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Abstract

Objective

To inform the design of a combination intervention strategy targeting HIV-infected unhealthy

alcohol users in Maharashtra, India, that could be tested in future randomized control trials.

Methods

Using probabilistic compartmental simulation modeling we compared intervention strategies

targeting HIV-infected unhealthy alcohol users on antiretroviral therapy (ART) in Maharash-

tra, India. We tested interventions targeting four behaviors (unhealthy alcohol consumption,

risky sexual behavior, depression and antiretroviral adherence), in three formats (individual,

group based, community) and two durations (shorter versus longer). A total of 5,386 possi-

ble intervention combinations were tested across the population for a 20-year time horizon

and intervention bundles were narrowed down based on incremental cost-effectiveness

analysis using a two-step probabilistic uncertainty analysis approach.

Results

Taking into account uncertainty in transmission variables and intervention cost and effec-

tiveness values, we were able to reduce the number of possible intervention combinations

to be used in a randomized control trial from over 5,000 to less than 5. The most robust inter-

vention bundle identified was a combination of three interventions: long individual alcohol

counseling; weekly Short Message Service (SMS) adherence counseling; and brief sex risk

group counseling.
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Conclusions

In addition to guiding policy design, simulation modeling of HIV transmission can be used as

a preparatory step to trial design, offering a method for intervention pre-selection at a

reduced cost.

Introduction

HIV simulation models have been successfully used to estimate long-term economic, health

and HIV transmission outcomes.[1–4] Historically, these models have been employed to guide

HIV policy design by identifying how to apply evidence-based interventions to yield the great-

est additional health benefit given available resources. Accordingly, they have informed utiliza-

tion and targeting of pre-exposure prophylaxis[4], antiretroviral (ART) therapy[5], male

circumcision[6] and HIV vaccines.[1,2,7] As there is an increasing focus on combination

interventions[8,9], simulations may have an additional role: informing the design of combina-

tion interventions trials. More specifically, modeling cases in which the constituent interven-

tions may have been tested independently but have not yet been tested together. A simulation

modeling-based approach has the ability to maximize the return on research investment dur-

ing clinical trial design through the identification of interventions likely to deliver the greatest

health benefit for the lowest cost prior to trial initiation. In other words, simulation can be

used to identify the horse that is most likely to be fastest (e.g. most likely of having a substantial

treatment effect) before betting on it (e.g. expending resources to perform a randomized con-

trolled trial (RCT)).

As in any application of evidence based medicine, computer simulation uses data sources

with uncertainty arising from bias, random error, and impaired generalizability when results

originate from a different patient population, care system, or region.[10] Nonetheless, this

uncertainty can be reflected mathematically by appropriately wide probability distributions

that are then propagated through the simulation and are reflected in the level of uncertainty of

simulation results.[11] If one strategy appears to be most desirable even after taking uncer-

tainty into account, that strategy is a preferred candidate for additional testing and/or imple-

mentation. If no strategies emerge as clearly desirable because the uncertainty is too large, then

no clear candidate will be chosen for additional testing and/or implementation, and decisions

can be made as per current practice.

With nearly 90% of HIV RCTs failing to demonstrate statistically significant effectiveness

[7,12], use of simulation models as a step preparatory to trial design offers a possible method

for intervention pre-selection at a limited cost.[13,14] Despite this potential, model-based

approaches for HIV trial design have been underused.

The goal of this study was to inform the design of a combination HIV intervention that

could be tested in future RCTs. The target patient population are HIV-infected unhealthy alco-

hol users in Maharashtra, India; possible constituents of the combination intervention to be

tested in the modeling study include different target behaviors (unhealthy alcohol consump-

tion, risky sexual behavior, depression, and ART adherence), different formats (individual,

group based, community) and different durations (shorter versus longer). To do this, we devel-

oped a computer simulation of HIV progression and transmission in Maharashtra, India that

could predict clinical outcomes, along with their uncertainty, under 5,386 alternative formula-

tions of a combination intervention, and we investigated whether particular formulations were

likely to yield the greatest health benefit given budget constraints and uncertainty of data

inputs.

