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1. Introduction

The concept of an f -divergence, introduced independently by Ali-Silvey [1], Morimoto [2],
and Csisizár [3], unifies several important information measures between probability distributions,
as integrals of a convex function f , composed with the Radon–Nikodym of the two probability
distributions. (An additional assumption can be made that f is strictly convex at 1, to ensure that
D f (µ||ν) > 0 for µ 6= ν. This obviously holds for any f ′′(1) > 0, and can hold for some f -divergences
without classical derivatives at 0, for instance the total variation is strictly convex at 1. An example
of an f -divergence not strictly convex is provided by the so-called “hockey-stick” divergence, where
f (x) = (x− γ)+, see [4–6].) For a convex function f : (0, ∞)→ R such that f (1) = 0, and measures
P and Q such that P � Q, the f -divergence from P to Q is given by D f (P||Q) :=

∫
f
(

dP
dQ

)
dQ. The

canonical example of an f -divergence, realized by taking f (x) = x log x, is the relative entropy (often
called the KL-divergence), which we denote with the subscript f omitted. f -divergences inherit
many properties enjoyed by this special case; non-negativity, joint convexity of arguments, and a data
processing inequality. Other important examples include the total variation, the χ2-divergence, and
the squared Hellinger distance. The reader is directed to Chapter 6 and 7 of [7] for more background.

We are interested in how stronger convexity properties of f give improvements of classical
f -divergence inequalities. More explicitly, we consider consequences of f being κ-convex, in the
sense that the map x 7→ f (x)− κx2/2 is convex. This is in part inspired by the work of Sason [8],
who demonstrated that divergences that are κ-convex satisfy “stronger than χ2” data-processing
inequalities.

Perhaps the most well known example of an f -divergence inequality is Pinsker’s inequality, which
bounds the square of the total variation above by a constant multiple of the relative entropy. That
is for probability measures P and Q, |P− Q|2TV ≤ c D(P||Q). The optimal constant is achieved for
Bernoulli measures, and under our conventions for total variation, c = 1/2 log e. Many extensions
and sharpenings of Pinsker’s inequality exist (for examples, see [9–11]). Building on the work of
Guntuboyina [9] and Topsøe [11], we achieve a further sharpening of Pinsker’s inequality in Theorem 9.

Aside from the total variation, most divergences of interest have stronger than affine convexity, at
least when f is restricted to a sub-interval of the real line. This observation is especially relevant to
the situation in which one wishes to study D f (P||Q) in the existence of a bounded Radon–Nikodym
derivative dP

dQ ∈ (a, b) ( (0, ∞). One naturally obtains such bounds for skew divergences. That is
divergences of the form (P, Q) 7→ D f ((1− t)P + tQ||(1− s)P + sQ) for t, s ∈ [0, 1], as in this case,
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(1−t)P+tQ
(1−s)P+sQ ≤ max

{
1−t
1−s , t

s

}
. Important examples of skew-divergences include the skew divergence

[12] based on the relative entropy and the Vincze–Le Cam divergence [13,14], called the triangular
discrimination in [11] and its generalization due to Györfi and Vajda [15] based on the χ2-divergence.
The Jensen–Shannon divergence [16] and its recent generalization [17] give examples of f -divergences
realized as linear combinations of skewed divergences.

Let us outline the paper. In Section 2, we derive elementary results of κ-convex divergences and
give a table of examples of κ-convex divergences. We demonstrate that κ-convex divergences can
be lower bounded by the χ2-divergence, and that the joint convexity of the map (P, Q) 7→ D f (P||Q)

can be sharpened under κ-convexity conditions on f . As a consequence, we obtain bounds between
the mean square total variation distance of a set of distributions from its barycenter, and the average
f -divergence from the set to the barycenter.

In Section 3, we investigate general skewing of f -divergences. In particular, we introduce
the skew-symmetrization of an f -divergence, which recovers the Jensen–Shannon divergence and
the Vincze–Le Cam divergences as special cases. We also show that a scaling of the Vincze–Le
Cam divergence is minimal among skew-symmetrizations of κ-convex divergences on (0, 2). We
then consider linear combinations of skew divergences and show that a generalized Vincze–Le
Cam divergence (based on skewing the χ2-divergence) can be upper bounded by the generalized
Jensen–Shannon divergence introduced recently by Nielsen [17] (based on skewing the relative
entropy), reversing the classical convexity bounds D(P||Q) ≤ log(1 + χ2(P||Q)) ≤ log e χ2(P||Q).
We also derive upper and lower total variation bounds for Nielsen’s generalized Jensen–Shannon
divergence.

In Section 4, we consider a family of densities {pi} weighted by λi, and a density q. We use
the Bayes estimator T(x) = arg maxi λi pi(x) to derive a convex decomposition of the barycenter
p = ∑i λi pi and of q, each into two auxiliary densities. (Recall, a Bayes estimator is one that minimizes
the expected value of a loss function. By the assumptions of our model, that P(θ = i) = λi, and
P(X ∈ A|θ = i) =

∫
A pi(x)dx, we have E`(θ, θ̂) = 1−

∫
λθ̂(x)pθ̂(x)(x)dx for the loss function `(i, j) =

1− δi(j) and any estimator θ̂. It follows that E`(θ, θ̂) ≥ E`(θ, T) by λθ̂(x)pθ̂(x)(x) ≤ λT(x)pT(x)(x).
Thus, T is a Bayes estimator associated to `. ) We use this decomposition to sharpen, for κ-convex
divergences, an elegant theorem of Guntuboyina [9] that generalizes Fano and Pinsker’s inequality to
f -divergences. We then demonstrate explicitly, using an argument of Topsøe, how our sharpening
of Guntuboyina’s inequality gives a new sharpening of Pinsker’s inequality in terms of the convex
decomposition induced by the Bayes estimator.

Notation

Throughout, f denotes a convex function f : (0, ∞)→ R∪ {∞}, such that f (1) = 0. For a convex
function defined on (0, ∞), we define f (0) := limx→0 f (x). We denote by f ∗, the convex function
f ∗ : (0, ∞)→ R∪ {∞} defined by f ∗(x) = x f (x−1). We consider Borel probability measures P and Q
on a Polish space X and define the f -divergence from P to Q, via densities p for P and q for Q with
respect to a common reference measure µ as

D f (p||q) =
∫
X

f
(

p
q

)
qdµ

=
∫
{pq>0}

q f
(

p
q

)
dµ + f (0)Q({p = 0}) + f ∗(0)P({q = 0}).

