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Population attributable fraction (PAF) has been widely used to quantify the proportion of
disease risk in a population that can be attributed to risk factors in epidemiological
studies. However, the use of PAF has been limited in assessing the contribution of
genetic variants. Most notably, the PAF estimate is typically much larger than other
commonly used measures, such as heritability, thereby raising the concern that PAF
may overestimate the genetic contribution. In this paper, we show that PAF is a one-
to-one function of heritability, and explain why PAF is larger than heritability. Further,
we present an estimation procedure based on the summary statistics from genome-
wide association studies (GWAS) to estimate the PAF of multiple correlated genetic
variants for a binary outcome. Currently available estimation procedures only apply to a
single variant or to multiple genetic variants that are independent from each other. Our
simulation studies verified the relationship between PAF and heritability, and showed
that the proposed estimation procedure for these two measures performed well. Finally,
we applied the proposed method to the published data of two lung cancer GWAS
to estimate the PAF and heritability of several newly identified variants. Our results
demonstrate that the PAF estimate is a useful measure of the genetic contribution to
the development of the disease. We hope this paper serves as an advocate for a wider
use of PAF in genetic studies.

Keywords: population attributable risk, heritability, GWAS, summary statistics, genetic epidemiology

INTRODUCTION

Population attributable fraction (PAF) is defined as the reduction in average disease risk by
eliminating the exposure(s) of interest from the population, while the other risk factors in the
population remain unchanged. Since its introduction by Levin (Levin, 1953), the PAF has been
widely used to quantify the proportion of disease risk in a population that can be attributed to a
risk factor or a set of risk factors in epidemiological studies (Rockhill et al., 1998; Lim et al., 2012;
Burnett et al., 2014; Flegal et al., 2015). When a risk factor is a genetic risk allele, the PAF infers the
proportion of disease that is “explained” by this allele (Moonesinghe et al., 2012). Several concerns
have been raised for the use of PAF as a measure to assess the contribution of genetic variants to
a disease. The primary concern is that the PAF may overestimate the genetic contribution because
its estimate is typically much larger than other measures, such as heritability, sibling recurrence
risk, and the proportion of area under the curve (Witte et al., 2014). In addition, heritability is
considered to be more meaningful because it explains an individual’s “genetic variation in risk.”
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Heritability is the most commonly used measure of genetic
contribution to the risk of a disease, which quantifies the effects
on the variability of risk at the population level. On the other
hand, PAF measures the effects from genetic variants on the
mean level of risk, i.e., the proportion of disease that can
be potentially prevented if effective interventions are available.
As such, heritability and PAF measure the different aspects of
genetic contribution. However, the relationship between them
has not been examined. In this paper, we aim to link the
PAF estimate and the heritability estimate. Specifically, we
first establish a one-to-one function between the PAF and
heritability on the observed scale (denoted as h2 in this paper),
which explains why the PAF estimate is often larger than h2.
As h2 is dependent on the prevalence of the disease in the
population, it is often transformed to the underlying liability
scale (denoted as h2

L in this paper) under the assumption of a
classical liability threshold model (Falconer, 1965). Therefore,
we show that the one-to-one relationship is applied to h2

L as
well.

In order to estimate the PAF associated with a genetic variant,
information on the allele frequency and its association with
disease risk is required. Since such information is routinely
available in the summary results from genome-wide association
studies (GWAS), the PAF of a single genetic variant can be
estimated without making use of the individual genetic data
(Witte et al., 2014). For a case-control study, however, to our
knowledge there is no existing method to estimate the PAF
for a set of correlated variants, because this requires joint
effect estimates of the correlated genetic variants from summary
statistics. In this paper, we also propose an empirical approach
to estimate the PAF using the summary statistics of GWAS
case-control studies.

The paper is organized as follows: first, the PAF is defined
for both a single variant and multiple genetic variants. Then,
its relationship with h2 as well as h2

L is derived. Next, an
estimation procedure is developed to estimate the PAF using
the summary statistics obtained from the case-control GWAS.
Subsequently, the established relationship between PAF and
heritability and the performance of the estimation procedure
for PAF are examined by simulation studies. Finally, the
proposed estimation method is applied to estimate the PAF,
h2, and h2

L of newly identified genetic variants for lung cancer
using the results from the two GWAS conducted in Asian
populations.