Using computer simulation to inform a combination therapy HIV intervention in Maharashtra, India
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Methods

Overview

The established evidence-based framework for formulating clinical questions recommends the

question be defined in terms of problem/population, intervention, comparison and outcome,

to help clinicians articulate their needs through the generation of focused questioning.[15] In

our study, the problem/population was preventing HIV infection in unhealthy alcohol users in

Maharashtra, India. Unhealthy alcohol use is the spectrum from risky-users to alcohol use dis-

orders and has been defined by the National Institute on Alcohol Abuse and Alcoholism

(NIAAA) as answering yes to the following question “How many times in the past year have

you had more than four drinks (for women) or five drinks (for men) in a day?”[16]. Fifteen

categories of behavioral interventions were included and our focus was to estimate cost and

effectiveness by comparing a combination of the fifteen interventions based on quality-

adjusted life years (QALY) gained and intervention costs.

The data and analysis for this paper was collected as a part of the modeling component of

the NIAAA-funded, Indo-US research and intervention project entitled, “Alcohol and ART

Adherence: Assessment, Intervention and Modeling in India (U01AA021990-01; 2014–2019)

based in Mumbai, Maharashtra. The project utilizes a combination of interventions at the indi-

vidual, group and community levels to reduce drinking and unprotected sex and to increase

medication adherence. The role of the modeling component was to estimate the impact of the

interventions implemented by this project for HIV-infected men who have consumed alcohol

in the last 30 days and to inform current and future stakeholders of interventions for Maha-

rashtra most likely efficient and impactful; this paper focuses on the latter role.

Simulation modeling

To test these interventions, we developed a simulation that integrates a mechanistic model of

HIV prevention and a compartmental model of HIV transmission, both calibrated against

India specific epidemiological outcomes (S1 File). Both models were based on models previ-

ously developed by our group to study HIV progression and transmission in East Africa

[2,17,18] and New York City[1].

Efficient frontiers were computed for each of the intervention bundles over twenty-year

time horizons to determine strategies delivering the greatest health benefit for the lowest cost.

[19] In brief, the efficient frontier was created by calculating the incremental cost-effectiveness

ratio (ICER) for a combination of strategies in order to measure the additive benefit of subse-

quent strategies compared with its next best alternative. In order to account for the error asso-

ciated with model inputs we used probabilistic modeling to calculate model inputs and

intervention cost and effectiveness measures based on variable-specific probability distribu-

tions[20].

HIV natural history model

HIV progression was modeled using a stochastic simulation model, in which disease progres-

sion was simulated for 100,000 patients, tracking CD4 and HIV-1 viral load (VL) transitions

based on antiretroviral treatment and drug adherence. This model is based on previous vali-

dated models of HIV progression[17,21], with updated India-specific parameters (S1 Table)

and has been recalibrated to epidemiological data from Maharashtra, India (S1 Fig). The natu-

ral history model takes into account non-adherence as the primary cause of ART failure and

drug resistance, although resistance can arise with lower probability even when ART adher-

ence is favorable.[18]
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Output distributions from this model were collapsed into rate multipliers, which were sub-

sequently used in our HIV transmission simulation model to determine rates of movement

through CD4 strata (<50, 51–200, 201–350, 351–500, >500 cells/mm3), logarithmic VL strata

(<2.5, 2.5–3.5, 3.5–4.5, 4.5–5.5, >5.5 log copies/ml) and HIV status (initial infection, unde-

tected, detected, in care, on treatment, dead) (S1 Fig).

HIV transmission simulation model

An SIR-compartmental model of HIV transmission was developed in C++ programming lan-

guage as described previously[2] and modified to better represent the population of India

including compartments for injection drug use (IDU) and sexual orientation, in addition to

the use of India specific model input parameters. Hypothetical people in the model occupy

one set of mutually exclusive and collectively exhaustive compartments at all times and as time

proceeds these hypothetical people may change the compartment they occupy. In addition to

clinical characteristics specific to HIV (HIV status, VL, CD4), the compartments of this model

include age, four sexual activity levels (abstinent, monogamous, multiple partnerships, com-

mercial sex workers (CSWs) and their clients), unhealthy alcohol status, IDU status and sexual

orientation (S2 Fig).

Both sexual transmission and transmission through IDU needle sharing are modeled, and

assumed to follow heterogeneous mixing in the population.[2,22] The probability of HIV

transmission between partners is based on gender of both the infected and non-infected part-

ner, and the disease and treatment status of the infected partner (S2 Fig).

