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1. Introduction

The concept of an f-divergence, introduced independently by Ali-Silvey [1], Morimoto [2],
and Csisizar [3], unifies several important information measures between probability distributions,
as integrals of a convex function f, composed with the Radon-Nikodym of the two probability
distributions. (An additional assumption can be made that f is strictly convex at 1, to ensure that
D¢ (p||v) > 0 for p # v. This obviously holds for any f”(1) > 0, and can hold for some f-divergences
without classical derivatives at 0, for instance the total variation is strictly convex at 1. An example
of an f-divergence not strictly convex is provided by the so-called “hockey-stick” divergence, where
f(x) = (x — )4+, see [4-6].) For a convex function f : (0,00) — R such that f(1) = 0, and measures
P and Q such that P < Q, the f-divergence from P to Q is given by D¢(P||Q) := [ f ( ) dQ. The
canonical example of an f-divergence, realized by taking f(x) = xlogx, is the relative entropy (often
called the KL-divergence), which we denote with the subscript f omitted. f-divergences inherit
many properties enjoyed by this special case; non-negativity, joint convexity of arguments, and a data
processing inequality. Other important examples include the total variation, the x?-divergence, and
the squared Hellinger distance. The reader is directed to Chapter 6 and 7 of [7] for more background.

We are interested in how stronger convexity properties of f give improvements of classical
f-divergence inequalities. More explicitly, we consider consequences of f being x-convex, in the
sense that the map x — f(x) — xx?/2 is convex. This is in part inspired by the work of Sason [8],
who demonstrated that divergences that are xk-convex satisfy “stronger than x> data-processing
inequalities.

Perhaps the most well known example of an f-divergence inequality is Pinsker’s inequality, which
bounds the square of the total variation above by a constant multiple of the relative entropy. That
is for probability measures P and Q, |P — Q|%,, < ¢ D(P||Q). The optimal constant is achieved for
Bernoulli measures, and under our conventions for total variation, c = 1/2loge. Many extensions
and sharpenings of Pinsker’s inequality exist (for examples, see [9-11]). Building on the work of
Guntuboyina [9] and Topsee [11], we achieve a further sharpening of Pinsker’s inequality in Theorem 9.

Aside from the total variation, most divergences of interest have stronger than affine convexity, at
least when f is restricted to a sub-interval of the real line. This observation is especially relevant to
the situation in which one wishes to study D¢ (P||Q) in the existence of a bounded Radon-Nikodym
derivative 4 Q € (a,b) € (0,00). One naturally obtains such bounds for skew divergences. That is
divergences of the form (P,Q) +— D¢((1 —#)P +tQ||(1 —s)P +sQ) for t,s € [0,1], as in this case,
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(=t)P+tQ 1-t
(1—s)P+sQ < max T-s’5s

[12] based on the relative entropy and the Vincze-Le Cam divergence [13,14], called the triangular
discrimination in [11] and its generalization due to Gyorfi and Vajda [15] based on the x2-divergence.
The Jensen-Shannon divergence [16] and its recent generalization [17] give examples of f-divergences
realized as linear combinations of skewed divergences.

Let us outline the paper. In Section 2, we derive elementary results of x-convex divergences and
give a table of examples of k-convex divergences. We demonstrate that x-convex divergences can
be lower bounded by the x?-divergence, and that the joint convexity of the map (P, Q) — D #(P|1Q)
can be sharpened under x-convexity conditions on f. As a consequence, we obtain bounds between
the mean square total variation distance of a set of distributions from its barycenter, and the average
f-divergence from the set to the barycenter.

In Section 3, we investigate general skewing of f-divergences. In particular, we introduce
the skew-symmetrization of an f-divergence, which recovers the Jensen-Shannon divergence and
the Vincze-Le Cam divergences as special cases. We also show that a scaling of the Vincze-Le
Cam divergence is minimal among skew-symmetrizations of x-convex divergences on (0,2). We
then consider linear combinations of skew divergences and show that a generalized Vincze-Le
Cam divergence (based on skewing the x2-divergence) can be upper bounded by the generalized
Jensen-Shannon divergence introduced recently by Nielsen [17] (based on skewing the relative
entropy), reversing the classical convexity bounds D(P||Q) < log(1+ x%(P||Q)) < loge x*(P||Q).
We also derive upper and lower total variation bounds for Nielsen’s generalized Jensen-Shannon
divergence.

In Section 4, we consider a family of densities {p;} weighted by A;, and a density q. We use
the Bayes estimator T(x) = argmax; A;p;(x) to derive a convex decomposition of the barycenter
p = Y Aip; and of g, each into two auxiliary densities. (Recall, a Bayes estimator is one that minimizes
the expected Value of a loss function. By the assumptions of our model that P(0 = i) = A;, and
P(X € A|0 = i) = [, pi(x)dx, we have E((6,0) f)\ x)dx for the loss function (i, j) =
1 — &;(j) and any estimator f. Tt follows that EZ(G 0) > E€(6 T) by /\g(x)pg(x)(x) < A Prie) (%)
Thus, T is a Bayes estimator associated to £. ) We use this decomposition to sharpen, for x-convex
divergences, an elegant theorem of Guntuboyina [9] that generalizes Fano and Pinsker’s inequality to
f-divergences. We then demonstrate explicitly, using an argument of Topsoe, how our sharpening
of Guntuboyina’s inequality gives a new sharpening of Pinsker’s inequality in terms of the convex
decomposition induced by the Bayes estimator.

