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A B S T R A C T   

Carboxyl compounds have a significant influence on the flavor of Chinese Baijiu. However, because of the 
structural diversity and low concentration, the deep profiling of carboxyl compounds in Chinese Baijiu is still 
challenging. In this work, a systematic method for comprehensive analysis of carboxyl compounds in Chinese 
Baijiu was established. After derivatized under optimized conditions, 197 p-dimethylaminophenacyl bromide- 
derived carboxylic compounds were annotated by multidimensional information including accurate mass, pre-
dicted tR, in-silico MS/MS, and diagnostic ions for the first time. In addition, 48 of the 197 carboxyl compounds 
were positively identified, and three of them were newly identified in Chinese Baijiu. Moreover, we found the 
number and the concentration of carboxyl compounds in sauce-flavor Baijiu were more abundant than in strong- 
flavor Baijiu. This work provides a novel method for the analysis of carboxyl compounds in Baijiu and other 
complex samples.   

1. Introduction 

Chinese Baijiu has a long history and a good market in many coun-
tries for its pleasing flavors. According to the differences in raw mate-
rials, production processes, and storage conditions, there are twelve 
flavors of Chinese Baijiu (Duan et al., 2022; Son, Lee, Kim, Seo, & Kim, 
2018), among them sauce-flavor and strong-flavor are the most famous. 
Carboxyl compounds are widely found in Chinese Baijiu and have a 
great influence on the flavor of Chinese Baijiu (Yang, Fan, & Xu, 2017). 
Therefore, high-coverage detection and annotation of carboxyl com-
pounds in Chinese Baijiu would be helpful to reveal their flavors and 
improve the quality. 

Gas chromatography-mass spectrometry (GC–MS) and Liquid 
chromatography-mass spectrometry (LC-MS) have been used to detect 
carboxyl compounds in Chinese Baijiu (He et al., 2021; Liao & Li, 2013; 
Liao & Zhou, 2019). However, GC–MS is suitable to detect non-polar and 

semi-polar compounds (Baroudi, Al-Alam, Chimjarn, Delhomme, Faj-
loun, & Millet, 2020), GC–MS with derivatization and LC-MS are spe-
cifically targeted at polar and semi-polar compounds (Proestos, Sereli, & 
Komaitis, 2006; Sharma, Rai, & Prasad, 2018), meanwhile, carboxyl 
compounds in Chinese Baijiu are polarity diversity and exist in a low 
concentration, leading to a poor-coverage detection of carboxyl com-
pounds in Chinese Baijiu (Jia et al., 2020; Son, Lee, Kim, Seo, & Kim, 
2018). Chemical derivatization is capable of improving the overall 
analytical performance of LC-MS (Zhao & Li, 2020). Therefore, various 
chemical derivatization methods have been developed to enhance the 
analytical performance of carboxyl compounds in LC-MS analysis. For 
example, p-dimethylaminophenacyl bromide (DmPABr) was used to 
profile 2286 potential carboxyl compounds in yeast (Luo, Zhao, Huan, 
Sun, Friis, Schultz, et al., 2016). With the assistance of 2-Dimethylami-
noethyl-amine, 269 carboxyl compounds in plasma were detected (He 
et al., 2019). After being labeled by N-methylpheny-lethylamine, 403 

* Corresponding authors at: CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 
Dalian 116023, China. 

E-mail addresses: mingma@hunnu.edu.cn (M. Ma), xugw@dicp.ac.cn (G. Xu).  