HIV clinical trial interventions

Our HIV transmission simulation model is able to represent the implementation of one or a

combination of intervention strategies. These interventions act on pathways that reduce HIV

transmission[1] (S1 File), specifically pathways affecting alcohol use, condom use prevalence,

STI prevalence, depression and ART adherence. Unhealthy alcohol use was modeled as

increasing the relative risk of condom nonuse (RR = 1.29), STI prevalence (RR = 1.72) and the

risk of ART non-adherence (RR = 2.33) and therefore interventions targeting the alcohol use

pathway impact all three of these risk behaviors.[2] Depression and adherence interventions

were modeled as reducing the risk of ART non-adherence[23,24] and interventions acting on

sex risk acted through reducing condom nonuse and STI prevalence.[25,26] At the time of

model development we found no existing evidence in the literature for a direct impact of

adherence or depression on condom use or STI prevalence and therefore did not include an

associated effect through these pathways. Effect Relative Risk (RR) and 95% confidence inter-

vals specific for each intervention and behavior pathway can be found in Table 1.

A compartmental model approach was required to address this particular problem, as

opposed to back-of-the-envelope calculations, because of the large number of plausible

choices, other than the obvious expectation that a multi-level intervention aimed at alcohol

users would contain an alcohol intervention of some kind. Nonlinear interactions in the

model included effects of alcohol and depression on adherence, in accord with the cited

literature.

Fifteen behavioral interventions were included, four specifically addressing unhealthy alco-

hol use, five addressing sex risk behavior, four addressing depression and two addressing ART

adherence (Table 1). Target behaviors were chosen based on prior qualitative research, which

suggested that these were the most prevalent behavioral risk factors for HIV in this population.

Interventions targeting unhealthy alcohol use, depression and sex risk were split into four sub-

groups: Brief individual counseling; Long individual counseling; Brief group counseling; and
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Long group counseling. The length of these sessions was determined using published meta-

analysis specific to each intervention type and can be found in Table 2.[24–28] Alcohol inter-

ventions in this study refer to motivational interviewing for the prevention of alcohol misuse.

[27] Following the completion of our analysis, this study (Foxcroft et al.)[27] was withdrawn

due to errors in the analysis. However, an updated meta-analysis by the same group was pub-

lished in 2016, summarizing the effect of motivational interviewing on reducing alcohol use in

young adults, now including an additional 18 randomized trials[29]. The results of this meta-

analysis were consistent and not statistically different from those reported in the original

study, and were within the confidence interval input included in our probabilistic analysis.

Interventions to reduce depression correspond to cognitive-behavioral interventions

focused on mood and anxiety disorders in an HIV-infected population.[28] Sex risk interven-

tions at an individual and group level in our model were based on the effectiveness of behav-

ioral interventions to increase condom use and reduce sexually transmitted infections (STIs).

[25] ART adherence targeting strategies were split into two subgroups: Brief counseling and

Weekly Short Message Service (SMS) based on available intervention literature. A community

level intervention targeting sexual risk was also included, modeling population-wide condom

promotion and/or distribution that was ongoing through the modeling time horizon

(Table 1).[26]

Within the model, interventions were applied to only males with unhealthy alcohol use

with the exception of the community level sex risk intervention, which was applied to the

entire population. Efficacy data for interventions were derived from published meta-analysis

(see S1 File for additional details).[24–28] Intervention costs were assumed to consist of labor

and program costs, accounting for administration, overhead and management. Labor costs

Table 1. Clinical trial interventions and associated costs and effects considered in HIV transmission simulation model. Uniform distributions were

used for all costs and lognormal distribution for all effects in probabilistic analyses. Intervention costs were derived from India-specific sources.[35,49–51]

Cost in 2012 USD.

Intervention Risk pathway Effect RR

(95% CI)

Session Length (Hours) Cost (Range) RR Ref.

Alcohol: Brief individual counseling Alcohol use 0.68 (0.50–0.93) 1 $1.64 (0.5x-1.5x) [27]

Alcohol: Long individual counseling Alcohol use 0.36 (0.15–0.82) 4 $6.56 (0.5x-1.5x) [27]

Alcohol: Brief group counseling Alcohol use 0.62 (0.42–0.91) 5 $1.64 (0.5x-1.5x) [27]

Alcohol: Long group counseling Alcohol use 0.47 (0.25–0.86) 18 $5.90 (0.5x-1.5x) [27]

Sex risk: Brief individual counseling Condom use 0.97 (0.95–0.99) 1 $1.64 (0.5x-1.5x) [25]

STI prevalence 0.84 (0.73–0.96)

Sex risk: Long individual counseling Condom use 0.92 (0.85–0.98) 9 $14.76 (0.5x-1.5x) [25]

STI prevalence 0.64 (0.44–0.89)

Sex risk: Brief group counseling Condom use 0.97 (0.94–0.99) 5 $1.64 (0.5x-1.5x) [25]