} Important examples of skew-divergences include the skew divergence

Notation

Throughout, f denotes a convex function f : (0,00) — RU {oo}, such that f(1) = 0. For a convex
function defined on (0, ), we define f(0) := lim,_,o f(x). We denote by f*, the convex function
f*:(0,00) = RU {oo} defined by f*(x) = xf(x~!). We consider Borel probability measures P and Q
on a Polish space & and define the f-divergence from P to Q, via densities p for P and g for Q with
respect to a common reference measure y as

Dy(plle) = [, 5 (E) ad

P (1)
= Jipsnr (q) du+ F(0)Q({p = 0}) + f*(0)P({g = 0}).

We note that this representation is independent of y, and such a reference measure always exists,
take y = P + Q for example.
For t,s € [0,1], define the binary f-divergence

Dyl =sf (£) + 1-9)f (=1 @
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with the conventions, f(0) = lim,_y+ f(t), 0f(0/0) = 0, and 0f(a/0) = alim; f(t)/t. For a
random variable X and a set A, we denote the probability that X takes a value in A by P(X € A),
the expectation of the random variable by EX, and the variance by Var(X) := E|X — EX|?. For a
probability measure y satisfying u(A) = P(X € A) for all Borel A we write X ~ p, and, when there
exists a probability density function such that P(X € A) = [, f ) for a reference measure
v, we write X ~ f. For a probability measure y on X, and an L2 functlon f: X = R, we denote

Var, (f) = Var(f(X)) for X ~ p.

2. Strongly Convex Divergences

Definition 1. A R U {co}-valued function f on a convex set K C R is k-convex when x,y € Kand t € [0,1]
implies

FA=0x+ty) < (L= 1) f(x) +tf(y) —xt(l = 1) (x —y)*/2. ®)

For example, when f is twice differentiable, (3) is equivalent to f”(x) > « for x € K. Note that
the case x = 0 is just usual convexity.

Proposition 1. For f : K — R U {0} and k € [0, c0), the following are equivalent:

1. f is x-convex.

2. The function f — x(t — a)?/2 is convex for any a € R.

3. The right handed derivative, defined as f', (t) = limy, o w satisfies,
fe(t) = fils) +x(t—s)

fort >s.

Proof. Observe that it is enough to prove the result when « = 0, where the proposition is reduced to
the classical result for convex functions. [

Definition 2. An f-divergence Dy is x-convex on an interval K for k > 0 when the function f is x-convex on
K.

Table 1 lists some x-convex f-divergences of interest to this article.

Table 1. Examples of Strongly Convex Divergences.

Divergence f % Domain
relative entropy (KL) tlogt ﬁ (0, M]
total variation @ 0 (0,00)
Pearson’s )’ (t—1)? 2 (0,00)
squared Hellinger 2(1— /1) M~:/2 (0, M]
reverse relative entropy —logt 1/ M? (0, M]
- —1)?
Vincze- Le Cam <tt +1) (eSS (0, M]
Jensen—Shannon (t+1)log 21 + tlogt m (0, M]
Neyman'’s x° 1-1 2/ M3 (0, M]
Sason’s s log(s + )T —log(s +1)6D"  2log(s+ M) +3  [M,c0),s > e 3/2
Tia
4(1-t 2 o M, 00), 3
a-divergence %, o # +1 M= [M, ), o>
@ O,M], a<3

Observe that we have taken the normalization convention on the total variation (the total variation
for a signed measure u on a space X can be defined through the Hahn-Jordan decomposition of the
measure into non-negative measures y* and p~ such that y = u* — u~, as ||y = p™(X) + u~ (X)
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(see [18]); in our notation, |u|ry = ||p||/2) which we denote by |P — Q|ry, such that |P — Q|ry =
sup 4 |[P(A) — Q(A)| < 1. In addition , note that the a-divergence interpolates Pearson’s x2-divergence

when a = 3, one half Neyman’s y2-divergence when a = —3, the squared Hellinger divergence when
« = 0, and has limiting cases, the relative entropy when a« = 1 and the reverse relative entropy when
a = —1. If f is k-convex on [a, b], then recalling its dual divergence f*(x) := xf(x~!) is xa3-convex on

[%, 1]. Recall that f* satisfies the equality D 7+ (P||Q) = Df(QI|P). For brevity, we use x?-divergence to
refer to the Pearson x2-divergence, and we articulate Neyman'’s x? explicitly when necessary.
The next lemma is a restatement of Jensen'’s inequality.

Lemma 1. If f is k-convex on the range of X,

Ef(X) > f(E(X)) + 5 Var(X).

Proof. Apply Jensen’s inequality to f(x) —xx?/2. O

For a convex function f such that f(1) = 0 and ¢ € R, the function f(t) = f(t) + c(t — 1) remains
a convex function, and what is more satisfies

D¢(P[|Q) = D#(P||Q)
since [ ¢(p/q—1)qdu = 0.
Definition 3 (y2-divergence). For f(t) = (t — 1)2, we write
X*(P||Q) = Dy(P|Q).