Contents lists available at ScienceDirect 

Food Chemistry: X 

journal homepage: www.sciencedirect.com/journal/food-chemistry-x 

https://doi.org/10.1016/j.fochx.2022.100440 
Received 5 August 2022; Received in revised form 29 August 2022; Accepted 2 September 2022   

mailto:mingma@hunnu.edu.cn
mailto:xugw@dicp.ac.cn
www.sciencedirect.com/science/journal/25901575
https://www.sciencedirect.com/journal/food-chemistry-x
https://doi.org/10.1016/j.fochx.2022.100440
https://doi.org/10.1016/j.fochx.2022.100440
https://doi.org/10.1016/j.fochx.2022.100440
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Food Chemistry: X 15 (2022) 100440

2

potential carboxyl compounds in HepG2 cells were detected (Zheng, 
Gong, Zheng, Zhang, & Feng, 2020). Among all of the derivatization 
reagents, DmPABr has been proven to reveal good performance in tun-
ing the retention on reversed-phase liquid chromatography, improving 
detection sensitivity, and facilitating the identification of carboxyl 
compounds (Guo & Li, 2010). Therefore, with the help of DmPABr, high- 
coverage detection of carboxyl compounds in Chinese Baijiu is feasible. 

Currently, there are still some difficulties in conducting chemical 
derivatization for comprehensive annotation of carboxyl compounds in 
complex samples. On one hand, for the annotation of carboxyl com-
pounds, most derivatization methods applied the chemical isotope la-
beling strategy, in which labeled compounds were extracted by peak 
pairs obtained from light and heavy isotope derivatization reagents (An, 
Zhu, Wang, Xiong, Hu, & Feng, 2021; Li, Gao, Song, Tan, & Jiang, 2019; 
Xiong, Zhu, Chen, He, & Feng, 2021). However, heavy isotope deriva-
tization reagents are expensive and even commercially unavailable, 
which limits the application of the chemical isotope labeling strategy. 
On the other hand, the retention times (tR) and MS/MS spectra of de-
rivatives are different from those of unlabeled compounds, which in-
creases the difficulty of annotating carboxyl compounds. Some efforts 
have been made to solve the above problems. For example, to achieve 
high-coverage identification of carboxyl compounds without heavy 
isotope-labeled derivatization reagents, three characteristic fragment 
ions from the derivatization group were hunted, and 1054 carboxylic 
acids were defined after derivatized by 5-(diisopropylamino) amylamine 
(Bian et al., 2020). The predicted tR was also used for the identification 
of carboxyl-containing compounds in plasma and yeast (Zhao, Li, Han, 
Chan, & Li, 2019). In addition, in-silico predicted MS/MS spectra were 
applied to the identification of carboxyl exposure biomarkers in urine 
samples (Jia et al., 2019). Moreover, characteristic fragments were put 
forward to testify the candidates, such as the neutral loss of NH3 ob-
tained from amino acids, the neutral loss of H2O obtained from hy-
droxyl, as well as a serious difference of 14 Da from fatty acids (Bian, 
Sun, Zheng, Li, & Wu, 2017; Wei et al., 2020; Zheng, Gong, Zheng, 
Zhang, & Feng, 2020). Although the methods mentioned above were 
useful for the annotation of carboxyl compounds, we believed that the 
integrated application of these methods is more efficient. 

In the present study, chemical derivatization and ultrahigh- 
performance liquid chromatography coupled to high-resolution mass 
spectrometry (UHPLC− HRMS) were used for the high-coverage analysis 
of carboxyl compounds in different flavors of Chinese Baijiu. The Chi-
nese Baijiu samples were labeled by DmPABr under optimized condi-
tions. Characteristic fragments related to derivatization were utilized to 
define compounds with the carboxyl acid group. Subsequently, the 
carboxyl compounds were annotated with the assistance of the accurate 
mass of precursor ion, predicted tR, in-silico MS/MS, as well as multiple 
fragments from the characteristic structure. Finally, the difference of 
carboxyl compounds in 6 commercial Chinese Baijiu with different fla-
vors was explored. 