STI prevalence 0.81 (0.68–0.95)

Sex risk: Long group counseling Condom use 0.94 (0.90–0.99) 18 $5.90 (0.5x-1.5x) [25]

STI prevalence 0.71 (0.54–0.92)

Sex risk: Community intervention Condom use 0.97 (0.94–0.99) ongoing $6.66 (0.5x-1.5x) [26]

STI prevalence 0.78 (0.59–1.0)

Depression: Brief individual counseling Depression 0.84 (0.43–1.0) 8 $13.12 (0.5x-1.5x) [28]

Depression: Long individual counseling Depression 0.62 (0.28–1.0) 22 $36.08 (0.5x-1.5x) [28]

Depression: Brief group counseling Depression 0.81 (0.65–0.97) 11 $3.61 (0.5x-1.5x) [28]

Depression: Long group counseling Depression 0.71 (0.58–0.84) 22 $7.22 (0.5x-1.5x) [28]

Adherence: Brief counseling ART Adherence 0.67 (0.53–0.84) 1 $6.56 (0.5x-1.5x) [24]

Adherence: Weekly SMS ART Adherence 0.75 (0.58–0.96) 4 $2.46 (0.5x-1.5x) [24]

https://doi.org/10.1371/journal.pone.0184179.t001
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Table 2. India transmission model inputs.

Model Parameter Value Probabilistic range Distribution Ref.

Age of sexual debut 19 17–22 uniform [31]

Sexual risk characteristics

Proportion of men who are homosexual 0.0006 0.0006–0.0097* uniform [30]

Proportion of men who are bisexual 0.0004 0.0004–0.00049 normal [30]

Proportion women who are homosexual 0.0006 — — *

Proportion of women who are bisexual 0.0004 — — *

Proportion abstinent

Straight males 0.2775 0.2241–0.4260 normal [34]

Homosexual/Bisexual males 0 — — -

Straight/Homosexual/Bisexual females 0.260 0.1227–0.4378 normal [31]

Proportion monogomous

Straight males 0.573 0.3857–0.6616 normal [34]

Homosexual/Bisexual males 0.230 0.1541–0.3035 normal [30]

Straight/Homosexual/Bisexual females 0.690 0.5345–0.8478 normal [31]

Proportion concurrent partners

Straight males 0.1292 0.068–0.194 normal [34]

Homosexual/Bisexual males 0.675 — — -

Straight/Homosexual/Bisexual females 0.047 0.0199–0.0273 normal [34]

Proportion CSW or clients of CSW

Straight males 0.02 0.02–0.2* uniform [32]

Homosexual/Bisexual males 0.095 0.0744–0.1198 normal [30]

Straight/Homosexual/Bisexual females 0.003 0.003–0.03* uniform [30]

Average duration (years) of partnership

Monogomous 30.0 0.5x-1.5x uniform [2]

Concurrent partners 1.0 0.5x-1.5x uniform [2]

CSW or clients of CSW 0.5 0.5x-1.5x uniform [2]

Median number of concurrent partnerships

Monogomous 1 — — [59]

Concurrent partners 3 0.5x-1.5x uniform [59]

CSW or clients of CSW 10 0.5x-1.5x uniform [59]

Degree of assortative mixing 0.2 0.05–0.5 uniform [60]

HIV risk behavior modifiers

Prevalence of unhealthy alcohol use: females 0.020 0.0096–0.0244 normal [61]

Prevalence of unhealthy alcohol use: males 0.185 0.0925–0.2775 uniform +

Proportion of unhealthy alcohol users who are depressed 0.57 — — **

Proportion of condom nonuse 0.73 0.730–0.815 normal [31]

Probability of not being tested for HIV 0.98 0.960–0.990 uniform [33]

Probability of ART nonadherence 0.26 0.260–0.364 normal [62]

Probability of untreated STI 0.06 0.060–0.096 normal [63]

Sexual and IDU transmission

Transmission risk per sex act

Male to Male 0.00167 0.5x-1.5x normal [64]

Female to Male 0.00081 0.5x-1.5x normal [64]

Male to Female 0.00042 0.5x-1.5x normal [64]

Transmission risk per unsafe needle sharing 0.0036 0.5x-1.5x normal [65]

Relative risk of transmission if viral load: [66]

0–2.5 0.16 — —

(Continued )
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were calculated as a function of estimated intervention time, also derived from meta-analysis

studies.