(1)

We note that this representation is independent of µ, and such a reference measure always exists,
take µ = P + Q for example.

For t, s ∈ [0, 1], define the binary f -divergence

D f (t||s) := s f
(

t
s

)
+ (1− s) f

(
1− t
1− s

)
(2)
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with the conventions, f (0) = limt→0+ f (t), 0 f (0/0) = 0, and 0 f (a/0) = a limt→∞ f (t)/t. For a
random variable X and a set A, we denote the probability that X takes a value in A by P(X ∈ A),
the expectation of the random variable by EX, and the variance by Var(X) := E|X − EX|2. For a
probability measure µ satisfying µ(A) = P(X ∈ A) for all Borel A, we write X ∼ µ, and, when there
exists a probability density function such that P(X ∈ A) =

∫
A f (x)dγ(x) for a reference measure

γ, we write X ∼ f . For a probability measure µ on X , and an L2 function f : X → R, we denote
Varµ( f ) := Var( f (X)) for X ∼ µ.

2. Strongly Convex Divergences

Definition 1. A R∪ {∞}-valued function f on a convex set K ⊆ R is κ-convex when x, y ∈ K and t ∈ [0, 1]
implies

f ((1− t)x + ty) ≤ (1− t) f (x) + t f (y)− κt(1− t)(x− y)2/2. (3)

For example, when f is twice differentiable, (3) is equivalent to f ′′(x) ≥ κ for x ∈ K. Note that
the case κ = 0 is just usual convexity.

Proposition 1. For f : K → R∪ {∞} and κ ∈ [0, ∞), the following are equivalent:

1. f is κ-convex.
2. The function f − κ(t− a)2/2 is convex for any a ∈ R.
3. The right handed derivative, defined as f ′+(t) := limh↓0

f (t+h)− f (t)
h satisfies,

f ′+(t) ≥ f ′+(s) + κ(t− s)

for t ≥ s.

Proof. Observe that it is enough to prove the result when κ = 0, where the proposition is reduced to
the classical result for convex functions.

Definition 2. An f -divergence D f is κ-convex on an interval K for κ ≥ 0 when the function f is κ-convex on
K.

Table 1 lists some κ-convex f -divergences of interest to this article.

Table 1. Examples of Strongly Convex Divergences.

Divergence f κ Domain

relative entropy (KL) t log t 1
M (0, M]

total variation |t−1|
2 0 (0, ∞)

Pearson’s χ2 (t− 1)2 2 (0, ∞)

squared Hellinger 2(1−
√

t) M−
3
2 /2 (0, M]

reverse relative entropy − log t 1/M2 (0, M]

Vincze- Le Cam (t−1)2

t+1
8

(M+1)3 (0, M]

Jensen–Shannon (t + 1) log 2
t+1 + t log t 1

M(M+1) (0, M]

Neyman’s χ2 1
t − 1 2/M3 (0, M]

Sason’s s log(s + t)(s+t)2 − log(s + 1)(s+1)2
2 log(s + M) + 3 [M, ∞), s > e−3/2

α-divergence
4
(

1−t
1+α

2
)

1−α2 , α 6= ±1 M
α−3

2

{
[M, ∞), α > 3
(0, M], α < 3

Observe that we have taken the normalization convention on the total variation (the total variation
for a signed measure µ on a space X can be defined through the Hahn-Jordan decomposition of the
measure into non-negative measures µ+ and µ− such that µ = µ+ − µ−, as ‖µ‖ = µ+(X) + µ−(X)
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(see [18]); in our notation, |µ|TV = ‖µ‖/2) which we denote by |P− Q|TV , such that |P− Q|TV =

supA |P(A)−Q(A)| ≤ 1. In addition , note that the α-divergence interpolates Pearson’s χ2-divergence
when α = 3, one half Neyman’s χ2-divergence when α = −3, the squared Hellinger divergence when
α = 0, and has limiting cases, the relative entropy when α = 1 and the reverse relative entropy when
α = −1. If f is κ-convex on [a, b], then recalling its dual divergence f ∗(x) := x f (x−1) is κa3-convex on
[ 1

b , 1
a ]. Recall that f ∗ satisfies the equality D f ∗(P||Q) = D f (Q||P). For brevity, we use χ2-divergence to

refer to the Pearson χ2-divergence, and we articulate Neyman’s χ2 explicitly when necessary.
The next lemma is a restatement of Jensen’s inequality.

Lemma 1. If f is κ-convex on the range of X,

E f (X) ≥ f (E(X)) +
κ

2
Var(X).

Proof. Apply Jensen’s inequality to f (x)− κx2/2.

For a convex function f such that f (1) = 0 and c ∈ R, the function f̃ (t) = f (t) + c(t− 1) remains
a convex function, and what is more satisfies

D f (P||Q) = D f̃ (P||Q)

since
∫

c(p/q− 1)qdµ = 0.

Definition 3 (χ2-divergence). For f (t) = (t− 1)2, we write

χ2(P||Q) := D f (P||Q).

We pursue a generalization of the following bound on the total variation by the χ2-divergence
[19–21].

Theorem 1 ([19–21]). For measures P and Q,

|P−Q|2TV ≤
χ2(P||Q)

2
. (4)

We mention the work of Harremos and Vadja [20], in which it is shown, through a characterization
of the extreme points of the joint range associated to a pair of f -divergences (valid in general), that
the inequality characterizes the “joint range”, that is, the range of the function (P, Q) 7→ (|P −
Q|TV , χ2(P||Q)). We use the following lemma, which shows that every strongly convex divergence
can be lower bounded, up to its convexity constant κ > 0, by the χ2-divergence,

Lemma 2. For a κ-convex f ,
D f (P||Q) ≥ κ

2
χ2(P||Q).