2. Experiment section 

2.1. Chemicals and reagents 

HPLC-grade ethanol, methanol, and acetonitrile (ACN) were pur-
chased from Merck (Darmstadt, Germany), formic acid of analytical 
grade was purchased from J&K Scientific ltd. (Beijing, China). Ultra- 
pure water was obtained from a Milli-Q system (Millipore, Billerica, 
MA, USA). DmPABr and triethylamine (TEA) were purchased from 
Aladdin (Shanghai, China). Sodium chloride, hydrogen chloride, and 
ethyl acetate were purchased from Macklin (Shanghai, China). All 
standards were purchased from Sigma-Aldrich (St Louis, MO, USA). 

2.2. Sample preparation 

The carboxyl standards (Table S1) were dissolved in methanol and 

ultra-pure water with appropriate ratios, then stored at − 20 ◦C. Chinese 
Baijiu (S1, S2, S3, S4, S5, and S6) were purchased from the local market, 
the detailed information of samples was shown in Table S2. The blank 
sample was ethanol–water (53:47, v/v). Pooled Baijiu sample was pre-
pared by mixing equal volumes of Baijiu samples. The 50 mL of Chinese 
Baijiu or blank sample were evaporated by a vacuum distillation system 
(70 rpm/min, 45 ◦C, and − 0.1 MPa) till the volume was concentrated to 
2 mL, then the concentrated samples were stored at − 20 ◦C before 
derivatization. 

The chemical derivatization reaction was performed as previously 
described with some modifications (Zhao, Li, Han, Chan, & Li, 2019). 
Briefly, 30 μL of samples or blank samples were mixed with 2 μL of 
mixed internal standards (IS, myristic acid-d27, fumaric acid-d2, suc-
cinic acid-d4, cholic acid-d4, chenodeoxycholic acid-d4, palmitic acid- 
d31, and 2-ketoglutaric acid-d6). Subsequently, 7.5 μL of hydrogen 
chloride (6 M), 15 μL of saturated sodium chloride, and 150 μL of ethyl 
acetate were added and shaken for 5 min, after centrifugation, the 
organic phase was taken out, 30 μL of TEA (180 mg/mL in ACN) was 
added, then the solution was freeze-dried. After that, 64 µL of TEA so-
lution (20 mg/mL in ACN) was used to re-dissolve the residues, and 40 
µL of newly prepared DmPABr (10 mg/mL in ACN) was added for 100 
min derivatization at 76 ◦C. Finally, the reaction solution was centri-
fuged and 80 μL of the supernatant was transferred into a vial for 
UHPLC− HRMS analysis. 

2.3. UHPLC− HRMS analysis 

The chromatographic separation was performed on a UHPLC system 
(Waters, Milford, MA, USA), with a BEH C8 column (2.1 mm × 100 mm, 
1.7 μm, Waters, Milford, USA) at 50 ◦C. Mobile phase A and mobile 
phase B consisted of 0.1% (v/v) formic acid in water and 0.1% (v/v) 
formic acid in ACN, respectively. The flow rate was 0.35 mL/min. A 
gradient started with 5% B and held for 1 min, then increased to 100% B 
at 23 min and maintained for 4 min. Lastly, the gradient was back to 5% 
B in 0.1 min and held for 1.9 min. The volume for injection was 1 µL and 
the sample manager temperature was 4 ◦C. 

The MS data acquisition was carried out on a Q Exactive HF (Thermo 
Fisher Scientific, Rockford, IL, USA) system. All spectra were obtained in 
positive ion mode, the resolutions were 120,000 (full width at half- 
maximum, FWHM) in full scan mode and 30,000 in data-dependent 
MS/MS (ddMS2) mode. The automatic gain control target of the full 
scan was 3 × 10 6 and the maximum injection time of the full scan was 
set as 100 ms. For ddMS2, the automatic gain control target and 
maximum injection time were 1 × 105 and 50 ms, respectively. 
Normalized collision energy (NCE) was set as 15%, 30%, and 45%. The 
top N was 10, spray voltage was 3.5 kV. The aux gas heater temperature 
and capillary temperatures were 350 ◦C and 300 ◦C, respectively. Aux 
gas flow rate was 10 arbitrary units and sheath gas was 45 arbitrary 
units. The S-lens RF level was 50 arbitrary units. 