MATERIALS AND METHODS

Definition of PAF for a Binary Trait
Attributed to a Single Variant or Multiple
Variants
The population attributable fraction due to a risk factor X, PAFX ,
is defined as the following:

PAFX =
P(Y = 1)− P(Y = 1|X = 0)

P(Y = 1)
, (1)

where Y is the development of a disease of interest during a pre-
specified interval, and X is a binary risk factor. It can be shown
that PAFX also equals

PAFX =

P(X = 1|Y = 1)
P(Y = 1|X = 1)/P(Y = 1|X = 0)− 1
P(Y = 1|X = 1)/P(Y = 1|X = 0)

. (2)

Given this relationship, it can be seen that PAFX is a function
of the frequency of the risk factor and the relative risk (RR)
associated with the risk factor. Let X be the count of risk
alleles of the respective variant. With the assumption of Hardy-
Weinberg Equilibrium, X ∼ Bin(2, PX), where PX is the risk
allele frequency (RAF) in the general population. Under the
model that X has additive effect on the log risk of Y such that
the RR of developing the event Y per level increase in X is eβx , we
can say

P(Y = 1) = P(Y = 1|X = 0)(1− PX)2 + 2P(Y = 1|X = 0)

eβXPX(1− PX)+ P(Y = 1|X = 0)e2βXP2
X.

Similar to that derived earlier (Witte et al., 2014), PAFX is

1−
1

(1− PX)2 + 2eβXPX(1− PX)+ e2βXP2
X
. (3)

For a set of K variants of interest, let the RAF of variant k
(k = 1,. . .,K) be PXk , and the RR of developing the event Y due
to carrying each additional risk allele of this type be eβk , then the
risk of event becomes

P(Y = 1) =
2∑

i1=0

· · ·

2∑
iK=0

P(Y = 1|X1 = i1, · · ·,XK = iK)

P(X1 = i1, · · ·,XK = iK)

= P(Y = 1|X1 = · · · = XK = 0)
2∑

i1=0

· · ·

2∑
iK=0

e
∑
k
βkik

P(X1 = i1, · · ·,XK = iK).

Similarly, the PAF of multiple variants is given by,

PAF(X1,···,XK ) =

1−
1

2∑
i1=1
· · ·

2∑
iK=0

e
∑
k
βkik

P(X1 = i1, · · ·,XK = iK)
. (4)

Relationship Between PAF and
Heritability h2 and h2

L
To examine how the PAF and heritiablity are related, we start with
a simple case that Y is a continuous trait (e.g., blood pressure,
BMI), and then extend it to a binary trait. Let Y be a non-negative
continuous trait value and X be a binary or a quantitative genetic
exposure variable that is positively associated with Y. We define

PAFX =
E(Y)− E(Y|X = 0)

E(Y)
.
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Assuming a linear regression model E(Y|X) = β0 + β1X, where
β0 and β1 are regression coefficients, we can deduce that PAFX =
β1E(X)
E(Y) . For a continuous trait, the heritability attributed to one

single variant is defined by the proportion of total variation of this
trait across individuals in a given population that are explained

by this genetic variant, i.e., h2
=

β2
1σ

2
X

σ 2
Y

, where σ 2
X and σ 2

Y are the
variances of X and Y, respectively. Thus, the heritability can be
estimated by the coefficient of determination from a sample,

ĥ2
=

β̂2
1
∑
i
(Xi − X̄)2∑

i
(Yi − Ȳ)2

.

Because PAF2
X = β

2
1
σ 2
X
σ 2
Y

CV2
Y

CV2
X
= h2 CV2

Y
CV2

X
, where CVY and CVX are

the coefficients of variations for Y and X, respectively, the
estimate of PAFX is related to the estimate of heritaiblity as

PÂFX ≈ ĥ
ĈVY

ĈVX
, (5)

by replacing h2, CVX , and CVY with their maximum likelihood
estimates. It is to be noted that because a positive correlation
between Y and X is assumed, 0< h< 1.

Since the coefficient of variation measures the standard
deviation of a particular variable after “standardizing” the
variable to have a mean of one, equation (5) indicates that the
PAF estimate equals the square root of the heritability estimate
adjusted for the ratio in standard deviation between Y and X after
standardization. Note that because PAF is on the same scale as
h and they both are between 0 and 1, the PAF is much larger
than h2.

In the situation to examine the genetic contribution attributed
to multiple causal genetic variants, X is an n× K matrix for n
individuals and K genetic variants and β is a vector of length K
(excluding the intercept). As such,

ĥ2
=

Vâr(Xβ̂)
VârY

and PÂFX =
X̄T β̂

Ȳ

where X̄ is a K × 1 vector of the average level of X over n
individuals. Hence,

PÂFX = ĥ
ĈVY

ĈVXβ̂
, (6)

where ĈVXβ =

√
vâr(Xβ)
X̄Tβ

. Note that ĥ can be interpreted as the

correlation between Y and Ŷ (the fitted value by the linear
regression model) in both simple and multiple linear regressions.
Similar to a single genetic variant, the square of PÂFX for multiple
alleles equals the variability of Y that can be explained by X
while adjusting for the ratio in variation between Y and Xβ̂
after “standardization”. Note that the heritability attributed to the
whole-genome can also be estimated based on the normalized
identity-by-state matrix (i.e., the empirical kinship matrix),
XXT/K, where X here is whole-genome data and K is the
dimension (Chen, 2014; Bulik-Sullivan et al., 2015).