Proof. Define a f̃ (t) = f (t)− f ′+(1)(t− 1) and note that f̃ defines the same κ-convex divergence as
f . Thus, we may assume without loss of generality that f ′+ is uniquely zero when t = 1. Since f is
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κ-convex φ : t 7→ f (t)− κ(t− 1)2/2 is convex, and, by f ′+(1) = 0, φ′+(1) = 0 as well. Thus, φ takes its
minimum when t = 1 and hence φ ≥ 0 so that f (t) ≥ κ(t− 1)2/2. Computing,

D f (P||Q) =
∫

f
(

dP
dQ

)
dQ

≥ κ

2

∫ ( dP
dQ
− 1
)2

dQ

=
κ

2
χ2(P||Q).

Based on a Taylor series expansion of f about 1, Nielsen and Nock ([22], [Corollary 1]) gave the
estimate

D f (P||Q) ≈ f ′′(1)
2

χ2(P||Q) (5)

for divergences with a non-zero second derivative and P close to Q. Lemma 2 complements this
estimate with a lower bound, when f is κ-concave. In particular, if f ′′(1) = κ, it shows that the
approximation in (5) is an underestimate.

Theorem 2. For measures P and Q, and a κ convex divergence D f ,

|P−Q|2TV ≤
D f (P||Q)

κ
. (6)

Proof. By Lemma 2 and then Theorem 1,

D f (P||Q)

κ
≥ χ2(P||Q)

2
≥ |P−Q|TV . (7)

The proof of Lemma 2 uses a pointwise inequality between convex functions to derive an
inequality between their respective divergences. This simple technique was shown to have useful
implications by Sason and Verdu in [6], where it appears as Theorem 1 and is used to give sharp
comparisons in several f -divergence inequalities.

Theorem 3 (Sason–Verdu [6]). For divergences defined by g and f with c f (t) ≥ g(t) for all t, then

Dg(P||Q) ≤ cD f (P||Q).

Moreover, if f ′(1) = g′(1) = 0, then

sup
P 6=Q

Dg(P||Q)

D f (P||Q)
= sup

t 6=1

g(t)
f (t)

.

Corollary 1. For a smooth κ-convex divergence f , the inequality

D f (P||Q) ≥ κ

2
χ2(P||Q) (8)

is sharp multiplicatively in the sense that

inf
P 6=Q

D f (P||Q)

χ2(P||Q)
=

κ

2
. (9)
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if f ′′(1) = κ.

In information geometry, a standard f -divergence is defined as an f -divergence satisfying the
normalization f (1) = f ′(1) = 0, f ′′(1) = 1 (see [23]). Thus, Corollary 1 shows that 1

2 χ2 provides a
sharp lower bound on every standard f -divergence that is 1-convex. In particular, the lower bound in
Lemma 2 complimenting the estimate (5) is shown to be sharp.

Proof. Without loss of generality, we assume that f ′(1) = 0. If f ′′(1) = κ + 2ε for some ε > 0, then
taking g(t) = (t− 1)2 and applying Theorem 3 and Lemma 2

sup
P 6=Q

Dg(P||Q)

D f (P||Q)
= sup

t 6=1

g(t)
f (t)
≤ 2

κ
. (10)

Observe that, after two applications of L’Hospital,

lim
ε→0

g(1 + ε)

f (1 + ε)
= lim

ε→0

g′(1 + ε)

f ′(1 + ε)
=

g′′(1)
f ′′(1)

=
2
κ
≤ sup

t 6=1

g(t)
f (t)

.

Thus, (9) follows.

Proposition 2. When D f is an f divergence such that f is κ-convex on [a, b] and that Pθ and Qθ are probability
measures indexed by a set Θ such that a ≤ dPθ

dQθ
(x) ≤ b, holds for all θ and P :=

∫
Θ Pθdµ(θ) and Q :=∫

Θ Qθdµ(θ) for a probability measure µ on Θ, then

D f (P||Q) ≤
∫

Θ
D f (Pθ ||Qθ)dµ(θ)− κ

2

∫
Θ

∫
X

(
dPθ

dQθ
− dP

dQ

)2
dQdµ, (11)

In particular, when Qθ = Q for all θ

D f (P||Q)

≤
∫

Θ
D f (Pθ ||Q)dµ(θ)− κ

2

∫
Θ

∫
X

(
dPθ

dQ
− dP

dQ

)2
dQdµ(θ)

≤
∫

Θ
D f (Pθ ||Q)dµ(θ)− κ

∫
Θ
|Pθ − P|2TVdµ(θ)

(12)

Proof. Let dθ denote a reference measure dominating µ so that dµ = ϕ(θ)dθ then write νθ = ν(θ, x) =
dQθ
dQ (x)ϕ(θ).

D f (P||Q) =
∫
X

f
(

dP
dQ

)
dQ

=
∫
X

f
(∫

Θ

dPθ

dQ
dµ(θ)

)
dQ

=
∫
X

f
(∫

Θ

dPθ

dQθ
ν(θ, x)dθ

)
dQ

(13)

By Jensen’s inequality, as in Lemma 1

f
(∫

Θ

dPθ

dQθ
νθdθ

)
≤
∫

θ
f
(

dPθ

dQθ

)
νθdθ − κ

2

∫
Θ

(
dPθ

dQθ
−
∫

Θ

dPθ

dQθ
νθdθ

)2
νθdθ
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Integrating this inequality gives

D f (P||Q) ≤
∫
X

(∫
θ

f
(

dPθ

dQθ

)
νθdθ − κ

2

∫
Θ

(
dPθ

dQθ
−
∫

Θ

dPθ

dQθ
νθdθ

)2
νθdθ

)
dQ (14)

Note that ∫
X

∫
Θ

(
dPθ

dQθ
dQ−

∫
Θ

dPθ

dQθ0

νθ0 dθ0

)2
νθdθdQ =

∫
Θ

∫
X

(
dPθ

dQθ
− dP

dQ

)2
dQdµ,

and ∫
X

∫
Θ

f
(

dPθ

dQθ

)
ν(θ, x)dθdQ =

∫
Θ

∫
X

f
(

dPθ

dQθ

)
ν(θ, x)dQdθ

=
∫

Θ

∫
X

f
(

dPθ

dQθ

)
dQθdµ(θ)

=
∫

Θ
D(Pθ ||Qθ)dµ(θ)

(15)

Inserting these equalities into (14) gives the result.
To obtain the total variation bound, one needs only to apply Jensen’s inequality,

∫
X

(
dPθ

dQ
− dP

dQ

)2
dQ ≥

(∫
X

∣∣∣∣dPθ

dQ
− dP

dQ

∣∣∣∣ dQ
)2

= |Pθ − P|2TV .