2.4. Establishment of quantitative structure− retention relationship 
(QSRR) model 

To establish a model for predicting tR, we measured tR of 100 
authentic carboxyl standards with various structures. Meanwhile, 
simplified molecular input line entry specification (SMILES) of 100 
carboxyl standards were generated (Table S1). Then, 75 tR and SMILES 
were imported to QSRR_Automator software, and the software trans-
formed SMILES into molecular descriptors (Naylor et al., 2020), the best 
machine learning model and valid molecular descriptors were chosen 
automatically for establishing the QSRR model. Subsequently, to eval-
uate the performance of the established model, SMILES of the remaining 
25 authentic standards were imported, and the established model was 
used to predict their tR. Finally, the predicted tR and actual tR were fitted 
with a linear model. 
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2.5. Response surface methodology for optimizing derivatization 
conditions 

To detect as many carboxyl compounds as possible, a 3-factorial 
central composite design was carried out with the pooled Baijiu sam-
ples. A total of 20 experiments (Table S3) were designed in a randomized 
order. The range of each factor was set based on previous studies and 
operation limits (Luo, et al., 2016; Peng & Li, 2013; Zhao, Li, Han, Chan, 
& Li, 2019). In detail, the reaction time was in the range of 42 to 100 
min, the reaction temperature was in the range of 40 to 85 ◦C, and the 
volume of DmPABr was in the range of 10 to 33 µL.α = 1.6818. The 
number of potential carboxyl compounds was used to evaluate the ef-
ficiency of derivatization. The process order was a quadratic model, and 
the optimal reaction condition was predicted by Design Expert 12 soft-
ware (Stat-Ease Inc, Minneapolis, USA). 

2.6. Qualitative analysis 

A workflow for the annotation of carboxyl compounds in Chinese 
Baijiu is shown in Fig. 1. Firstly, UHPLC-full scan MS/ddMS2 acquisition 

was used to analyze labeled Chinese Baijiu samples. Following that, in- 
house python programming (https://github.com/Xxy0903/annotation- 
of-carboxyl-compounds) was used to pick off the potential carboxyl 
compounds by searching characteristic fragment ions of m/z 180.1020, 
134.0962, and [M+H-179.0946] from MS/MS spectra. Then, the po-
tential carboxyl compounds were unambiguously identified by match-
ing the tR, precursor ions and MS/MS with authentic standards (level 1). 
After that, with the assistance of in-house python programming 
(https://github.com/Xxy0903/annotation-of-carboxyl-compounds), ac-
curate m/z of precursor ions of potential carboxyl compounds were used 
to search against structure library with a mass tolerance of 10 ppm. For 
precursor ions without candidates in the library, their formulas were 
calculated and set as level 6. On the contrary, for the precursor ions with 
candidates, a QSRR mode was used to predict the tR of candidate 
structures, if the difference of tR between the candidate structures and 
corresponding carboxyl compounds was greater than 50 s, they were 
classified as level 5. Otherwise, CFM-ID was used to predict the MS/MS 
spectra of candidate structures (Wang, Liigand, Tian, Arndt, Greiner, & 
Wishart, 2021). Then, the in-silico MS/MS spectra were matched against 
actual MS/MS spectra, and a reverse dot product algorithm was used to 

Fig. 1. Strategy for the annotation of carboxyl compounds in Chinese Baijiu.  
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evaluate the similarity between in-silico and actual MS/MS spectra. If the 
score was greater than 0.5 (Li et al., 2021), they were set as level 2. In the 
condition that the score was less than 0.5, characteristic fragments from 
characteristic structures were used to verify the candidate structures. If 
the characteristic fragments matched with candidate structures, they 
were defined as level 3 otherwise set as level 4. 