We pursue a generalization of the following bound on the total variation by the x?-divergence
[19-21].

Theorem 1 ([19-21]). For measures P and Q,

2
Py < 2019 @

We mention the work of Harremos and Vadja [20], in which it is shown, through a characterization
of the extreme points of the joint range associated to a pair of f-divergences (valid in general), that
the inequality characterizes the “joint range”, that is, the range of the function (P,Q) — (|P —
Qlrv, x*(P||Q)). We use the following lemma, which shows that every strongly convex divergence
can be lower bounded, up to its convexity constant x > 0, by the x?-divergence,

Lemma 2. For a k-convex f,
K
Dy(PIIQ) > S (PIIQ).

Proof. Definea f(t) = f(t) — f/.(1)(t — 1) and note that f defines the same x-convex divergence as
f. Thus, we may assume without loss of generality that f/ is uniquely zero when t = 1. Since f is
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Kk-convex ¢ : t — f(t) —x(t —1)2/2is convex, and, by f’ (1) =0, ¢. (1) = 0 as well. Thus, ¢ takes its
minimum when t = 1 and hence ¢ > 0 so that f(t) > x(t — 1)2/2. Computing,

D(rll) = [ £ (5 ) 40
SCE
= 2K (PlIQ).

O

Based on a Taylor series expansion of f about 1, Nielsen and Nock ([22], [Corollary 1]) gave the
estimate

psrlQ) ~ L pi0) ®

for divergences with a non-zero second derivative and P close to Q. Lemma 2 complements this
estimate with a lower bound, when f is k-concave. In particular, if f”(1) = x, it shows that the
approximation in (5) is an underestimate.

Theorem 2. For measures P and Q, and a k convex divergence D I

Dy(Pl1Q)
P-Qly < L——. ©)
Proof. By Lemma 2 and then Theorem 1,
Ds(PIIQ) _ x*(P
! — 2 X (2||Q) > |P—Qlrv. @)

O

The proof of Lemma 2 uses a pointwise inequality between convex functions to derive an
inequality between their respective divergences. This simple technique was shown to have useful
implications by Sason and Verdu in [6], where it appears as Theorem 1 and is used to give sharp
comparisons in several f-divergence inequalities.

Theorem 3 (Sason—Verdu [6]). For divergences defined by g and f with cf(t) > g(t) for all t, then
Dg(P[|Q) < D¢ (P[|Q)-
Moreover, if f'(1) = ¢'(1) = 0, then

Dg(PJ|Q) 8(t)

sup = sup

pro Df(PIIQ) 14 f(t)

Corollary 1. For a smooth x-convex divergence f, the inequality

K
Dr(P|IQ) = 5x*(PIIQ) ®)
is sharp multiplicatively in the sense that

. De(PIIQ)
202 ~ 2 ©)
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iFF1(1) =~

In information geometry, a standard f-divergence is defined as an f-divergence satisfying the
normalization f(1) = f/(1) = 0, f”(1) = 1 (see [23]). Thus, Corollary 1 shows that 1x? provides a
sharp lower bound on every standard f-divergence that is 1-convex. In particular, the lower bound in
Lemma 2 complimenting the estimate (5) is shown to be sharp.

Proof. Without loss of generality, we assume that f'(1) = 0. If /(1) = « + 2¢ for some ¢ > 0, then
taking ¢(t) = (t — 1)? and applying Theorem 3 and Lemma 2

sup 5o = sup -2 <

10
9P DA (PIIQ) o F(o) {10

Dy(PIQ) _ () 2
K

Observe that, after two applications of L'Hospital,

gl+e) . g(1+e g"(1)

lim lim = =

eNfIte) N fAte  FD)

Thus, (9) follows. [

(t)
()

oQ

RN

<sup
t£1

~

Proposition 2. When Dy is an f divergence such that f is k-convex on [a, b] and that Py and Qg are probability
measures indexed by a set © such that a < 92 (x) < b, holds for all 6 and P = Jo Podp(0) and Q =

dQp
Jo Qodp(0) for a probability measure y on ©, then
dPy  dP\?
DAPIQ) < [ DytriliQodn(e) 5 [ [ (42~ 45) dein an
In particular, when Qg = Q for all 6
D¢(P[|Q)
K dPy  dP\?
< [, oyl -5 [ [ (G0 15) doime) (12)

< | Dp(Rol|Q)dp(0) = x [ |Po = PPhyedn(6)

Proof. Let df denote a reference measure dominating y so that dy = ¢(0)d6 then write vy = v(6,x) =

% ()9(0).
prlle) = [ 1 (56 ) 40

:/Xf< @ng‘u(@)) 0 (13)

_ /Xf( @;lgiv(e,x)dﬂ> dQ

By Jensen’s inequality, as in Lemma 1

dPG dpg dPg dpg
f < “Gde) I8 <dQe> 2 <an /@dQQVG”w) Vot
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Integrating this inequality gives

ey [, ([ (1) 5 (2~ ) )i

Note that

/){/@(;lgge / Py deo) vpd6dQ = // (dpe_dp> 40Qdy,

and

//f(d%) %)d0dQ = //f<dpg> 6,140
_/ A f<dpg)dQedﬂ(9) (1)