(16)

Observe that, taking Q = P =
∫

Θ Pθdµ(θ) in Proposition 2, one obtains a lower bound for the
average f -divergence from the set of distribution to their barycenter, by the mean square total variation
of the set of distributions to the barycenter,

κ
∫

Θ
|Pθ − P|2TVdµ(θ) ≤

∫
Θ

D f (Pθ ||P)dµ(θ). (17)

An alternative proof of this can be obtained by applying |Pθ − P|2TV ≤ D f (Pθ ||P)/κ from
Theorem 2 pointwise.

The next result shows that, for f strongly convex, Pinsker type inequalities can never be reversed,

Proposition 3. Given f strongly convex and M > 0, there exists P, Q measures such that

D f (P||Q) ≥ M|P−Q|TV . (18)

Proof. By κ-convexity φ(t) = f (t)− κt2/2 is a convex function. Thus, φ(t) ≥ φ(1) + φ′+(1)(t− 1) =

( f ′+(1)− κ)(t− 1) and hence limt→∞
f (t)

t ≥ limt→∞ κt/2+( f ′+(1)− κ)
(

1− 1
t

)
= ∞. Taking measures

on the two points space P = {1/2, 1/2} and Q = {1/2t, 1− 1/2t} gives D f (P||Q) ≥ 1
2

f (t)
t which

tends to infinity with t→ ∞, while |P−Q|TV ≤ 1.

In fact, building on the work of Basu-Shioya-Park [24] and Vadja [25], Sason and Verdu proved [6]

that, for any f divergence, supP 6=Q
D f (P||Q)

|P−Q|TV
= f (0) + f ∗(0). Thus, an f -divergence can be bounded

above by a constant multiple of a the total variation, if and only if f (0) + f ∗(0) < ∞. From this
perspective, Proposition 3 is simply the obvious fact that strongly convex functions have super linear
(at least quadratic) growth at infinity.
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3. Skew Divergences

If we denote Cvx(0, ∞) to be quotient of the cone of convex functions f on (0, ∞) such that
f (1) = 0 under the equivalence relation f1 ∼ f2 when f1 − f2 = c(x − 1) for c ∈ R, then the map
f 7→ D f gives a linear isomorphism between Cvx(0, ∞) and the space of all f -divergences. The
mapping T : Cvx(0, ∞) → Cvx(0, ∞) defined by T f = f ∗, where we recall f ∗(t) = t f (t−1), gives
an involution of Cvx(0, ∞). Indeed, DT f (P||Q) = D f (Q||P), so that DT (T ( f ))(P||Q) = D f (P||Q).
Mathematically, skew divergences give an interpolation of this involution as

(P, Q) 7→ D f ((1− t)P + tQ||(1− s)P + sQ)

gives D f (P||Q) by taking s = 1 and t = 0 or yields D f ∗(P||Q) by taking s = 0 and t = 1.
Moreover, as mentioned in the Introduction, skewing imposes boundedness of the

Radon–Nikodym derivative dP
dQ , which allows us to constrain the domain of f -divergences and

leverage κ-convexity to obtain f -divergence inequalities in this section.
The following appears as Theorem III.1 in the preprint [26]. It states that skewing an f -divergence

preserves its status as such. This guarantees that the generalized skew divergences of this section are
indeed f -divergences. A proof is given in the Appendix A for the convenience of the reader.

Theorem 4 (Melbourne et al [26]). For t, s ∈ [0, 1] and a divergence D f , then

S f (P||Q) := D f ((1− t)P + tQ||(1− s)P + sQ) (19)

is an f -divergence as well.

Definition 4. For an f -divergence, its skew symmetrization,

∆ f (P||Q) :=
1
2

D f

(
P
∣∣∣∣∣∣∣∣P + Q

2

)
+

1
2

D f

(
Q
∣∣∣∣∣∣∣∣P + Q

2

)
.

∆ f is determined by the convex function

x 7→ 1 + x
2

(
f
(

2x
1 + x

)
+ f

(
2

1 + x

))
. (20)

Observe that ∆ f (P||Q) = ∆ f (Q||P), and when f (0) < ∞, ∆ f (P||Q) ≤ supx∈[0,2] f (x) < ∞ for all P, Q

since dP
d(P+Q)/2 , dQ

d(P+Q)/2 ≤ 2. When f (x) = x log x, the relative entropy’s skew symmetrization is the

Jensen–Shannon divergence. When f (x) = (x− 1)2 up to a normalization constant the χ2-divergence’s
skew symmetrization is the Vincze–Le Cam divergence which we state below for emphasis. The work
of Topsøe [11] provides more background on this divergence, where it is referred to as the triangular
discrimination.

Definition 5. When f (t) = (t−1)2

t+1 , denote the Vincze–Le Cam divergence by

∆(P||Q) := D f (P||Q).

If one denotes the skew symmetrization of the χ2-divergence by ∆χ2 , one can compute easily from
(20) that ∆χ2(P||Q) = ∆(P||Q)/2. We note that although skewing preserves 0-convexity, by the above
example, it does not preserve κ-convexity in general. The skew symmetrization of the χ2-divergence a
2-convex divergence while f (t) = (t− 1)2/(t + 1) corresponding to the Vincze–Le Cam divergence
satisfies f ′′(t) = 8

(t+1)3 , which cannot be bounded away from zero on (0, ∞).
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Corollary 2. For an f -divergence such that f is a κ-convex on (0, 2),

∆ f (P||Q) ≥ κ

4
∆(P||Q) =

κ

2
∆χ2(P||Q), (21)

with equality when the f (t) = (t − 1)2 corresponding the the χ2-divergence, where ∆ f denotes the skew
symmetrized divergence associated to f and ∆ is the Vincze- Le Cam divergence.