2.7. Data processing and statistical analysis 

Thermo Xcalibur software (version 2.2, Thermo Fisher Scientific, 
Rockford, IL, USA) was used to collect raw data and calculate the for-
mula of precursor ions (mass tolerance of 5 ppm). The peak list including 
average tR, average m/z, peak area, and MS/MS spectra was generated 
by MS-DIAL software (version 4.24), the detailed parameters are listed 
in Table S4. An in-house Python programming was applied to pick out 
the characteristic fragments related to derivatization (mass tolerance of 
5 ppm) and calculate the relative intensity of characteristic fragments. 
An In-house python programming was used to search various databases 
including compounds obtained from published literature (In-house 
database), the Yeast Metabolome Database (YMDB), and Collective 
Molecular Activities of Useful Plants (CMAUP), and fatty acids from 
Lipids Maps (LM-FA). To calculate the formula of precursor ions, the 
fundamental elements were set as C, H, O, N, and S. The formula of 
carboxyl compounds was obtained by removing the DmPABr residue 
(C10H11NO). 

Partial least squares-discriminant analysis (PLS-DA) was performed 
with SIMCA-P 13 software (Umetrics, Umea, Sweden). The student’s t- 
test was conducted with IBM SPSS 25.0 software (International Business 
Machines Corporation, New York). 

3. Results and discussion 

3.1. Fragmentations of DmPABr-Labeled carboxyl compounds 

Firstly, the MS/MS spectra of 100 authentic standards after deriva-
tization (Table S1) were analyzed. We found that fragments of m/z 
180.1020 and 134.0962 appeared in those carboxyl compounds 
frequently (Fig. 2). However, among the 100 compounds, not all of them 
produced the above two fragments at the same time. A previous study 
indicated that the identification based on only one fragmentation will 
lead to serious false-positive results (Bian et al., 2020). Therefore, the 
fragments after the neutral loss of 179.0946 Da were added for defining 
carboxyl compounds. According to that, we suggested the precursor ions 
generating two of the three fragments mentioned above were potential 
carboxyl compounds. 

As shown in Fig. 2A–C, after derivatized, multi-carboxylic acids 
including 2-oxohexanedioic acid, 2-hydroxybutanedioic acid, and aze-
laic acid produced the character fragment ions of m/z 278.1387, 
250.1071, and 332.1850, which are assigned to the fragments after the 
neutral loss of 43.9898 Da (CO2), 46.0054 Da (HCOOH), and 18.0106 
Da (H2O), respectively. Similarly, tridecanoic acid is representative of 
fatty acid. According to MS/MS spectra (Fig. 2D), a series of ions with a 
difference of 14.0156 Da were produced from the loss of methylene. In 
addition, 3-hydroxybutanoic acid is one of the compounds with carboxyl 
and hydroxyl, the fragment ion peak at m/z 248.1284 represented the 
neutral loss of H2O (Fig. 2E). Interestingly, we found that the carboxyl 
compounds containing carbon–carbon double bond at the alpha position 
of their carboxyl groups tended to generate a neutral loss of 179.0946 Da 
and showed a more abundant response than other carboxyl compounds 
(Fig. 2F, Fig. S1). This can be explained as, after the neutral loss of 

Fig. 2. Characteristic MS/MS frag-
mentation of DmPABr–labeled car-
boxylic acids (A) DmPABr–labeled 2- 
oxohexanedioic acid, (B) DmPABr–la-
beled 2-hydroxybutanedioic acid, (C) 
DmPABr–labeled azelaic acid, (D) 
DmPABr–labeled tridecanoic acid, (E) 
DmPABr–labeled 3-Hydroxybutanoic 
acid. (F) DmPABr–labeled furan-2- 
carboxylic acid. Red shows character-
istic fragmentations from the charac-
teristic structure. (For interpretation of 
the references to colour in this figure 
legend, the reader is referred to the 
web version of this article.)   
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179.0946 Da, the formed carbocations will conjugate with the carbon-
–carbon double bond, making the carbocations more stable (Shirakawa, 
2001). It can be seen from Fig. S1 that when the relative abundance of 
the fragments with neutral loss of 179.0946 Da reached 50%, the cor-
responding structures of the precursor ions should have a carbon–carbon 
double bond at the alpha position of the carboxyl group. 