In order to extend the relationship of PAF and heritability to a
binary trait, first consider a log-linear model,

E(Y|Z) = eδ0+δZ,

where Z is the genotype value as defined earlier. Using a quadratic
Taylor expansion at δZ = 0, this model can be approximated by
the following linear regression model:

E(Y|Z) ≈ eδ0 + eδ0δZ +
eδ0

2
δ2Z2

= eδ0 + eδ0(δZ +
δ2

2
Z2). (7)

Let X = (Z,Z2) and β = (δ, δ2/2) in equation (6), PÂFX =
ĥ ĈVY
ĈV(eδ0Xβ̂)

, where ĥ2 is the heritability estimate on the observed

scale for a binary outcome. Since eδ0 can be canceled out when
computing the coefficient of variation of eδ0Xβ , finally we get
PÂFX = ĥ ĈVY

ĈVXβ̂
.

Most frequently, a logistic regression model is used to model a
binary trait,

E(Y|Z) =
eδ0+δZ

1+ eδ0+δZ
.

A Taylor expansion at δZ = 0 of this model yields

E(Y|Z) ≈
eδ0

1+ eδ0
+

eδ0

(1+ eδ0)2
(δZ +

1− eδ0

2(1+ eδ0)
δ2Z2). (8)

Let X = (Z,Z2) and β = (δ, 1−eδ0
2(1+eδ0 )δ

2). The logistic regression
model can also be approximated by the linear regression, so that
equation (6) holds approximately. For logistic regression models,
it is important to notice that the use of the Taylor expansion
beyond the linear term requires the knowledge of δ0 (i.e, the
baseline risk of event without the exposure). When the baseline
risk of event is very small, equation (8) may be reduced to
equation (7) as 1+ eδ0 ≈ 1− eδ0 ≈ 1.

We have shown earlier that equation (6) indicates that the
PAF estimate has a one-to-one relationship with the heritability
estimate on the observed scale (h2). Since h2 is dependent
on the prevalence of the trait in the population (PY ), it is
often transformed to the underlying liability scale under the
assumption of a classical liability threshold model (Falconer,
1965). It has been shown (Ge et al., 2017)

h2
L = ch2,

where c = PY (1−PY )
υ2 and υ is the height of the standard normal

distribution at the threshold T such thatT = 8−1(1− PY). Thus,
the PAF has a one-to-one correspondence with the heritability
measured either on the observed or on the liability scale.

Estimation of PAF Based on GWAS
Summary Statistics
In the preceding sections, we have shown that there is a one-to-
one relationship between the estimates of PAFX , h2 and h2

L for
both continuous and binary traits. However, equation (6) may not
be an optimal approach to estimate the PAFX because the use of
Taylor series expansion can lead to a biased estimate especially for
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a logistic regression. Here, we propose a method to estimate the
PAF using the GWAS summay statistics.

Consider a GWAS for a rare disease, which includes all the
cases in a pre-defined population cohort and randomly selected
controls from the cohort at either a 1:1 or 1:m (m > 1) ratio.
As (1) the RAF for the population can be estimated based
on the allele frequencies of cases and controls reported in the
GWAS and (2) the RR associated with each additional allele of
a genetic variant can be approximated for the estimated odds
ratio (OR), we can estimate the PAFX using equation (3). Further,
the 95% confidence interval for the PAFX can be estimated by a
parametric bootstrap by sampling β from a normal distribution
of N(β̂X, ŝe2(β̂X)).

For a set of correlated genetic variants, their joint effect
estimates on the risk of the event are required for estimating the
PAF. However, often, only the marginal effect estimate of each
individual variant being considered in the study is reported in the
GWAS. While methods have been developed for linear regression
models to estimate the joint effects of multiple alleles based on the
marginal effect of each and the pairwise LD matrix obtained from
the reference data (Pasaniuc and Price, 2017), such methods are
currently not available for generalized linear regression models
of binary outcomes. Here, we develop a Monte-Carlo method
to estimate the joint effects of multiple alleles of interest using
the GWAS summary statistics, from which we estimate the PAF
contributed jointly by these alleles.