= [, D(PslIQ0)an(e)

Inserting these equalities into (14) gives the result.
To obtain the total variation bound, one needs only to apply Jensen’s inequality,

© (dPy  dP\? dP,
/, (deQ> dQ>(/ dQ’ Q) (16)
= |Py — P4y
O

Observe that, taking Q = P = [ Pad(6) in Proposition 2, one obtains a lower bound for the
average f-divergence from the set of distribution to their barycenter, by the mean square total variation
of the set of distributions to the barycenter,

« [ 1Po = Pyan(6) < [ Dy(Pel [P)du). 17)

An alternative proof of this can be obtained by applying |Py — P|3,, < Dg(Py||P)/x from
Theorem 2 pointwise.
The next result shows that, for f strongly convex, Pinsker type inequalities can never be reversed,

Proposition 3. Given f strongly convex and M > 0, there exists P, Q measures such that
D¢(P|[Q) = M|P — Qlrv- (18)

Proof. By x-convexity ¢(t) = f(t) — xt*/2 is a convex function. Thus, ¢(t) > ¢(1) + ¢/, (1)(t — 1) =
(ff(1) —x)(t —1) and hence lim; Ltt) > limyye0 k1/2+ (f(1) — k) (1 — %) = co. Taking measures

on the two points space P = {1/2,1/2} and Q = {1/2t,1 — 1/2t} gives D¢(P||Q) > %@ which
tends to infinity with t — oo, while [P — Q|ry <1. O

In fact, building on the work of Basu-Shioya-Park [24] and Vadja [25], Sason and Verdu proved [6]

ﬁ)f 1:2|||er £(0) + f*(0). Thus, an f-divergence can be bounded
above by a constant multiple of a the total variation, if and only if f(0) + f*(0) < oco. From this
perspective, Proposition 3 is simply the obvious fact that strongly convex functions have super linear

(at least quadratic) growth at infinity.

that, for any f divergence, supp_
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3. Skew Divergences

If we denote Coux(0, ) to be quotient of the cone of convex functions f on (0,00) such that
f(1) = 0 under the equivalence relation f; ~ f, when fj — f, = ¢(x — 1) for ¢ € R, then the map
f + Dy gives a linear isomorphism between Cvx(0,00) and the space of all f-divergences. The
mapping 7 : Cvx(0,00) — Cox(0,c0) defined by 7 f = f*, where we recall f*( ) = tf(t1), gives
an involution of Cvx(0,0). Indeed, D7¢(P||Q) = Df(Q||P), so that D7 (5))(P|[Q) = Df(P|[Q).
Mathematically, skew divergences give an interpolation of this involution as

(P,Q) = Ds((1—t)P+tQ|[(1 —5)P +3Q)

gives Df(P||Q) by taking s = 1 and t = 0 or yields D« (P||Q) by taking s = 0 and ¢ = 1.

Moreover, as mentioned in the Introduction, skewing imposes boundedness of the
Radon-Nikodym derivative g—g, which allows us to constrain the domain of f-divergences and
leverage x-convexity to obtain f-divergence inequalities in this section.

The following appears as Theorem III.1 in the preprint [26]. It states that skewing an f-divergence
preserves its status as such. This guarantees that the generalized skew divergences of this section are
indeed f-divergences. A proof is given in the Appendix A for the convenience of the reader.

Theorem 4 (Melbourne et al [26]). For t,s € [0,1] and a divergence Dy, then
S¢(P[IQ) = Ds((1 = )P+ £Q[[(1 = s)P +5Q) (19)
is an f-divergence as well.

Definition 4. For an f-divergence, its skew symmetrization,

sirie=1o (1159) 1o (o"52)

Ay is determined by the convex function

() (2)

Observe that A¢(P|[Q) = Af(Q]|P), and when f(0) < o0, A¢(P||Q) < SUP ¢ [0.2] f(x) <ocoforall P,Q

; dP dQ
SINCE TP Q)72 AP+Q)/2
Jensen-Shannon divergence. When f(x) = (x — 1)? up to a normalization constant the x*-divergence’s

skew symmetrization is the Vincze-Le Cam divergence which we state below for emphasis. The work

< 2. When f(x) = xlog x, the relative entropy’s skew symmetrization is the

of Topswee [11] provides more background on this divergence, where it is referred to as the triangular
discrimination.

Definition 5. When f(t) = (t-1)?

“fr1- denote the Vincze-Le Cam divergence by

A(P[1Q) = Dg(P[|Q)-

If one denotes the skew symmetrization of the y2-divergence by A2, one can compute easily from
(20) that A,2(P[|Q) = A(P]|Q)/2. We note that although skewing preserves O-convexity, by the above
example, it does not preserve k-convexity in general. The skew symmetrization of the x?-divergence a
2-convex divergence while f(t) = (t — 1)2/(t + 1) corresponding to the Vincze-Le Cam divergence
satisfies f"'(t) = (t+—81)3, which cannot be bounded away from zero on (0, o).
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Corollary 2. For an f-divergence such that f is a k-convex on (0,2),
K K
Ap(PlQ) = 7A(P[IQ) = 58,2(PIIQ), (21)

with equality when the f(t) = (t — 1)? corresponding the the x>-divergence, where A  denotes the skew
symmetrized divergence associated to f and A is the Vincze- Le Cam divergence.