3.2. QSRR model for tR prediction 

After 75 SMILES of carboxyl compounds were imported into 
QSRR_Automator software, a series of automatic optimization was per-
formed. Finally, 11 features and linear regression were chosen to form a 
QSRR model. To validate the performance of this model, external vali-
dation was performed. As shown in Fig. S2, the value of R2 was 0.97 and 
the average absolute error (AAE) between the predicted tR and the actual 
tR was 42 s, suggesting the good performance of the model in predicting 
tR. 

3.3. Optimization of derivatization conditions for the pooled Baijiu 
sample 

The main factors of the derivatization conditions including reaction 
time, reaction temperature, and the volume of DmPABr were optimized. 
Table S3 presented the experimental conditions and the number of po-
tential carboxyl compounds. As shown in Table S3, the numbers of po-
tential carboxyl compounds ranged from 152 to 438, which indicated 
that the optimized experimental conditions had a significant influence 
on derivatization reaction. Fisher’s F-test was used to evaluate the 
model, the detailed information of the result is shown in Table S5. The 
coefficient of variation (CV) was lower than 10% and the “Adeq Preci-
sion” was greater than 4, which suggested the good reproducibility and 
precision of the model (Ghaedi, Karamipour, Vafaei, Baneshi, & Kiar-
ostami, 2019; Xie et al., 2020). In addition, the difference between the 
predicted R2 (0.8925) and adjusted R2 (0.9604) was less than 0.2 indi-
cating the good accuracy of the model (Su, Vera, & Nerín, 2020). Lastly, 
the p-value was less than 0.0001 and the lack of fit was not significant (p 
> 0.05), demonstrating that the model was suitable to clarify the rela-
tionship between independent variables and dependent variable (Pinto 
et al., 2021). 

To present the relationship between experimental conditions and the 
number of potential carboxyl compounds, 3D surface plots were 
generated. It can be observed from Fig. 3 that the critical factors were 
the reaction temperature and volume of DmPABr, while the reaction 
time had a slight influence on the reaction efficiency. In addition, the 
interaction of reaction temperature and reaction time had significant 
effects on reaction efficiency, while the interaction of the volume of 
DmPABr and reaction time or the interaction of the volume of DmPABr 
and reaction temperature had insignificant effects on reaction efficiency. 
As shown in Fig. 3A, in the initial stage the increase of the temperature 
and time led to an increase in the responses, until the temperature was 
around 76 ◦C and time around 100 min, respectively, after that, the 

responses decreased. Finally, based on the signature model and 3D 
contour, the optimized experimental conditions were defined as follows: 
reaction time: 100 min, reaction temperature: 76 ◦C, volume of 
DmPABr: 40 μL. 

3.4. Chemical profiling of carboxyl compounds in pooled Baijiu sample 

We analyzed carboxyl compounds in pooled Baijiu sample. As shown 
in Table S6, a total of 197 carboxyl compounds were detected in 6 Baijiu 
samples, more than double the carboxyl compounds in Chinese Baijiu 
detected by the most comprehensive method (Naylor et al., 2020) to 
date. With the annotation strategy, 48 (Nos. 1–48), 5 (Nos. 49–53), 51 
(Nos. 54–104), 14 (Nos. 105–118), 44 (Nos. 119–162), and 35 (Nos. 
163–197) were at level 1, level 2, level 3, level 4, level 5, and level 6 
respectively. In addition, of the 197 carboxyl compounds, 162 (82.2%) 
carboxyl compounds were positively identified or putatively identified, 
and higher annotation coverage was achieved than using other existing 
methods ( Zheng, Gong, Zheng, Zhang, & Feng, 2020). Besides that, by 
searching the databases (PubChem and The Good Scents Company In-
formation System), 31 of the 48 compounds in level 1 were found to be 
flavor compounds or related to flavor (Table S6). Moreover, 3-hydrox-
yoctanoic acid, 2-phenylbutanoic acid, and 5-hydroxyisovanillic acid 
were identified in Baijiu for the first time. 