Proof. Applying Proposition 2

0 = D f

(
P + Q

2

∣∣∣∣∣∣∣∣Q + P
2

)
≤ 1

2
D f

(
P
∣∣∣∣∣∣∣∣Q + P

2

)
+

1
2

D f

(
Q
∣∣∣∣∣∣∣∣Q + P

2

)
− κ

8

∫ ( 2P
P + Q

− 2Q
P + Q

)2
d(P + Q)/2

= ∆ f (P||Q)− κ

4
∆(P||Q).

When f (x) = x log x, we have f ′′(x) ≥ log e
2 on [0, 2], which demonstrates that up to a constant

log e
8 the Jensen–Shannon divergence bounds the Vincze–Le Cam divergence (see [11] for improvement

of the inequality in the case of the Jensen–Shannon divergence, called the “capacitory discrimination”
in the reference, by a factor of 2).

We now investigate more general, non-symmetric skewing in what follows.

Proposition 4. For α, β ∈ [0, 1], define

C(α) :=

{
1− α when α ≤ β

α when α > β,
(22)

and
Sα,β(P||Q) := D((1− α)P + αQ||(1− β)P + βQ). (23)

Then,
Sα,β(P||Q) ≤ C(α)D∞(α||β)|P−Q|TV , (24)

where D∞(α||β) := log
(

max
{

α
β , 1−α

1−β

})
is the binary ∞-Rényi divergence [27].

We need the following lemma originally proved by Audenart in the quantum setting [28]. It is
based on a differential relationship between the skew divergence [12] and the [15] (see [29,30]).

Lemma 3 (Theorem III.1 [26]). For P and Q probability measures and t ∈ [0, 1],

S0,t(P||Q) ≤ − log t|P−Q|TV . (25)

Proof of Theorem 4. If α ≤ β, then D∞(α||β) = log 1−α
1−β and C(α) = 1− α. In addition,

(1− β)P + βQ = t ((1− α)P + αQ) + (1− t)Q (26)

with t = 1−β
1−α , thus

Sα,β(P||Q) = S0,t((1− α)P + αQ||Q)

≤ (− log t) |((1− α)P + αQ)−Q|TV

= C(α) D∞(α||β) |P−Q|TV ,

(27)
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where the inequality follows from Lemma 3. Following the same argument for α > β, so that C(α) = α,
D∞(α||β) = log α

β , and

(1− β)P + βQ = t ((1− α)P + αQ) + (1− t)P (28)

for t = β
α completes the proof. Indeed,

Sα,β(P||Q) = S0,t((1− α)P + αQ||P)
≤ − log t |((1− α)P + αQ)− P|TV

= C(α) D∞(α||β) |P−Q|TV .

(29)

We recover the classical bound [11,16] of the Jensen–Shannon divergence by the total variation.

Corollary 3. For probability measure P and Q,

JSD(P||Q) ≤ log 2 |P−Q|TV (30)

Proof. Since JSD(P||Q) = 1
2 S0, 1

2
(P||Q) + 1

2 S1, 1
2
(P||Q).

Proposition 4 gives a sharpening of Lemma 1 of Nielsen [17], who proved Sα,β(P||Q) ≤ D∞(α||β),
and used the result to establish the boundedness of a generalization of the Jensen–Shannon Divergence.

Definition 6 (Nielsen [17]). For p and q densities with respect to a reference measure µ, wi > 0, such that
∑n

i=1 wi = 1 and αi ∈ [0, 1], define

JSα,w(p : q) =
n

∑
i=1

wi D((1− αi)p + αiq||(1− ᾱ)p + ᾱq) (31)

where ∑n
i=1 wiαi = ᾱ.

Note that, when n = 2, α1 = 1, α2 = 0 and wi = 1
2 , JSα,w(p : q) = JSD(p||q), the usual

Jensen–Shannon divergence. We now demonstrate that Nielsen’s generalized Jensen–Shannon
Divergence can be bounded by the total variation distance just as the ordinary Jensen–Shannon
Divergence.

Theorem 5. For p and q densities with respect to a reference measure µ, wi > 0, such that ∑n
i=1 wi = 1 and

αi ∈ (0, 1),
log e Varw(α) |p− q|2TV ≤ JSα,w(p : q) ≤ A H(w) |p− q|TV (32)

where H(w) := −∑i wi log wi≥ 0 and A = maxi |αi − ᾱi| with ᾱi = ∑j 6=i
wjαj
1−wi

.

Note that, since ᾱi is the w average of the αj terms with αi removed, ᾱi ∈ [0, 1] and thus A ≤ 1.
We need the following Theorem from Melbourne et al. [26] for the upper bound.

Theorem 6 ([26] Theorem 1.1). For fi densities with respect to a common reference measure γ and λi > 0
such that ∑n

i=1 λi = 1,
hγ(∑

i
λi fi)−∑

i
λihγ( fi) ≤ T H(λ), (33)

where hγ( fi) := −
∫

fi(x) log fi(x)dγ(x) and T = supi | fi − f̃i|TV with f̃i = ∑j 6=i
λj

1−λi
f j.
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Proof of Theorem 5. We apply Theorem 6 with fi = (1− αi)p + αiq, λi = wi, and noticing that in
general

hγ(∑
i

λi fi)−∑
i

λhγ( fi) = ∑
i

λiD( fi|| f ), (34)

we have

JSα,w(p : q) =
n

∑
i=1

wiD((1− αi)p + αiq||(1− ᾱ)p + ᾱq)

≤ T H(w).

(35)

It remains to determine T = maxi | fi − f̃i|TV ,

f̃i − fi =
f − fi
1− λi

=
((1− ᾱ)p + ᾱq)− ((1− αi)p + αiq)

1− wi

=
(αi − ᾱ)(p− q)

1− wi

= (αi − ᾱi)(p− q).

(36)

Thus, T = maxi(αi − ᾱi)|p− q|TV = A|p− q|TV , and the proof of the upper bound is complete.

To prove the lower bound, we apply Pinsker’s inequality, 2 log e|P−Q|2TV ≤ D(P||Q),

JSα,w(p : q) =
n

∑
i=1

wiD((1− αi)p + αiq||(1− ᾱ)p + ᾱq)

≥ 1
2

n

∑
i=1

wi2 log e |((1− αi)p + αiq)− ((1− ᾱ)p + ᾱq)|2TV

= log e
n

∑
i=1

wi(αi − ᾱ)2|p− q|2TV

= log e Varw(α) |p− q|2TV .

