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Streptococcus agalactiae causes a range of clinical syndromes in camels (Camelus dromedarius). We report the genome se-
quences of two S. agalactiae isolates that induce abscesses in Kenyan camels. These genomes provide novel data on the composi-
tion of the S. agalactiae “pan genome” and reveal the presence of multiple genomic islands.
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Streptococcus agalactiae, also known as group B Streptococcus
(GBS), is an emerging human pathogen, mainly in neonates

(1). S. agalactiae infection occurs frequently in camels (Cam-
elus dromedarius) and can result in mastitis (2), abscesses, and
respiratory tract infections (3). However, the molecular basis of
tissue tropism and multiple clinical syndromes is unknown. We
have determined and annotated the genome sequences of two
different S. agalactiae isolates, ILRI005 and ILRI112, associated
with abscesses from Kenyan C. dromedarius. These pathogenic
isolates are genetically distinct according to multilocus sequence
typing (A. Fischer, A. M. Liljander, H. Kaspar, C. Muriuki, H.
Fuxelius, E. Bongcam-Rudloff, E. deVilliers, C. A. Huber, J. Frey,
C. A. Daubenberger, R. Bishop, M. Younan, and J. Jores, submit-
ted for publication).

Sequencing of the S. agalactiae isolate ILRI005 was performed
using an Illumina genome analyzer (GA) IIx with paired-end-read
libraries with a mean library insert size of 210 bp and an average
read length of 100 bp. For mapping and de novo assembly of
20,687,942 quality reads, we used MIRA v 3.0.0 (4). For mapping
we used the genome sequence of the bovine S. agalactiae isolate
09mas018883:HF952104 as a reference template (4a). Contigs
generated by the de novo assembly were ordered using the refer-
ence genome, and the consensus genome sequences were aligned
using Mauve (5). Genome finishing employed a combination of
comparative assembly plus PCR amplification and Sanger se-
quencing of gaps and GapFiller (6) and Velvet (7) software. A total
of 20,189,204 reads (97.56%) were aligned to the reference ge-
nome, with an average coverage of 936�. The ILRI112 isolate was
sequenced using Ion Torrent technology with a single end-read
library with an average read length of 200 bp. Mira v 3.4.1.1 was
used to assemble 3,123,413 quality reads. The combination of
mapping and de novo assembly approaches generated a complete
genome sequence with 96% total read alignment and 224� aver-
age coverage. Annotation and analysis of the genomes were per-

formed using Basys (8) and RAST (9), Artemis, the Artemis Com-
parison Tool (10), and Sybil (11).

ILRI005 comprised 2,109,759 bp and ILRI112 2,029,198 bp,
with 35.34% and 35.43% GC content, respectively. Identity be-
tween homologous regions of the two camel isolate genomes was
99.885% based on JSpeciesv1.2.1 analysis (12). A total of 2,134
open reading frames (ORFs) were predicted in the genome of
ILRI005, compared to 2,048 in ILRI112. ILRI005 contained 1,846
genes shared with other S. agalactiae strains and 288 unique genes,
whereas the ILRI112 genome contained 1,911 shared genes and
137 additional ORFs. Approximately 70% of the predicted ORFs
had a putative assigned function.

Genomic islands were predicted using Island Viewer (13). Iso-
late ILRI005 contained 6 putative genomic islands incorporating
76 predicted genes, whereas ILRI112 contained 7 genomic islands
with 117 genes. In contrast to other GBS strains, ILRI005 had an
insertion in the region encoding the capsular polysaccharide (cps)
(14) of approximately 4,000 bp carrying 8 predicted ORFs, includ-
ing the cpsG and cpsH genes.

These genomes provide additional data on the composition of
the S. agalactiae “pan genome.” Their availability will enable the
identification of genes encoding candidate virulence and tissue
tropism determinants and the development of specific markers for
camel isolates within the type B Streptococcus complex.

Nucleotide sequence accession numbers. The ILRI005 and
ILRI112 genomes have been deposited in ENA under accession
numbers HF952105 and HF952106.
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