Proof. Applying Proposition 2

P+Q[|Q+P
=0 (58%7)

1 Q+P\ 1 Q+P\ « 2P 20 \?
<30 (7 %57) 422 (d[%57) -5/ (5 rrg) #r @2

= A¢(Pl|Q) - § A(PI|Q):
0

When f(x) = xlogx, we have f”(x) > 10% on [0, 2], which demonstrates that up to a constant
10% the Jensen-Shannon divergence bounds the Vincze-Le Cam divergence (see [11] for improvement
of the inequality in the case of the Jensen-Shannon divergence, called the “capacitory discrimination”
in the reference, by a factor of 2).

We now investigate more general, non-symmetric skewing in what follows.

7

Proposition 4. For a, B € [0,1], define

Cla) = {1—oc when o < B 22)
o when « > B,
and
Sa,p(Pl|Q) = D((1 — )P +aQ|[(1 - )P + BQ). (23)
Then,
Sa,(Pl1Q) < C(a)Deo(a]|B)|P — Ql1v, (24)

where Deo (|| B) := log (max {%, 1= }) is the binary oco-Rényi divergence [27].

We need the following lemma originally proved by Audenart in the quantum setting [28]. It is
based on a differential relationship between the skew divergence [12] and the [15] (see [29,30]).

Lemma 3 (Theorem IIL.1 [26]). For P and Q probability measures and t € [0,1],
So+(Pl|Q) < —log [P — Qlrv. (25)
Proof of Theorem 4. If « < B, then D (||B) = log L;g and C(a) =1 — a. In addition,
(1=p)P+pQ=1t((1-a)P+aQ)+(1-1Q (26)

with t = %, thus

Sup(PllQ) = Sot((1—a)P +aQl|Q)
< (=logt) [((1 —a)P +aQ) = Qlrv (27)
= C(a) Doo(a[|B) [P = QlTv,
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where the inequality follows from Lemma 3. Following the same argument for « > B, so that C(«) = «,
Deo(a]|p) = log 5, and

(1=p)P+pQ=1t((1-a)P+aQ)+(1-H)P (28)
fort = g completes the proof. Indeed,
Sa,p(PlIQ) = So,((1 —a)P +aQI|P)

< —logt|((1—a)P+aQ) — P|rv (29)
= C(a) Do (a[|) [P = Qlrv-

O

We recover the classical bound [11,16] of the Jensen—Shannon divergence by the total variation.
Corollary 3. For probability measure P and Q,
JSD(P[|Q) <log2 [P —Qlrv (30)

Proof. Since JSD(P||Q) = 1 S, 0,1 (PIIQ) + 3 = 1(P1Q). O
Proposition 4 gives a sharpening of Lemma 1 of Nielsen [17], who proved S, (P||Q) < D (a[[B),
and used the result to establish the boundedness of a generalization of the Jensen-Shannon Divergence.

Definition 6 (Nielsen [17]). For p and q densities with respect to a reference measure y, w; > 0, such that
Y wi =1land «; € [0,1], define

JS*(p:q) = ) wi D((1 —ai)p + aiq||(1 — &) p + aq) (31)

where Y I'_; win; = &.

Note that, when n = 2, a1 = 1, ap = 0 and w; = %, JS*“(p : q) = JSD(p||q), the usual
Jensen—-Shannon divergence. We now demonstrate that Nielsen’s generalized Jensen—Shannon
Divergence can be bounded by the total variation distance just as the ordinary Jensen-Shannon
Divergence.

Theorem 5. For p and q densities with respect to a reference measure p, w; > 0, such that Y ;' ; w; = 1 and
€ (0,1),
loge Vary(a) [p —ql3y < JS*“(p:q) < AH(w) [p—qlrv (32)

where H(w) = — }; w;logw;> 0 and A = max; |a; — &;| with & =} fufwl

Note that, since &; is the w average of the a; terms with «; removed, &; € [0,1] and thus 4 < 1.
We need the following Theorem from Melbourne et al. [26] for the upper bound.

Theorem 6 ([26] Theorem 1.1). For f; densities with respect to a common reference measure y and A; > 0
such that Y7 1 Aj =1,
hy (Y Aifi) = Y Aihy(fi) < TH(A), (33)
i i

where h,(f;) = — [ fi(x)log fi(x)d ()andT:supi\fi—ﬁhvwithfi:):#ilﬁ—fmfj.
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Proof of Theorem 5. We apply Theorem 6 with f; = (1 —a;)p + a;9, A; = w;, and noticing that in
general

hW(ZAifi) - zAhW(fi) = Z/\iD(fin)/ (34)

we have

]S (p:q) = ij (1 —aj)p + aiq||(1 — &)p + aq)