(37)

Definition 7. Given an f -divergence, densities p and q with respect to common reference measure, α ∈ [0, 1]n

and w ∈ (0, 1)n such that ∑i wi = 1 define its generalized skew divergence

Dα,w
f (p : q) =

n

∑
i=1

wiD f ((1− αi)p + αiq||(1− ᾱ)p + ᾱq). (38)

where ᾱ = ∑i wiαi.

Note that, by Theorem 4, Dα,w
f is an f -divergence. The generalized skew divergence of the

relative entropy is the generalized Jensen–Shannon divergence JSα,w. We denote the generalized skew
divergence of the χ2-divergence from p to q by

χ2
α,w(p : q) := ∑

i
wiχ

2((1− αi)p + αiq||(1− ᾱp + ᾱq) (39)
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Note that, when n = 2 and α1 = 0, α2 = 1 and wi = 1
2 , we recover the skew symmetrized

divergence in Definition 4
D(0,1),(1/2,1/2)

f (p : q) = ∆ f (p||q) (40)

The following theorem shows that the usual upper bound for the relative entropy by the
χ2-divergence can be reversed up to a factor in the skewed case.

Theorem 7. For p and q with a common dominating measure µ,

χ2
α,w(p : q) ≤ N∞(α, w)JSα,w(p : q).

Writing N∞(α, w) = maxi max
{

1−αi
1−ᾱ , αi

ᾱ

}
. For α ∈ [0, 1]n and w ∈ (0, 1)n such that ∑i wi = 1, we

use the notation N∞(α, w) := maxi eD∞(αi ||ᾱ) where ᾱ := ∑i wiαi.

Proof. By definition,

JSα,w(p : q) =
n

∑
i=1

wiD((1− αi)p + αiq||(1− ᾱ)p + ᾱq).

Taking Pi to be the measure associated to (1− αi)p + αiq and Q given by (1− ᾱ)p + ᾱq, then

dPi
dQ

=
(1− αi)p + αiq
(1− ᾱ)p + ᾱq

≤ max
{

1− αi
1− ᾱ

,
αi
ᾱ

}
= eD∞(αi ||ᾱ) ≤ N∞(α, w). (41)

Since f (x) = x log x, the convex function associated to the usual KL divergence, satisfies f ′′(x) = 1
x , f

is e−D∞(α)-convex on [0, supx,i
dPi
dQ (x)], applying Proposition 2, we obtain

D

(
∑

i
wiPi

∣∣∣∣∣∣∣∣Q
)
≤∑

i
wiD(Pi||Q)−

∑i wi
∫
X

(
dPi
dQ −

dP
dQ

)2
dQ

2N∞(α, w)
. (42)

Since Q = ∑i wiPi, the left hand side of (42) is zero, while

∑
i

wi

∫
X

(
dPi
dQ
− dP

dQ

)2
dQ = ∑

i
wi

∫
X

(
dPi
dP
− 1
)2

dP

= ∑
i

wiχ
2(Pi||P)

= χ2
α,w(p : q).

(43)

Rearranging gives,
χ2

α,w(p : q)
2N∞(α, w)

≤ JSα,w(p : q), (44)

which is our conclusion.

4. Total Variation Bounds and Bayes Risk

In this section, we derive bounds on the Bayes risk associated to a family of probability measures
with a prior distribution λ. Let us state definitions and recall basic relationships. Given probability
densities {pi}n

i=1 on a space X with respect a reference measure µ and λi ≥ 0 such that ∑n
i=1 λi = 1,

define the Bayes risk,

R := Rλ(p):=1−
∫
X

max
i
{λi pi(x)}dµ(x) (45)
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If `(x, y) = 1− δx(y), and we define T(x) := arg maxi λi pi(x) then observe that this definition is
consistent with, the usual definition of the Bayes risk associated to the loss function `. Below, we
consider θ to be a random variable on {1, 2, . . . , n} such that P(θ = i) = λi, and x to be a variable with
conditional distribution P(X ∈ A|θ = i) =

∫
A pi(x)dµ(x). The following result shows that the Bayes

risk gives the probability of the categorization error, under an optimal estimator.

Proposition 5. The Bayes risk satisfies

R = min
θ̂

E`(θ, θ̂(X)) = E`(θ, T(X))

where the minimum is defined over θ̂ : X → {1, 2, . . . , n}.

Proof. Observe that R = 1−
∫
X λT(x)pT(x)(x)dµ(x) = E`(θ, T(X)). Similarly,

E`(θ, θ̂(X)) = 1−
∫
X

λθ̂(x)pθ̂(x)(x)dµ(x)

≥ 1−
∫
X

λT(x)pT(x)(x)dµ(x) = R,

which gives our conclusion.

It is known (see, for example, [9,31]) that the Bayes risk can also be tied directly to the total variation
in the following special case, whose proof we include for completeness.

Proposition 6. When n = 2 and λ1 = λ2 = 1
2 , the Bayes risk associated to the densities p1 and p2 satisfies

2R = 1− |p1 − p2|TV (46)

Proof. Since pT = |p1−p2|+p1+p2
2 , integrating gives

∫
X pT(x)dµ(x) = |p1 − p2|TV + 1 from which the

equality follows.

Information theoretic bounds to control the Bayes and minimax risk have an extensive literature
(see, for example, [9,32–35]). Fano’s inequality is the seminal result in this direction, and we direct
the reader to a survey of such techniques in statistical estimation (see [36]). What follows can be
understood as a sharpening of the work of Guntuboyina [9] under the assumption of a κ-convexity.

The function T(x) = arg maxi{λi pi(x)} induces the following convex decompositions of our
densities. The density q can be realized as a convex combination of q1 = λTq

1−Q where Q = 1−
∫

λTqdµ

and q2 = (1−λT)q
Q ,

q = (1−Q)q1 + Qq2.

If we take p := ∑i λi pi, then p can be decomposed as ρ1 = λT pT
1−R and ρ2 = p−λT pT

R so that

p = (1− R)ρ1 + Rρ2.