Model inputs

Our initial population was calculated using census data from Maharashtra, India from 1991

and 2001, interpolating to derive an estimate for 1997 reflecting both the HIV-uninfected and

HIV-infected population. The model population was then divided into population compart-

ments based on gender, sexual risk behavior, sexual orientation (straight, homosexual or bisex-

ual), infection status, treatment status, IDU and unhealthy alcohol use. India-specific sources

were then used to determine the initial proportion allocated to each compartment and inputs

to the model, the majority of which came from state-level data from Maharashtra collected by

HIV clinics between 2007–2014.[30–33] Sexual risk was categorized as abstinent, monoga-

mous, multiple concurrent partners, or as community sex workers (CSW) and their clients.

[30,32,34] Although included in our model for completeness, the proportion of the population

who identified as homosexual, bisexual or IDU was low (<0.0009), and was therefore not a

major contributing factor in HIV transmission. For the HIV-infected subset of our modeled

population the mean CD4 was 644 cells/mm3 and mean VL was 4.46 log.[35] All inputs were

attained from peer reviewed or surveillance literature specific to India or through agreement

amongst the study team (see Table 2 and S1 Table for exhaustive model inputs). Several vari-

ables were unavailable specifically for India (average duration of partnerships, transmission

risk parameters, HIV disease related characteristics) and values that were previously used in

our East Africa[2,17,18,36] or New York City[1,37] models were carried through with the

assumption that these were not country specific.

Table 2. (Continued)

Model Parameter Value Probabilistic range Distribution Ref.

2.5–3.5 1.87 — —

3.5–4.5 6.54 — —

4.5–5.5 8.85 — —

>5.5 9.03 — —

Injection Drug Use Characteristics

Proportion of population that injects drugs 4.99E-05 4.99E-5-0.0025* uniform [30]

Number of needle sharing partners per year 5 0.5x-1.5x uniform [67]

Shared injections per year 102 54–150 uniform [30]

HIV disease related

CD4 Mean 644 294–994 uniform [35]

CD4 SD 260 65–585 normal [35]

VL Mean 4.46 4–5 uniform [35]

Utility

CD4<50 0.79 0.74–0.84 uniform [68]

CD4 51–200 0.85 0.8–0.9 uniform [68]

CD4 > 201 0.94 0.89–0.99 uniform [68]

Change with ART treatment -0.053 0.5x-1.5x uniform [68]

*Due to lack of evidence on these variables, we made assumptions on point estimates and included broad distribution ranges to compensate for our lack of

knowledge in uncertainty analysis.

+Based on survey responses from our patient population (unpublished)

**Based on personal communication with Dr. Jean Schensul

https://doi.org/10.1371/journal.pone.0184179.t002
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Alcohol-related parameters. Based on a systematic review of pathways through which

alcohol may impact HIV transmission risk in unhealthy alcohol use was modeled as having

three main effects: (1) increasing the risk of condom nonuse (RR 1.29 for unsafe sex [38,39])

(2) increasing the risk of ART non-adherence (RR 2.33 of missing doses based on pooled esti-

mate from 4 studies [40–43]) and (3) increasing sexually transmitted infection (STI) preva-

lence (RR 1.72). [44,45] There were several limitations in these parameters due to data

availability. For all the risk parameters, India-specific variables were unavailable, despite an

extensive review of the literature. For this reason, we used data from several comprehensive

Africa studies which has been successfully used to model the impact of alcohol interventions

on HIV transmission in East Africa[36], with the assumption that the impact of alcohol on

behavior is universal and the country-specific variability would be taken into account by our

probabilistic analysis.

Exploring the impact of each intervention bundle on key model compartments, including

clinical outcomes of untreated HIV, HIV status and alcohol use has been visualized in S4 Fig.

Validation

Four validation criteria (HIV prevalence, incidence, the proportion of people with HIV on

treatment and the annual proportion of people who have died from HIV) were used to test the

accuracy of the model predictions compared with epidemiological data from Maharashtra,

India between 1997 and 2013.[46] Comparison of our simulation results with these data dem-

onstrated reasonable goodness of fit with HIV prevalence, incidence, proportion of people with

HIV on treatment and the annual proportion of people who have died from HIV (S3 Fig).