Our approach includes the following steps:

(1) Estimate the correlation between Y and Xk. Let STk be
the score statistics of the assocation between Y and Xk.
The correlation between Y and Xk (k = 1, ...K)can then
be estimated based on STk, because

STk =

N∑
i=1

xik(yi − ȳ)√
ȳ(1− ȳ)

N∑
k=1
(xik − x̄k)2

≈ Corr(Y,Xk)
∗
√
N,

where N is the sample size of the case control study. It
should be noted that ST2

k approximately follows a Chi-
square distribution. As the Chi-square statistics of Wald,
score and liklihood ratio tests of a regression model, and
Cochran-Amitage trend test are aymptotically equivalent,
the p-value obtained from either test can be used to
calculate the score statistic STk.

(2) Simulate a large sample (for example, 100,000) of
individual values of Y and (X1, · · ·,XK) based on the
estimated correlation between Y and each variant Xk
as well as the pairwise correlations between variants.
The pairwise correlations between variants can be
obtained from public available LD reference panels of the
same ethnic population, such as 1000 Genome (Leisch
and Andreas, 1998). The simulation of the sample is
implemented using R package bindata. Based on the
simulated data, (β1, · · ·, βK) can then be estimated via a
logistic regression of Y on all Xs simultaneously.

(3) Estimate P(X1, · · ·,XK). To estimate the PAF, the joint
distribution of all the variants within the population,

P(X1, · · ·,XK), needs to be estimated. Since cases were
oversampled in case-control GWAS studies, P(X1, · ·
·,XK) can not be directly estimated from the simulated
case-control data. Using the estimated RAF of Xk, i.e., PXk ,
we therefore empirically estimate the joint distribution of
X1, · · ·,XK in the population using bindata.

(4) Estimate the PAF based on equation (4).
(5) Estimate the 95% confidence interval (CI) of PAF using

a parametric Bootstrap approach. Spefically, the standard
error for the effect estimate can first be obtained based
on the 95% CI reported in the GWAS result. That is,
sê(β̂Xk) = (β̂

R
Xk
− β̂LXk

)/(2∗1.96) so that we sample a large
number (for example, 1000) of βSXk

fromN(β̂Xk , sê
2(β̂Xk)).

Then, with each generated βSXk
, the score statistics

STS
k ≈

βSXk
sê(β̂Xk )

is obtained, enabling the derivation of

CorrS(Y,Xk). Next, the PAFS is calculated using the steps
2–4 described above. The sample standard deviation of
PAFS is used to construct the 95% CI for the PAF.

Based on the one-to-one correpondence between PAF and h2

and h2
L that we have established, the heritability along with its 95%

CI contributed by multiple variants can be estimated. It is also
important to point out that here we assume a rare disease, and
thus we can approximate the RR associated with a risk allele by
its OR. Further, when there are no other confounding and effect
modification factors for the allele being examined, the following
equation has been used to estimate the RR for a single binary
variable when the disease is not very rare (McNutt et al., 1999;
McNutt et al., 2003, 2014),

RR =
OR

1− P(Y = 1|X = 0)+ OR× P(Y = 1|X = 0)
. (9)

When X is the count of a risk allele, however, equation (9)
provides an approximation of RR because linearity in log of
OR does not imply linearity in log of RR. The performance of
the approximation varies by the magnitude of the OR and PX .
Nonetheless, here we continue to use the above equation for
the estimation of the RR associated with each allele, separately.
In the following section we used simulation studies to examine
the accuracy of this approximation for the purpose of estimating
PAF.

SIMULATION STUDIES

The purpose of the simulation studies is two-fold. First,
we aim to examine the one-to-one correspondence that
we have established between the estimates of PAF and h2

in a standard cohort study. Second, we aim to examine
the performance of the proposed method for estimating
the PAF based on the summary statistics obtained from
the case-control GWAS. Based on the estimated PAF, we
also estimated h2 and compared it with h2 obtained from
the original cohort from which the case-control study was
sampled.

To examine the relationship between the estimates of PAF and
h2, a cohort of N = 100,000 was generated where the genetic
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exposure and disease association was defined based on a log
linear regression model. We first examined the scenario with a
single variant under an additive model. The disease incidence
rate was set to be around 10%. We let the Px vary from 0.05
to 0.5 and the log of RR associated with X being 0.1, 0.2,
and 0.3. These parameter values were chosen to cover a wide
range of allele frequencies and allele-disease associations that are
common in most GWAS studies, as well as in our examples. We
next examined the scenario where three alleles were considered
simutaneously, assuming that these alleles are either independent
or with a moderate pairwise correlation of 0.2 or 0.3. For each
senario, we repeated the simulaton1000 times, and reported the
average and standard error of estimates of PAF, h∗ = h CVY

CVXβ
and

h2. In our simulation, equation (3) was used to estimate the PAF
of a single variant, where PX and βX were estimated from the
simulated data, while equation (4) was used for multiple variants.
We then repeated the simulation under a logistic regression
model when the disease is rare, where the OR estimate was used
to approximate RR. We also considered the situation when a
dominant or recessive model is used for genetic variants.