(35)
< TH(w)
It remains to determine 7 = max; |f; — fi|rv,
f fi
R
_ ((1 —®)p+aq) — (1 —a)p +aiq)
1—w; (36)
(w-®)(p—q)
1-— w;
= (a; — ;) (p — 9)-
Thus, 7 = max;(«; — &;)|p — q|ltv = A|p — q|Tv, and the proof of the upper bound is complete.
To prove the lower bound, we apply Pinsker’s inequality, 2loge|P — Q|%,, < D(P||Q),
n
J$*(p:q) = 3 wiD((1 = a;)p + gl (1 — &)p + &q)
i=1
1& 5
EZ i2loge [((1 —a;)p + aiq) — (1 —a)p +aq) |1y 7

=loge sz *0‘) lp— Q|TV
i=1
=loge Varw(“) |P - ‘7|2TV'

O

Definition 7. Given an f-divergence, densities p and q with respect to common reference measure, . € [0, 1]"
and w € (0,1)" such that Y_; w; = 1 define its generalized skew divergence

D" (p:9) = Y w0Dy((1 = a)p +aigll(1=#)p +ag). 38)

where & = Y ; w;n;.

Note that, by Theorem 4, D?'w is an f-divergence. The generalized skew divergence of the
relative entropy is the generalized Jensen-Shannon divergence JS*%. We denote the generalized skew
divergence of the x?-divergence from p to q by

Xaw(p:q) Zwm (1—aj)p +aigl|(1 —ap+ aq) (39)
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Note that, whenn = 2and a1 = 0, ap = 1 and w; = %, we recover the skew symmetrized
divergence in Definition 4

D}O’l)’(l/z’l/z)(P :q) = As(pllg) (40)

The following theorem shows that the usual upper bound for the relative entropy by the
x?-divergence can be reversed up to a factor in the skewed case.

Theorem 7. For p and q with a common dominating measure y,

Xaw(P:q) < Neola,w)]S™(p : q).

Writing Neo (¢, w) = max; max {11 =3 @} Fora € [0,1]" and w € (0,1)" such that }_; w; = 1, we
use the notation N (&, w) := max; eP=®ill0) where & := ¥, w;a;.
Proof. By definition,
n
J$*(p:q) = Y} wiD((1—a;)p + a;ql|(1 - &)p +aq).

i=1

Taking P; to be the measure associated to (1 — «;)p + a;q and Q given by (1 — &)p + &g, then

ﬁ _ (1—a;))p+aig <m {1 — 061'} — Deo(ail|) < Neo(a, w). (41)

daQ (1-ap+aq — 1-a’a
Since f(x) = xlog x, the convex function associated to the usual KL divergence, satisfies f”(x) = 1, f
is e~ Pe(®)_convex on [0, sup, ; % (x)], applying Proposition 2, we obtain

2
Liwi [y (G~ #6) 4Q
Q) < Y wiD(P||Q) - ’;I\(,:fa wd)Q) . (2)

D (Z wiPi
i

Since Q = Y; w;P;, the left hand side of (42) is zero, while

L . (dl’_‘”’) dQ = Zwl/ (21;—1)2;119

= Y wix’(Bi[|P) )
= ch,w(p : q)
Rearranging gives,
2
XIX w(p : ) o,w
= <
() SIS, (44)

which is our conclusion. [

4. Total Variation Bounds and Bayes Risk

In this section, we derive bounds on the Bayes risk associated to a family of probability measures
with a prior distribution A. Let us state definitions and recall basic relationships. Given probability
densities {p;}"" ; on a space X with respect a reference measure y and A; > Osuch that }°}' ; A; =1,
define the Bayes risk,

Ri=Ry(p)=1— [ max{Aipi(x)}ap(x) (45)
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If {(x,y) = 1—6x(y), and we define T(x) := argmax; A;p;(x) then observe that this definition is
consistent with, the usual definition of the Bayes risk associated to the loss function ¢. Below, we
consider 6 to be a random variable on {1,2,...,n} such that P(6 = i) = A;, and x to be a variable with
conditional distribution P(X € A|6 = i) = [, pi(x)du(x). The following result shows that the Bayes
risk gives the probability of the categorization error, under an optimal estimator.

Proposition 5. The Bayes risk satisfies

R= m@inEe(e,é(X)) =FE4(6, T(X))

where the minimum is defined over: X — {1,2,...,n}.

Proof. Observe that R = 1 — [, Ap(x)pr(x) (X)du(x) = EL(6, T(X)). Similarly,

E€(0,0(X)) = 1= [ Aggy)Pag) (0)n(x)
> 1= [ Aropri (®)dn() = R,
which gives our conclusion. [

It is known (see, for example, [9,31]) that the Bayes risk can also be tied directly to the total variation
in the following special case, whose proof we include for completeness.

Proposition 6. Whenn =2and Ay = Ay = %, the Bayes risk associated to the densities py and p; satisfies

2R =1—|p1 — p2|1v (46)

[p1—p2l+p1+p2
2

Proof. Since pr = , integrating gives [ pr(x)du(x) = |p1 — p2|rv + 1 from which the

equality follows. [

Information theoretic bounds to control the Bayes and minimax risk have an extensive literature
(see, for example, [9,32-35]). Fano’s inequality is the seminal result in this direction, and we direct
the reader to a survey of such techniques in statistical estimation (see [36]). What follows can be
understood as a sharpening of the work of Guntuboyina [9] under the assumption of a x-convexity.

