
genes functions well in gastric cancer. In addition, a nomogram
was employed to predict the survival rate in gastric cancer. Then,
we determined the prognostic function of SLC22A17 and APOD.
The relationship between the expression levels of the two genes
and patient clinical characteristics was visualized using a heat
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FIGURE 8 | SLC22A17 and APOD are dysregulated in multi-types cancer cells and related to cancer stemness and drug resistance. (A,B) Expression of
(A) SLC22A17 and (B) APOD in multi-types cancer cells. (C) The prognostic value of SLC22A17 and APOD in the 33 cancers was identified by using univariate cox
regression analysis. (D,E) SLC22A17 and APOD are associated with cancer stemness in various cancer types, including gastric cancer. (F) The correlation between
SLC22A17, APOD, and tumor drug resistance. The abscissa and ordinate represent drug sensitivity score and gene expression, respectively. *p < 0.05, **p < 0.01,
and ***p < 0.001.

map. These two genes can be considered prognostic biomarkers
in gastric cancer. APOD was reported to be the prognostic factor
of gastric. Patients with high expression of APOD might have a
shorter OS time. Two authors have also reported that SLC22A17
could be a prognosis biomarker of gastric cancer. Specifically,
SLC22A17 was identified as a prognosis gene which may affect
immune cell infiltration and iron metabolism in gastric (Hu C.

et al., 2018; Wang et al., 2020; Wei et al., 2020). Although these
two genes have been reported to be involved in gastric cancer,
the specific mechanism of their regulation of gastric cancer is
still unclear, which needs further research. In addition, whether
these two genes possess prognosis function across different types
of cancers remains unclear. Hence, we detected the expression
of SLC22A17 and APOD in 33 types of cancers and determined
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the association of the two genes with cancer stemness-related
indicators (Zhang X. et al., 2020). SLC22A17 and APOD were
found to be dysregulated in diverse cancers. In almost all cancers,
SLC22A17 and APOD have positive relationships with the
StromalScore, ImmuneScore and ESTIMATEScore. In contrast,
the SLC22A17 and APOD genes were negatively associated with
RNAss and DNAss in most cancers. Regarding drug resistance,
we observed that APOD exerted a greater role in drug sensitivity.
APOD has a strong positive relationship with resistance to many
drugs. All these results indicated that these two genes have the
same expression pattern and exhibit a similar correlation with
StromalScore, RNAss, and DNAss in nearly all cancers. However,
the predictive performance of these genes for other specific
cancers requires more research.

Tumor mutation burden affects the degree of immune
infiltration and efficacy of immune therapy in several cancers
(Wu et al., 2019; Kang et al., 2020; Zhang L. et al., 2020). To
explore the underlying association in gastric cancer, we analyzed
the distribution of 22 infiltrating immune cells in tumor samples.
The results showed that the proportions of infiltrating immune
cells varied between the high-TMB group and the low-TMB
group. Some kinds of infiltrating immune cells increased in
tumor samples with high TMB. However, numerous infiltrating
immune cells were decreased in tumor samples with low TMB.
More research is needed to determine whether the infiltration of
each type of immune cell is caused by TMB. To further clarify
the association of TMB and immune infiltration in AGC, we
analyzed the immune infiltration level in samples with diverse
TMBs and found that the infiltration level was broadly decreased
in patients with higher copy number variation compared with
the diploid/normal group, which is consistent with other studies
(Hu H. et al., 2018; Chan et al., 2019). Interestingly, we observed
that patients with low infiltration had better survival outcomes.
We speculate that this may be related to the poor prognosis of
patients with AGC; the stage of patients diagnosed with AGC
and the available therapeutic strategies may also account for this
difference. More experiments are needed to clarify the association
between TMB and immune infiltration.

CONCLUSION

Our results indicate that immune-related genes generated from
TMB-related differential expression analysis are involved in
the progression of AGC. A prognostic model constructed with
SLC22A17 and APOD might have vital roles across multiple types
of cancers. Detection of TMB combined with immune infiltrating
cells in AGC patients could be an effective method in guiding
cancer therapy strategies, especially immunotherapy.
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