Next, we simulated a case-control study, as it is the most
common design in GWAS, to examine how the proposed method
performs, especially when the disease is not very rare. To
accomplish this, we first generated a cohort of N = 100,000 based
on a logistic regression model with either a single variant or
three variants under an additive model. The disease incidence
rate in this set of simulations was set to be varying from ≤5%
(very rare) and 5–10% (relatively common). Subjects of the study
included all the cases in the cohort and an equal number of
controls randomly selected from all the controls. To mimic the
standard GWAS analysis, a logistic regression model was applied
to each of the alleles separately to obtain the marginal estimate
of OR, 95% CI, and p-value—the results typically reported in a
GWAS. Based on these results, the proposed empirical method
was used to estimate the PAFX and its 95% CI contributed by
each of or all the alleles. It is also of interest to examine how
well the method proposed in equation (9) is at correcting the
potential bias in the estimated PAFX when the disease is not
very rare. We reported the relative bias, defined as the difference
between the average of the estimated PAF and the true PAF, and
the coverage probability, defined as the proportion of times that
the estimated confidence interval included the true PAF. The true
PAF for each simulated cohort was calculated based on equation
(1) where P(Y = 1) and P(Y = 1| X = 0) were pre-determined
event rates for this cohort (not the GWAS subjects) and for those
without the exposure, respectively. The average of ĥ2 and the bias
of the average compared to the “true” h2 calculated directly from
the cohort were also reported. As the computation is intensive,
for each senario, the process was repeated 500 times. Finally,
we examined the genetic variants that had either dominant or
recessive effects using similar parameters.

APPLICATIONS

We applied the proposed method to estimate the PAF attributed
to the genetic variants associated with lung cancer, as well

as the heritability measures h2 and h2
L. We first considered

three independent susceptibility SNPs (rs7086803, rs9387478,
and rs2395185) identified by our collaborative study of never-
smoking Asian females. In the initial GWAS with 5,510
never-smoking female lung cancer cases and 4,544 controls
from 14 studies of mainland China, South Korea, Japan
and Singapore, Taiwan and Hong Kong, several new loci
were identified to be significantly associated with lung cancer
(Lan et al., 2012). The most promising variants were further
genotyped in an additional 1,099 cases and 2,913 controls.
Among them, rs7086803, rs9387478, and rs2395185 were
independently validated. These three SNPs were on different
genomic regions and were therefore independent from each
other.

Then, we considered two correlated SNPs (rs2395185 and
rs3817963). Both SNPs were at 6p21.3 locus close to the HLA-
DRA region. The SNP, rs2395185, was significantly associated
with lung adenocarcinoma in our collaborative GWAS; and
rs3817963 was significantly associated with lung adenocarcinoma
in a Japanese GWAS with a total of 6,029 cases and 13,535
controls (Shiraishi et al., 2012). The GWAS in the Japanese
population included both genders. Since no SNP-gender and
SNP-smoking interaction was found, we combined the results
of these two studies to assess the PAF. These two SNPs are
in a modest correlation in HapMap samples (r2 = 0.18 and
0.10 in Han Chinese and Japanese populations, respectively)
(Lan et al., 2012). Thus, an averaged r2 of 0.14 was used
in our calculations. As both studies were based on a case-
control design, we used the proposed Monte-Carlo method to
estimate the joint ORs accounting for their correlations. We
further assumed that the joint distribution of (X1, · · ·,XK) in
the controls can be used to approximate the distribution in
the general population. This assumption is considered to be
appropriate as lung cancer among never-smoking Asian females
is very rare [age-standardized incidence rate is 16.1/100,000
person-years with an average of 15 years of follow-up (Thun et al.,
2008)].

RESULTS

Simulation Studies
Table 1A shows the relationship between the estimates of PAF
and heritability on the observed scale attributed to one genetic
variant under a log-linear regression model. To estimate the
PAF, a log-linear regression model was used to estimate the RR
associated with the risk allele. As expected, we can see that both
the estimates of PAF and h2 increase as the Px and RR increase.
More importantly, Table 1A indicates that both the mean and
the variation estimates of PAF and h∗ = h CVY

CVXβ
are in a very

good agreement for most scenarios. As Px and RR increase, the
estimates of PAF tend to be slightly smaller than the estimates of
h∗. Table 1B shows the relationship between the estimates of PAF
and heritability on the observed scale attributed to one genetic
variant under a logistic regression model. A logistic regression
model was used to estimate the OR associated with the risk allele.
Again, a very good agreement between the estimates of PAF
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TABLE 1A | Relationship between the estimates of PAF and heritability on the
observed scale attributed to one genetic variant under a log-linear regression
model.