The function T(x) = argmax;{A;p;(x)} induces the following convex decompositions of our
densities. The density g can be realized as a convex combination of q; = % where Q =1— [ Arqdu

and q; = 7(173”%

q=(1-Q)q1 + Qqa.

If we take p := }_; A;p;, then p can be decomposed as p; = ){T_pRT and p; = HT”’T so that

p = (1-R)p1 + Roy.

N

Theorem 8. When f is k-convex, on (a,b) with a = inf; , ’; "((;)) and b = sup, ’; "((;)

w
Y ADs(pilla) > Dy(R[Q) + -

where ) )
1—-R R
W= W(A;, pi,q) = %xz(pl\!ql) + —=x*(02llq2) + Wo
1-Q Q
for Wy > 0.
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Wy can be expressed explicitly as

4 pi — Sier Lmz
Wo = /(1 —/\T)V{Jlr/\ﬂgT (Z) d‘u = / Z Aj I ; T-Arr] d‘u,

where for fixed x, we consider the variance Var, .t (%) to be the variance of a random variable
taking values p;(x)/q(x) with probability A;/ (1 — Ar(,) for i # T(x). Note this term is a non-zero
term only when n > 2.

Proof. For a fixed x, we apply Lemma 1

s (B) = e (B0) +a-an & 1207 ()

7 | (47)
> Arf (F’;) +(1—Ar) {f (M) + g Van,; (Z)]

Integrating,

3 3 7A All
Caplln) = [arf () g+ fa-any (FIEES) g S, )

where N
' Ao e = Sier = pil?
W, :/ i GLelip My 49
0 i#;(x) 1 —)\T(x) q I/l ( )

Applying the x-convexity of f,

[ras () a=a-0) [ms ()
>(1-Q) (f(fl)‘_TPQT> +§Varq1 <qu)) (50)

=(1-Qf(1-R)/(1-Q))+ =W,

with

(51)
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Similarly,
p—Arpr\  _ p—Arpr
Ja-anr (B255 )= for (5 205)
p—Arpr Qx
> Qf (/ QZq(l_)\T)) + 7W2 (52)
where

2 2
Var, (PMPT _ R) (53)

Writing W = Wy 4+ W; 4+ W,, we have our result. [

Corollary 4. When A; = %, and f is k-convex on (inf; » p;/q,sup; , pi/q)

1
5 2P (pilla)

(54)
K

> Dy(RI|(n—1)/n) + 5 <n2<1 - R nllo) + (5

n—1

2
) 2 (o2ll) +wo>

further when n = 2,

D¢(p1llg) + D¢ (p2llq) 1—|p1 — p2lrv
2 = Dy 2

1
)
(1 +1p1 = P2l (onll) + (= py = p2lrv )22 (el 9)) -
(55)

+

N =

1
n

Proof. Note that q; = g2 = g, since A; = ;- implies A7 = % as well. In addition, Q =1 — [ Apqdyu =

"T_l so that applying Theorem 8 gives

knW(Ai, pi,q)

Dy(pilla) = nDg(R[|(n —1)/n) + >

1

. (56)

n
1=



Entropy 2020, 22, 1327 16 of 20

The term W can be simplified as well. In the notation of the proof of Theorem 8,

Wi = n*(1—R)*x*(p1,9)

nR \? 5
W, = <nl> x"(p21l9) (57)
Wo — / it Tz (pi — i1 YiAT Pj)zdﬂ'
q
For the special case, one needs only to recall R = M while inserting 2 for n. O

Corollary 5. When p; < q/t* for t* > 0, and f(x) = xlogx

t*w(/\i’ Pi, ‘7)
Zi:)‘iD(Pi||’7) > D(RI|Q) + —— 2L

for D(p;||q) the relative entropy. In particular,

t'W Ai/ ir
YD (pilla) = D(pllg) + D(R|[P) + W irPict)

where P =1 — [ Arpdy for p = Y; Aip; and t* = min A;.

Proof. For the relative entropy, f(x) = xlogx is f;-convex on [0, M] since f”(x) = 1/x. When
pi < q/t* holds for all i, then we can apply Theorem 8 with M = tl* For the second inequality, recall
the compensation identity, Y; A;D(p;l|q) = ¥; AiD(pillp) + D(p||q), and apply the first inequality to
Y. D(pil||p) for the result.

O

This gives an upper bound on the Jensen—Shannon divergence, defined as JSD(u||v) =
%D(M lu/2+v/2) + %D(v\ |/2 +v/2). Let us also note that through the compensation identity

YiAiD(pillg) = ZiAiD(pillp) + D(pllg), XiAiD(pillg) > Y AiD(pil|lp) where p = Y A;p;. In the
case that A; = %

Y AiD(pill9)
> Y AiD(pillp) (58)
> Qf (1(_21{) +(1-Q)f (1RQ) + t*zw

Corollary 6. For two densities p1 and py, the Jensen—Shannon divergence satisfies the following,

1 /2> -

1
+ 7 (W 1p1 = p2lrv 2 (eallp) + (1= p1 = p2lrv )22 02 )

1—|ps —
BMmWﬁ2D<W3PmV

with p(i) defined above and p = p1/2 + p2/2.