It is not surprising that some peaks were matched to several candi-
dates in the annotation. As mentioned in Section 2.6, the candidates 
were obtained from searching against structure libraries by precursor 
ions, then predicted tR, in-silico MS/MS and diagnostic ions were used to 
narrow down the number of possible candidate structures. However, 
even with one of the top tools (CFM-ID 4.0) for predicting MS/MS, 100 
% accuracy is impossible (Wang, Liigand, Tian, Arndt, Greiner, & 
Wishart, 2021), and a similar situation existed in predicting tR (Naylor 
et al., 2020). In addition, not all carboxyl compounds possess diagnostic 
ions. Therefore, it is possible for a peak to match several candidates 
using this annotation strategy. Although several candidates occurred for 
some peaks, it still provides an opportunity to get the right structure. 

3.5. Comparison of carboxyl compounds in different flavors of Chinese 
Baijiu 

To explore the differences of carboxyl compounds in different flavors 
of commercial Chinese Baijiu, we analyzed carboxyl compounds in three 
sauce-flavor Chinese Baijiu (S1, S2, and S3) and three strong-flavor 
Chinese Baijiu (S4, S5, and S6), respectively. It can be seen from 
Fig. 4A, the numbers of carboxyl compounds detected were 168, 157, 
181, 114, 106, and 146 in samples S1, S2, S3, S4, S5, and S6, respec-
tively. Different samples showed different numbers of carboxyl com-
pounds. As shown in Fig. 4B, the number of carboxyl compounds in 
sauce-flavor samples was more than in strong-flavor samples, with 47 
carboxyl compounds being unique in sauce-flavor Baijiu. In addition, as 
shown in Fig. 4C, sauce-flavor and strong-flavor Chinese Baijiu were 
well separated with 86.9% of the total variance, this result suggested 

Fig. 3. Response surface 3D plots for the interaction effects of independent variables on the dependent variable. (A) The interaction effects of time and temperature 
(Temp) on the number of potential carboxyl compounds, (B) the interaction effects of temperature and volume on the number of potential carboxyl compounds, (C) 
the interaction effects of time and volume on the number of potential carboxyl compounds. 
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that there were great differences in the carboxylic acids between sauce- 
flavor and strong-flavor Chinese Baijiu. As shown in Fig. 4D, the relative 
contents of 32 carboxyl compounds were significantly changed (p <
0.05 and fold change >2.0), and all of them were higher in sauce-flavor 
Chinese Baijiu than in strong-flavor Chinese Baijiu, which was in line 
with the result that the total concentrations of the non-volatile organic 
acids in sauce and sesame flavor Baijiu were more than in other types 
(Wang et al., 2022). The more number and higher contents of carboxyl 
compounds in sauce-flavor Chinese Baijiu may be related to the higher 
temperature of fermentation in sauce-flavor Chinese Baijiu than in 
strong-flavor Chinese Baijiu (Kim, Kam, & Chung, 2009; Zheng, Tabrizi, 
Nout, & Han, 2011). 

4. Conclusions 

In this study, we developed a comprehensive method for the detec-
tion and annotation of carboxyl compounds in Chinese Baijiu. A total of 
197 carboxyl compounds were detected in 6 Chinese Baijiu, and 48 of 
them were positively identified. 3-hydroxyoctanoic acid, 2-phenylbuta-
noic acid, and 5-hydroxyisovanillic acid were identified in Baijiu for the 
first time. In addition, we found the number and content of carboxyl 
compounds in sauce-flavor Chinese Baijiu were more abundant than in 
strong-flavor Chinese Baijiu. The developed method is suitable for the 
high-coverage annotation of carboxyl compounds in various Chinese 
Baijiu. 
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