PX β1
1 Average of Average of Average of

PÂF based ĥ ĈVY

ĈVXβ̂

(se) ĥ2

on R̂R(se)

0.05 0.1 0.010 (0.003) 0.010 (0.003) 0.00013

0.2 0.022 (0.003) 0.022 (0.003) 0.00053

0.3 0.034 (0.003) 0.034 (0.003) 0.00131

0.1 0.1 0.021 (0.005) 0.022 (0.005) 0.00024

0.2 0.043 (0.004) 0.043 (0.005) 0.00099

0.3 0.067 (0.005) 0.068 (0.005) 0.00250

0.2 0.1 0.041 (0.007) 0.041 (0.007) 0.00041

0.2 0.083 (0.006) 0.085 (0.007) 0.00177

0.3 0.127 (0.006) 0.132 (0.007) 0.00448

0.3 0.1 0.060 (0.008) 0.061 (0.009) 0.00052

0.2 0.121 (0.008) 0.125 (0.008) 0.00235

0.3 0.181 (0.007) 0.191 (0.008) 0.00594

0.4 0.1 0.080 (0.010) 0.081 (0.011) 0.00061

0.2 0.157 (0.009) 0.163 (0.010) 0.00271

0.3 0.230 (0.008) 0.246 (0.010) 0.00682

0.5 0.1 0.097 (0.012) 0.100 (0.013) 0.00063

0.2 0.189 (0.011) 0.200 (0.012) 0.00282

0.3 0.276 (0.009) 0.299 (0.011) 0.00718

1RR = exp(β1) under a log linear model.

TABLE 1B | Relationship between the estimates of PAF and heritability on the
observed scale attributed to one genetic variant under a logistic regression model.

PX δ1
1 Average of Average of Average of

PÂF based ĥ ĈVY

ĈVXδ̂

(se) ĥ2

on ÔR(se)

0.05 0.1 0.010 (0.005) 0.010 (0.005) 0.00006

0.2 0.022 (0.005) 0.020 (0.005) 0.00021

0.3 0.034 (0.005) 0.032 (0.005) 0.00052

0.1 0.1 0.021 (0.007) 0.020 (0.007) 0.00022

0.2 0.042 (0.007) 0.040 (0.007) 0.00039

0.3 0.067 (0.007) 0.063 (0.007) 0.00098

0.2 0.1 0.042 (0.011) 0.040 (0.010) 0.00017

0.2 0.083 (0.010) 0.080 (0.010) 0.00070

0.3 0.127 (0.010) 0.122 (0.010) 0.00173

0.3 0.1 0.060 (0.013) 0.058 (0.013) 0.00022

0.2 0.121 (0.012) 0.118 (0.012) 0.00093

0.3 0.181 (0.012) 0.179 (0.012) 0.00227

0.4 0.1 0.080 (0.016) 0.077 (0.015) 0.00025

0.2 0.157 (0.015) 0.154 (0.014) 0.00106

0.3 0.230 (0.014) 0.231 (0.014) 0.00259

0.5 0.1 0.097 (0.019) 0.095 (0.019) 0.00026

0.2 0.189 (0.017) 0.187 (0.017) 0.00109

0.3 0.275 (0.015) 0.279 (0.016) 0.00267

1OR=exp(δ1) under a logistic model.

and h∗ was observed. The results were very similar when the
risk allele had a dominant or recessive effect and therefore not
shown.

Tables 2A,B show the results when three genetic variants
were considered simultaneously, with or without correlations.
Again, a close agreement was observed between the PAF and h∗
estimates for both loglinear (Table 2A) and logistic regression
models (Table 2B). The average estimate of PAF tended to be a
bit smaller than that of the estimates of h∗ when βX or δX is
high. This descrepancy is likely due to the inaccuracy of the Taylor
expansion.

In the second set of simulations of a GWAS case-control study,
the results for a single variant are summarized in Table 3. This
Table 3 shows that when the event rate was very rare (<5%),
the bias of the PAF estimate was small and its 95% CI was
close to its nominal coverage. However, when the disease event
rate was between 5 and 10%, the PAF estimate based on ORs
tended to be inflated up to 7%. This is most likely due to the
overestimation of RR by directly using OR when the disease
is relatively common. Based on the corrected OR estimate, the
PAF estimate had a much smaller bias and its 95% CI was
only slightly higher than the nominal coverge. The results for
multiple variants are summarized in Table 4. The results were
similar to those observed for a single variant, suggesting that
the proposed Monte-Carlo method estimates the joint effect of
multiple variants and its variation accurately.