Theorem 8. When f is κ-convex, on (a, b) with a = infi,x
pi(x)
q(x) and b = supi,x

pi(x)
q(x)

∑
i

λiD f (pi||q) ≥ D f (R||Q) +
κW

2

where

W := W(λi, pi, q) :=
(1− R)2

1−Q
χ2(ρ1||q1) +

R2

Q
χ2(ρ2||q2) + W0

for W0 ≥ 0.
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W0 can be expressed explicitly as

W0 =
∫
(1− λT)Varλi 6=T

(
pi
q

)
dµ =

∫
∑
i 6=T

λi
|pi −∑j 6=T

λj
1−λT

pj|2

q
dµ,

where for fixed x, we consider the variance Varλi 6=T

(
pi
q

)
to be the variance of a random variable

taking values pi(x)/q(x) with probability λi/(1− λT(x)) for i 6= T(x). Note this term is a non-zero
term only when n > 2.

Proof. For a fixed x, we apply Lemma 1

∑
i

λi f
(

pi
q

)
= λT f

(
pT
q

)
+ (1− λT) ∑

i 6=T

λi
1− λT

f
(

pi
q

)
≥ λT f

(
pT
q

)
+ (1− λT)

[
f
(

p− λT pT
q(1− λT)

)
+

κ

2
Varλi 6=T

(
pi
q

)] (47)

Integrating,

∑
i

λiD f (pi||q) ≥
∫

λT f
(

pT
q

)
q +

∫
(1− λT) f

(
−λT pT + ∑i λi pi

q(1− λT)

)
q +

κ

2
W0, (48)

where

W0 =
∫

∑
i 6=T(x)

λi
1− λT(x)

|pi −∑j 6=T
λj

1−λT
pj|2

q
dµ. (49)

Applying the κ-convexity of f ,

∫
λT f

(
pT
q

)
q = (1−Q)

∫
q1 f

(
pT
q

)
≥ (1−Q)

(
f
(∫

λT pT

1−Q

)
+

κ

2
Varq1

(
pT
q

))
= (1−Q) f ((1− R)/(1−Q)) +

Qκ

2
W1,

(50)

with

W1 := Varq1

(
pT
q

)
=

(
1− R
1−Q

)2
Varq1

(
λT pT
λTq

1−Q
1− R

)
=

(
1− R
1−Q

)2
Varq1

(
ρ1

q1

)
=

(
1− R
1−Q

)2
χ2(ρ1||q1)

(51)
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Similarly,

∫
(1− λT) f

(
p− λT pT
q(1− λT)

)
q = Q

∫
q2 f

(
p− λT pT
q(1− λT)

)
≥ Q f

(∫
q2

p− λT pT
q(1− λT)

)
+

Qκ

2
W2

= Q f
(

R
1−Q

)
+

Qκ

2
W2

(52)

where

W2 := Varq2

(
p− λT pT
q(1− λT)

)
=

(
R
Q

)2
Varq2

(
p− λT pT
q(1− λT)

Q
R

)
=

(
R
Q

)2
Varq2

(
p− λT pT
q(1− λT)

− R
Q

)2

=

(
R
Q

)2 ∫
q2

(
ρ2

q2
− 1
)2

=

(
R
Q

)2
χ2(ρ2||q2)

(53)

Writing W = W0 + W1 + W2, we have our result.

Corollary 4. When λi =
1
n , and f is κ-convex on (infi,x pi/q, supi,x pi/q)

1
n ∑

i
D f (pi||q)

≥ D f (R||(n− 1)/n) +
κ

2

(
n2(1− R)2χ2(ρ1||q) +

(
nR

n− 1

)2
χ2(ρ2||q) + W0

) (54)

further when n = 2,

D f (p1||q) + D f (p2||q)
2

≥ D f

(
1− |p1 − p2|TV

2

∣∣∣∣∣∣∣∣12
)

+
κ

2

(
(1 + |p1 − p2|TV)

2χ2(ρ1||q) + (1− |p1 − p2|TV)
2χ2(ρ2||q)

)
.

(55)

Proof. Note that q1 = q2 = q, since λi =
1
n implies λT = 1

n as well. In addition, Q = 1−
∫

λTqdµ =
n−1

n so that applying Theorem 8 gives

n

∑
i=1

D f (pi||q) ≥ nD f (R||(n− 1)/n) +
κnW(λi, pi, q)

2
. (56)
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The term W can be simplified as well. In the notation of the proof of Theorem 8,

W1 = n2(1− R)2χ2(ρ1, q)

W2 =

(
nR

n− 1

)2
χ2(ρ2||q)

W0 =
∫ 1

n−1 ∑i 6=T(pi − 1
n−1 ∑j 6=T pj)

2

q
dµ.

(57)

For the special case, one needs only to recall R = 1−|p1−p2|TV
2 while inserting 2 for n.

Corollary 5. When pi ≤ q/t∗ for t∗ > 0, and f (x) = x log x

∑
i

λiD(pi||q) ≥ D(R||Q) +
t∗W(λi, pi, q)

2

for D(pi||q) the relative entropy. In particular,

∑
i

λiD(pi||q) ≥ D(p||q) + D(R||P) + t∗W(λi, pi, p)
2

where P = 1−
∫

λT pdµ for p = ∑i λi pi and t∗ = min λi.

Proof. For the relative entropy, f (x) = x log x is 1
M -convex on [0, M] since f ′′(x) = 1/x. When

pi ≤ q/t∗ holds for all i, then we can apply Theorem 8 with M = 1
t∗ . For the second inequality, recall

the compensation identity, ∑i λiD(pi||q) = ∑i λiD(pi||p) + D(p||q), and apply the first inequality to
∑i D(pi||p) for the result.

This gives an upper bound on the Jensen–Shannon divergence, defined as JSD(µ||ν) =
1
2 D(µ||µ/2 + ν/2) + 1

2 D(ν||µ/2 + ν/2). Let us also note that through the compensation identity
∑i λiD(pi||q) = ∑i λiD(pi||p) + D(p||q), ∑i λiD(pi||q) ≥ ∑i λiD(pi||p) where p = ∑i λi pi. In the
case that λi =

1
N

∑
i

λiD(pi||q)

≥∑
i

λiD(pi||p)

≥ Q f
(

1− R
Q

)
+ (1−Q) f

(
R

1−Q

)
+

t∗W
2

(58)

Corollary 6. For two densities p1 and p2, the Jensen–Shannon divergence satisfies the following,

JSD(p1||p2) ≥ D
(

1−|p1 − p2|TV
2

∣∣∣∣∣∣∣∣1/2
)

+
1
4

(
(1 + |p1 − p2|TV)

2χ2(ρ1||p) + (1− |p1 − p2|TV)
2χ2(ρ2||p)

) (59)

with ρ(i) defined above and p = p1/2 + p2/2.