Cost-effectiveness analysis

Clinical outcomes of this model include the number of infections averted, number of AIDS-

related deaths averted and the number of Quality Life Years (QALYs) across the population

for a 20-year time horizon. We used efficiency frontiers to identify intervention packages

delivering the largest health benefit within a specified budget constraint across the 20 year

time horizon.[47] Strategies outside the frontier are unfavorable options, as they are unable to

deliverer the largest benefit at any budget level. Efficient frontiers were determined by calculat-

ing the incremental cost-effectiveness ratio (ICER) of intervention packages, which measure

the additive benefit of each intervention strategy compared with its next best alternative. This

calculation starts with a control simulation, in which there are no interventions applied, and

one intervention simulation. The ICER is then calculated as difference in total costs between

the intervention package(s) and the control group divided by the difference in QALYs

observed between intervention and control. Additional interventions are then added, and an

efficient frontier is calculated using standard methods (see Gold et al.[48] for a comprehensive

review). The efficient frontier cumulatively takes into account the difference in incremental

cost-effectiveness ratios between alternative interventions, and allows for the determination of

the most effective intervention at different budget price points.

Costs and QALYs were discounted at 3%, and costs were assessed in 2014 US dollars. We

estimated weighted utility scores (used in the calculation of QALYs) based on data from HIV-

infected persons in the developed world. Intervention cost inputs were based on data from sev-

eral India-specific sources.[35,49–51]

Probabilistic uncertainty analysis

We first examined unique and logically consistent permutations of the 15 constituent inter-

ventions, which in combination resulted in 5,386 possible intervention bundles ranging from
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individual interventions to a combination of 9 interventions simultaneously (Fig 1A). The

analysis was then completed by running twenty-year simulations of each intervention bundle

using base-case input values. Bundles appearing on the efficient frontier were carried through

to the next screening step.

Our uncertainty analysis was done in two stages and used a 95% confidence intervals

(where possible) and a wide range of values when evidence was limited. In the initial stage we

incorporated parameter uncertainty to the cost and effectiveness of each intervention as a

screening procedure for the second stage (Fig 1B). Interventions identified based on our initial

deterministic analysis were run in twenty year simulations 100 times using probabilistically

varied cost and effect values for each intervention. Uniform distributions were used for all

costs and lognormal distributions for all effects. The upper and lower limits of these parameter

inputs can be found in Table 1.

In the second stage, definitive probabilistic analysis was then completed on a more inclusive

variable list to assess the robustness of each intervention given a certain level of uncertainty

(Fig 1C). Intervention bundles found to be on the frontier at least once in the screening proba-

bilistic stage were run in a full probabilistic analysis (N = 1000), varying intervention cost and

effect, and 96 input variables related to population parameters, HIV transmission, and treat-

ment parameters (Table 2, S4 Fig). Sampling of each variable was done using specified limits

and distribution types simultaneously (S1 Table). We used a robustness cutoff of 50% or more

of runs being on an efficient frontier in choosing bundles likely to yield the greatest health ben-

efit for the resources consumed.

For both stages of probabilistic analysis, intervention simulation runs were compared

against matched control runs containing the same set of cost and effectiveness parameters

(stage 1 and 2) and input variables (stage 2 only) based on the same randomly generated num-

ber seed. Each random pull from the distributions was unique, so the simulations can be

thought of as 100 (stage 1) or 1000 (stage 2) independent clinical trials, each with a matched

control (no intervention) run. The distributions of clinical outcomes (discounted costs and

QALYs, new infections and deaths, etc.) resulting from the varied input variables under con-

trol conditions can be visualized in S7 Fig.

Code and technical appendices for both the progression and transmission model can be

found here https://github.com/braithwaitelab/india.

Results

Identifying best combination interventions based on deterministic

analysis

Based on twenty-year simulations of 5,386 combinations of the 15 interventions (Fig 1A) we

identified 7 interventions appearing on the efficient frontier either alone or as part of a com-

bined intervention bundle (Fig 2A and 2B), meaning that health benefit was maximized given

the resources expended. These 7 intervention candidates were Alcohol: Long individual

counseling, Adherence: Weekly SMS, Adherence: Brief counseling; Sex risk: Long individual

counseling, Sex risk: Brief group counseling, Sex risk: Long group counseling, and Sex risk:

Community intervention (Fig 2C). Eight interventions were never found on the efficient fron-

tier in any combination bundle.