Applications
Table 5 shows the estimates of the PAF and heritability attributed
to individual variants (rs7086803, rs9387478, and rs2395185 for
overall lung cancer and rs381796 for lung adenocarcinoma). As
expected, the estimated PAF (10–16%) was much larger than
the corresponding estimate of heritability on the observed scale
(2.69e-05 to 6.02e-05) as well as on the liability scale (0.0005–
0.0015). It is interesting to note that the rank of estimated PAF
was not necessarily consistent with the rank of heritability. The
estimate of PAF of rs9387478 was the highest, while the estimate
of heritability of rs7086803 was the highest. This is due to the
fact that PAF is a function of both heritability and CV of the
variant. Table 6 showed that for lung cancer, three variants
(rs7086803, rs9387478, and rs2395185) jointly contributed to
33.6% of the disease, and explained 0.03% of variability on the
observed scale and 1.4% on the liability scale, respectively. For
lung adenocarcinoma, two variants (rs2395185 and rs3817963) in
the 6p21.3 regions together contributed to 14.8% of the disease,
and explained 0.01% of variability on the observed scale and 0.6%
on the liability scale, respectively.

DISCUSSION

In this paper, we examined the relationship between PAF and
heritability, the two measures of genetic contribution to disease
risk. Our results showed that for a given variant or a set of
variants, the PAF is a one-to-one function of heritability. We also
proposed a Monte-Carlo estimation procedure to estimate the
PAF of multiple correlated risk alleles based on the case-control
GWAS summary statistics. Using simulations, we confirmed the
established relationship between PAF and heritability and showed
the proposed method to estimate that PAF performed well.
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TABLE 2A | Relationship between PAF and heritability on the observed scale attributed to three genetic variants under a log-linear regression model.

Cor(X1,X2,X3) (PX1 ,PX2 ,PX3 ) (β1, β2, β3) Average of Average of Average of

PÂF based ĥ ĈVY

ĈVXβ̂

(se) ĥ2

on R̂R(se)

0.0 (0.1,0.1,0.1) (0.1,0.1,0.1) 0.061 (0.007) 0.061 (0.007) 0.00073

(0.3,0.2,0.1) 0.125 (0.007) 0.127 (0.007) 0.00408

(0.1,0.2,0.3) (0.1,0.1,0.1) 0.117 (0.010) 0.118 (0.011) 0.00127

(0.3,0.2,0.1) 0.196 (0.009) 0.202 (0.010) 0.00571

(0.2,0.3,0.4) (0.1,0.1,0.1) 0.170 (0.013) 0.172 (0.013) 0.00176

(0.3,0.2,0.1) 0.294 (0.010) 0.308 (0.016) 0.00970

(0.3,0.4,0.5) (0.1,0.1,0.1) 0.219 (0.014) 0.223 (0.015) 0.00215

(0.3,0.2,0.1) 0.375 (0.010) 0.400 (0.012) 0.01308

0.2 (0.1,0.1,0.1) (0.1,0.1,0.1) 0.062 (0.006) 0.062 (0.006) 0.00107

(0.3,0.2,0.1) 0.129 (0.006) 0.132 (0.006) 0.00589

(0.1,0.2,0.3) (0.1,0.1,0.1) 0.119 (0.009) 0.120 (0.009) 0.00183

(0.3,0.2,0.1) 0.201 (0.008) 0.209 (0.009) 0.00849

(0.2,0.3,0.4) (0.1,0.1,0.1) 0.172 (0.010) 0.174 (0.011) 0.00253

(0.3,0.2,0.1) 0.300 (0.008) 0.316 (0.010) 0.01384

(0.3,0.4,0.5) (0.1,0.1,0.1) 0.222 (0.013) 0.226 (0.013) 0.00303

(0.3,0.2,0.1) 0.382 (0.009) 0.408 (0.011) 0.01791

TABLE 2B | Relationship between PAF and heritability on the observed scale attributed to three genetic variants under a logistic regression model.