Proof. Since pi
(p1+p2)/2 ≤ 2 and f (x) = x log x satisfies f ′′(x) ≥ 1

2 on (0, 2). Taking q = p1+p2
2 , in the

n = 2 example of Corollary 4 with κ = 1
2 yields the result.
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Note that 2D((1 + V)/2||1/2) = (1 + V) log(1 + V) + (1−V) log(1−V) ≥ V2 log e, we see that
a further bound,

JSD(p1||p2) ≥
log e

2
V2 +

(1 + V)2χ2(ρ1||p) + (1−V)2χ2(ρ2||p)
4

, (60)

can be obtained for V = |p1 − p2|TV .

On Topsøe’s Sharpening of Pinsker’s Inequality

For Pi, Q probability measures with densities pi and q with respect to a common reference measure,
∑n

i=1 ti = 1, with ti > 0, denote P = ∑i tiPi, with density p = ∑i ti pi, the compensation identity is

n

∑
i=1

tiD(Pi||Q) = D(P||Q) +
n

∑
i=1

tiD(Pi||P). (61)

Theorem 9. For P1 and P2, denote Mk = 2−kP1 + (1− 2−k)P2, and define

M1(k) =
Mk1{P1>P2} + P21{P1≤P2}

Mk{P1 > P2}+ P2{P1 ≤ P2}
M2(k) =

Mk1{P1≤P2} + P21{P1>P2}
Mk{P1 ≤ P2}+ P2{P1 > P2}

,

then the following sharpening of Pinsker’s inequality can be derived,

D(P1||P2) ≥ (2 log e)|P1 − P2|2TV +
∞

∑
k=0

2k
(

χ2(M1(k), Mk+1)

2
+

χ2(M2(k), Mk+1)

2

)
.

Proof. When n = 2 and t1 = t2 = 1
2 , if we denote M = P1+P2

2 , then (61) reads as

1
2

D(P1||Q) +
1
2

D(P2||Q) = D(M||Q) + JSD(P1||P2). (62)

Taking Q = P2, we arrive at

D(P1||P2) = 2D(M||P2) + 2JSD(P1||P2) (63)

Iterating and writing Mk = 2−kP1 + (1− 2−k)P2, we have

D(P1||P2) = 2n

(
D(Mn||P2) + 2

n

∑
k=0

JSD(Mn||P2)

)
(64)

It can be shown (see [11]) that 2nD(Mn||P2) → 0 with n → ∞, giving the following series
representation,

D(P1||P2) = 2
∞

∑
k=0

2kJSD(Mk||P2). (65)

Note that the ρ-decomposition of Mk is exactly ρi =Mk(i), thus, by Corollary 6,

D(P1||P2) = 2
∞

∑
k=0

2kJSD(Mk||P2)

≥
∞

∑
k=0

2k
(
|Mk − P2|2TV log e +

χ2(M1(k), Mk+1)

2
+

χ2(M2(k), Mk+1)

2

)
= (2 log e)|P1 − P2|2TV +

∞

∑
k=0

2k
(

χ2(M1(k), Mk+1)

2
+

χ2(M2(k), Mk+1)

2

)
.

(66)

Thus, we arrive at the desired sharpening of Pinsker’s inequality.
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Observe that the k = 0 term in the above series is equivalent to

20
(

χ2(M1(0), M0+1)

2
+

χ2(M2(0), M0+1)

2

)
=

χ2(ρ1, p)
2

+
χ2(ρ2, p)

2
, (67)

where ρi is the convex decomposition of p = p1+p2
2 in terms of T(x) = arg max{p1(x), p2(x)}.

5. Conclusions

In this article, we begin a systematic study of strongly convex divergences, and how the strength
of convexity of a divergence generator f , quantified by the parameter κ, influences the behavior of
the divergence D f . We prove that every strongly convex divergence dominates the square of the total
variation, extending the classical bound provided by the χ2-divergence. We also study a general notion
of a skew divergence, providing new bounds, in particular for the generalized skew divergence of
Nielsen. Finally, we show how κ-convexity can be leveraged to yield improvements of Bayes risk
f -divergence inequalities, and as a consequence achieve a sharpening of Pinsker’s inequality.

Funding: This research was funded by NSF grant CNS 1809194.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Theorem A1. The class of f -divergences is stable under skewing. That is, if f is convex, satisfying f (1) = 0,
then

f̂ (x) := (tx + (1− t)) f
(

rx + (1− r)
tx + (1− t)

)
(A1)

is convex with f̂ (1) = 0 as well.

Proof. If µ and ν have respective densities u and v with respect to a reference measure γ, then
rµ + (1− r)ν and tµ + 1− tν have densities ru + (1− r)v and tu + (1− t)v

S f ,r,t(µ||ν) =
∫

f
(

ru + (1− r)v
tu + (1− t)v

)
(tu + (1− t)v)dγ (A2)

=
∫

f
(

r u
v + (1− r)

t u
v + (1− t)

)
(t

u
v
+ (1− t))vdγ (A3)

=
∫

f̂
(u

v

)
vdγ. (A4)

Since f̂ (1) = f (1) = 0, we need only prove f̂ convex. For this, recall that the conic transform g of a
convex function f defined by g(x, y) = y f (x/y) for y > 0 is convex, since

y1 + y2

2
f
(

x1 + x2

2
/

y1 + y2

2

)
=

y1 + y2

2
f
(

y1

y1 + y2

x1

y1
+

y2

y1 + y2

x2

y2

)
(A5)

≤ y1

2
f (x1/y1) +

y2

2
f (x2/y2). (A6)

Our result follows since f̂ is the composition of the affine function A(x) = (rx + (1− r), tx + (1− t))
with the conic transform of f ,

f̂ (x) = g(A(x)). (A7)
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