It should also be noted that although the change in discounted QALYs between the most

and least effective intervention packages is just under 20,000, the target population of male

HIV infected unhealthy alcohol users was less than 0.0001% (~1305 out of over 99 million) of

the population at the start of the simulation. Therefore, in the context of such a small target

population, this seemingly small QALY increase is clinically relevant.
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Probabilistic analyses

The 7 constituent interventions yielded 128 possible formulations of combination interven-

tions that could achieve the greatest health benefit given resources consumed. In order to

Fig 1. Analyses methodology. Pipeline workflow for intervention bundle prioritization. a, Creation of efficient frontier for all combinations of 15

interventions and filtering out 8 interventions that were never found on the frontier. b, For the remaining 7 interventions, completion of 100

probabilistic runs varying intervention costs and effects and filtering out intervention bundles that were never found on the frontier. c, Completion of

a full probabilistic analyses (run N = 1000) varying intervention cost and effect as well as 96 input variables. All analysis was run for a 20-year

simulation.

https://doi.org/10.1371/journal.pone.0184179.g001

Using computer simulation to inform a combination therapy HIV intervention in Maharashtra, India

PLOS ONE | https://doi.org/10.1371/journal.pone.0184179 September 5, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0184179.g001
https://doi.org/10.1371/journal.pone.0184179


assess whether any of these bundles were sufficiently robust to anchor an efficient frontier we

completed a stochastic analysis where we probabilistically varied intervention cost and effect

values for each intervention across 100 runs, as a pre-screening step for the final analyses

(Table 1, Fig 1B).

These runs identified only 32 intervention bundles as ever being on the efficient frontier,

twelve of which were found on the frontier more than 10% of the time (S6 Fig). The bundle

found on the frontier most frequently was a combination of 3 interventions: Alcohol: Long

individual counseling; Adherence: Weekly SMS; and Sex risk: Brief group counseling, which

was identified on the frontier in 63 of the 100 runs. The 32 bundles identified in this analysis

were assigned bundle numbers (1–32) for subsequent analysis steps.

These 32 intervention bundles were then run in a definitive probabilistic analysis

(N = 1000), varying intervention cost and effect, and 96 input variables related to population

parameters, HIV transmission, and treatment parameters (S5 Fig). Fig 3 shows the results of

twenty-year simulations across these 1000 probabilistic runs. Based on our criteria for robust-

ness (more than 50% of runs being on an efficient frontier) two consistent bundles were likely

to yield the greatest health benefit for the resources consumed, even after considering data

uncertainty. These were Bundle 1 (Alcohol: Long individual counseling; Adherence: Weekly

SMS; Sex Risk: Brief group counseling) and Bundle 2 (Alcohol: Long individual counseling;

Adherence: Brief counseling; Sex Risk: Brief group counseling). Two others came notably close

Fig 2. Efficient frontier for HIV interventions during a 20-year simulation of HIV epidemic in Maharashtra, India. a, Graphical representation

efficient frontier for all permutations of 12 interventions (4096 total combinations). Blue circles represent packages of interventions on the frontier,

red represent packages off the frontier. b, focused graphical representation of efficient frontier for the lower end of discounted cost (0.888–0.898

Billion USD). c, Interventions contained within each efficient frontier package.

https://doi.org/10.1371/journal.pone.0184179.g002
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to our 50% criterion, Bundle 3 (Alcohol: Long individual counseling; Adherence: Weekly

SMS; Sex Risk: Long group counseling) and Bundle 4 (Alcohol: Long individual counseling;

Adherence: Weekly SMS; Sex Risk: Long individual counseling) (Fig 3).

Discussion

This study showed that simulation modeling in combination with probabilistic uncertainty

analysis is a powerful tool in the pre-selection of HIV clinical trial interventions. This method-

ology allows for more robust predictions than typical sensitivity analysis, which only address

variation in input values. To our knowledge, this is the first study using dynamic transmission

modeling with the primary goal of informing clinical trial design and other studies of compar-

ative effectiveness. In 2014, Cuadros et al. showed the potential utility for agent-based Monte

Carlo models in HIV trial design[13] and our study has built upon this premise, now taking

into account uncertainty in transmission, demographics, and intervention cost and effective-

ness for trial optimization. Further, while probabilistic sensitivity analysis varying transmission

parameters in addition to clinical and economic inputs have been used to evaluate the effec-

tiveness of clinical interventions (particularly in the context of influenza vaccination[52–54])

[53]53525153525150424140, the majority of cost-effectiveness analyses have used a static modeling

approach.