Proof. Since (pﬁ_pw < 2and f(x) = xlogx satisfies f"'(x) > 1 on (0,2). Taking g = %, in the

n = 2 example of Corollary 4 with x = % yields the result. [
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Note that 2D((14 V) /2[|1/2) = (1+ V)log(1+ V) + (1 — V)log(1 — V) > V2loge, we see that
a further bound,

2,2 _ 2.2
ISD(pl[pa) > 82 4 LV erllp) + (0= VI alp), )

can be obtained for V = |p; — pa|7v.

On Topspe’s Sharpening of Pinsker’s Inequality

For P;, Q probability measures with densities p; and g with respect to a common reference measure,
© 1 ti =1, witht; > 0, denote P = Y ; t;P;, with density p = Y, t;p;, the compensation identity is

n n

Y tiD(Pi||Q) = D(P[|Q) + }_ ;D (B[ P). (61)

i=1 i=1
Theorem 9. For P and Py, denote My = 27%P; + (1 — 27\ P,, and define

Mk]l{PlSPZ} + Pz]l{P1>P2}

MiLip>pyy + Palip <pyy _
Mi{P; < P2} + P {P; > P}’

Mulk) = Mi{Py > P2} + P2 {P; < P}

Mo (k)

then the following sharpening of Pinsker’s inequality can be derived,

- 2(My(k), M 2(Ma(k), M
D(P1||P2) > (210g€)|P1 _P2|%"V+ sz <X ( 1(2) k+1) + X ( 2(2) k+l)) )
k=0

Proof. Whenn =2and t; =1t, = %, if we denote M = @, then (61) reads as

1 1
ED(PlHQ) + ED(PZHQ) = D(M||Q) +]JSD(Py||Py). (62)
Taking Q = P,, we arrive at
D(Py||P,) = 2D(M||P2) + 2JSD(P1 || P2) (63)

Tterating and writing My = 2P, + (1 —27%)P,, we have

D(Py||Py) =2" <D(Mn||P2) +2 ZJSD<Mn||P2>> (64)
k=0

It can be shown (see [11]) that 2"D(My,||P,) — 0 with n — oo, giving the following series
representation,

D(P1||P,) =2 Y 25ISD(My]|P»). (65)
k=0

Note that the p-decomposition of M is exactly p; = M(i), thus, by Corollary 6,

D(Py||P) =2 Y 25JSD(My||P>)
k=0

=) 2 2
2 Z zk <|Mk _ P2|%"V loge + X (Ml(g)/Mk-Fl) + X (MZ(I;)/ Mk+1)> (66)
k=0
oo 2 2
= (2loge) [P — Pof3y + ) 2F (X (Ml(?’M"“) +& (MZ(?’M"“)> .
k=0

Thus, we arrive at the desired sharpening of Pinsker’s inequality. [
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Observe that the k = 0 term in the above series is equivalent to

20 (E2M1(0), Mos1) | 22(Ma(0), Moin) | _ X2(pup) | X*(p2.p) (67)
2 2 2 2 ’
where p; is the convex decomposition of p = p1 2 in terms of T(x) = argmax{p1(x), p2(x)}.

5. Conclusions

In this article, we begin a systematic study of strongly convex divergences, and how the strength
of convexity of a divergence generator f, quantified by the parameter «, influences the behavior of
the divergence Dy. We prove that every strongly convex divergence dominates the square of the total
variation, extending the classical bound provided by the x2-divergence. We also study a general notion
of a skew divergence, providing new bounds, in particular for the generalized skew divergence of
Nielsen. Finally, we show how x-convexity can be leveraged to yield improvements of Bayes risk
f-divergence inequalities, and as a consequence achieve a sharpening of Pinsker’s inequality.

Funding: This research was funded by NSF grant CNS 1809194.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Theorem A1. The class of f-divergences is stable under skewing. That is, if f is convex, satisfying f(1) =0,
then

fo) = e+ -0 (2020 (a1

is convex with f(1) = 0 as well.

Proof. If u and v have respective densities u and v with respect to a reference measure 7y, then
ru+ (1 —r)vand tu + 1 — tv have densities ru + (1 — r)vand tu + (1 — t)v

Spaa(pl) = [ f (= e ) (e (1 oy (a2)
—/f( 8 3) (1—1))ody (A3)
:/f ) vdy. (Ad)

Since f(1) = f(1) = 0, we need only prove f convex. For this, recall that the conic transform g of a
convex function f defined by g(x,y) = yf(x/y) for y > 0is convex, since

Y1+Yy2 (Xl-l-xz }/1+y2> ity ( Y1 Y2 xz)
= 2 =2 A5
2 f 2 / 2 2 f ity ity (49
< Dftxi/y) + L (xa/v2). (A6)

Our result follows since f is the composition of the affine function A(x) = (rx 4 (1 —r),tx + (1 —t))
with the conic transform of f,

flx) = g(A(x)). (A7)
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