Although this proof-of-concept study was designed in the context of the HIV epidemic in

Maharashtra, India, the results of this simulation can likely be expanded into other states in

India, particularly since many of the variables which we were unable to find specifically for

Maharashtra were collected at the country level. Additionally, our probabilistic method covers

a large range of population and intervention characteristics that can account for state-specific

and, in cases of other lower middle-income countries (LMIC), region-specific differences. In

instances where input variables differ significantly by region, recalibration and reanalysis

using updated model inputs would be feasible and straightforward. For example, Uzbekistan

and Vietnam represent good candidates for repurposing of our model, as they have similar

demographics to India based on median age (27.6–30.1 years), birth rates (15.7–19.3 births/

1000 population), HIV prevalence (0.15–0.48%), urbanization (32.7–36.4% of total popula-

tion) and alcohol use (4.3–6.6 liters per adult per capita year).[55,56] Alternatively, European

countries such as Ukraine and Armenia and Sub-Saharan countries such as Kenya and Zambia

differ significantly from India would likely require the construction of a region-specific model.

In this specific example, our two-stage probabilistic uncertainty analysis identified two

intervention bundles that were found on the efficient frontier in more than 50% of the runs,

and two that were just below this robustness criteria cutoff. All four of the most promising

intervention bundles consisted of three interventions each. All included the Alcohol: Long

individual counseling intervention, one of the two adherence interventions (Brief counseling

or Weekly SMS) and varied most in the Sex Risk intervention type (Fig 3A). Of the four

counseling types included in the analysis, depression counseling was never found to be part of

a preferred intervention bundle. This is due to the relatively high cost of depression counseling

compared to other counseling types included in the model (e.g. $13.12 for brief depression

counseling compared to $1.64 for both brief alcohol and sex risk counseling). We expect that if

the associated cost was substantially reduced this intervention would be found as part of the

best performing bundles more often. Our recommendation, given these results, would be to

design a trial with at least two intervention arms containing the two most robust intervention

bundles (Bundle 1: Alcohol: Long individual counseling; Adherence: Weekly SMS; Sex Risk:

Brief group counseling; and Bundle 2: Alcohol: Long individual counseling; Adherence: Brief

counseling; Sex Risk: Brief group counseling), with the potential for a four intervention arm
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study containing the four highest ranking intervention packages, dependent on monetary and

logistical constraints.

There were several limitations to this study. For one, we were unable to account for all pos-

sible uncertainty, due in part to computational constraints. For example, the stochastic screen-

ing step filtered out 96 bundles never found on the efficient frontier when varying

intervention cost and effectiveness, reducing the number of bundles run in the definitive prob-

abilistic analysis from 128 to 32 (Fig 1B). However, we were able to test 1000 probabilistic sam-

plings for nearly 100 variables in these 32 robust intervention bundles. Additionally, in nearly

all instances our full probabilistic analysis agreed with the intervention-only probabilistic test,

in terms of bundle ranking, with the exception of Bundle 30 (Alcohol: Long individual

counseling) and Bundle 31 (Alcohol: Long individual counseling; Adherence: Brief counseling;

Sex risk: Long group counseling; and Sex Risk: Community Intervention) (Fig 3B), giving con-

fidence to our stochastic screening step. The criteria for robustness cutoff of 50% was arbitrary

and two bundles came up just under this constraint. Our simulation does not account for pos-

sible effects of unhealthy alcohol use on HIV progression outside of its effect on ART non-

adherence. Further, there were limitations in our conceptualization of the interventions, as

they were all based on meta-analysis of multiple studies. Additionally, it is unclear at this point

what level of uncertainty is enough to build into probabilistic transmission models. Standard

statistical models estimate parameters as point estimates with variation in terms of 95% confi-

dence intervals or standard errors. Best Practices developed by Good Research Practices in

Modeling Task Force recommends use of confidence intervals in all uncertainty analysis when

available and broad estimates when evidence is scarce.[57] However, Best Practices in the con-

text of dynamic transmission model have not yet been established.[53]

It may be argued that this analysis strategy should only be performed in the context of a full

Value of Information analysis[58] that would consider trial costs in addition to intervention

costs, and would allow for the possible result that no trial should be performed at all (that is,

some or no interventions should be offered even without additional information). However,

simulation analysis can and should be used to inform the effectiveness likely to be observed in

a clinical trial. Our analysis does not automatically imply that such a trial would indeed show

effectiveness, nor that a trial is necessary to justify implementation of the intervention. Future

work may include extending our analysis to estimate Net Monetary Benefit of alternative trial

design choices, including the possibility that no trial should be performed at all. Such an analy-

sis would not only be of theoretical interest, but may inform the spectrum of possible decisions

considered by stakeholders and funders in the future.

In conclusion, our approach to probabilistic stochastic modeling in HIV transmission

allows for upstream assessment of intervention selection at a reduced cost and can be used to

inform future iterations of both trial and policy design of multi-level interventions to reduce

HIV transmission.
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