Cor(X1,X2,X3) (PX1 ,PX2 ,PX3 ) (δ1, δ2, δ3) Average of Average of Average of

PÂF based ĥ ĈVY

ĈVXδ̂

(se) ĥ2

on ÔR(se)

0.0 (0.1,0.1,0.1) (0.1,0.1,0.1) 0.061 (0.012) 0.060 (0.011) 0.00031

(0.3,0.2,0.1) 0.125 (0.011) 0.125 (0.010) 0.00158

(0.1,0.2,0.3) (0.1,0.1,0.1) 0.118 (0.017) 0.117 (0.016) 0.00053

(0.3,0.2,0.1) 0.196 (0.014) 0.204 (0.014) 0.00217

(0.2,0.3,0.4) (0.1,0.1,0.1) 0.170 (0.019) 0.173 (0.018) 0.00070

(0.3,0.2,0.1) 0.293 (0.017) 0.317 (0.016) 0.00350

(0.3,0.4,0.5) (0.1,0.1,0.1) 0.218 (0.023) 0.227 (0.022) 0.00083

(0.3,0.2,0.1) 0.376 (0.016) 0.423 (0.016) 0.00459

0.3 (0.1,0.1,0.1) (0.1,0.1,0.1) 0.063 (0.009) 0.062 (0.009) 0.00052

(0.3,0.2,0.1) 0.132 (0.009) 0.132 (0.008) 0.00262

(0.1,0.2,0.3) (0.1,0.1,0.1) 0.120 (0.014) 0.121 (0.013) 0.00084

(0.3,0.2,0.1) 0.205 (0.012) 0.215 (0.012) 0.00371

(0.2,0.3,0.4) (0.1,0.1,0.1) 0.173 (0.016) 0.176 (0.015) 0.00114

(0.3,0.2,0.1) 0.302 (0.014) 0.326 (0.013) 0.00564

(0.3,0.4,0.5) (0.1,0.1,0.1) 0.222 (0.019) 0.230 (0.018) 0.00134

(0.3,0.2,0.1) 0.386 (0.014) 0.428 (0.013) 0.00707

There is a concern in the literature that using PAF to measure
the genetic contribution to a disease may be inappropriate since
the PAF estimates are often an order of magnitude larger than
other measures, such as heritability. However, based on the
established one-to-one function between the PAF and heritability
estimates, we expect that PAF is larger than heritability: not
because PAF is inadequate, but because PAF is on the same
scale of the square root of heritability. Further, the PAF is also
affected by the ratio in coefficient of variation between a binary
trait and the genetic variant(s) being examined. In general, the
relative variability of a trait is larger than that of a genetic variant:
the lower the event rate, the larger the ratio in their CVs. For

example, for an event with 10% event rate, the ratio in coefficient
of variation between Y and X is 2.12, 2.78, and 4.24 for PX = 0.2,
0.3, and 0.5, respectively, under an additive model; for a rare
event with 1% event rate, these ratios are 7.04, 9.21, and 14.07,
respectively. While heritability is an important measure to help
understand to what extent the genetic variants explain population
variation, PAF is also useful to measure the effects of the genetic
variants on the mean risk of an event so that the impact on the
overall event rate can be estimated if theoretical intervention on
certain risk alleles are successful. Further, it is important to note
that the ranks of these two measures for the same set of genetic
variants do not necessarily agree. For example, the PAF estimate
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TABLE 3 | Estimation of PAF and h2 attributed to one genetic variant with and without the correction for OR.

P(Y = 1) PX δ1 Average of Bias Coverage Average of Bias Coverage Average of Bias

PÂF based %1 %2 PÂF based % % ĥ2 %

on OR on corrected OR

<5% 0.2 0.2 0.082 3.26 95.2 0.080 −0.43 96.7 0.00048 3.87

0.3 0.126 3.64 97.2 0.121 −0.38 97.5 0.00115 3.08

0.3 0.2 0.120 3.30 95.7 0.116 −0.34 96.9 0.00061 1.28

0.3 0.181 3.60 95.6 0.175 −0.35 96.8 0.00146 −2.18

0.5 0.2 0.189 2.38 95.2 0.182 −1.16 96.2 0.00072 −2.08

0.3 0.275 3.14 93.6 0.267 −0.67 96.4 0.00163 −7.94

5–10% 0.2 0.2 0.082 5.37 94.7 0.077 −0.87 97.6 0.00080 9.15

0.3 0.126 6.96 94.0 0.118 0.09 98.4 0.00194 6.56

0.3 0.2 0.121 6.61 95.1 0.114 0.36 97.4 0.00103 7.65

0.3 0.181 6.25 92.7 0.170 −0.46 97.9 0.00246 3.51

0.5 0.2 0.191 6.45 92.0 0.179 0.34 96.3 0.00118 2.93

0.3 0.275 5.89 89.4 0.259 −0.60 97.3 0.00275 −2.12

1The relative bias is calculated as (estimated parameter-true parameter)/true parameter × 100%. 2The coverage probability is the proportion of the estimated 95%
confidence intervals containing the true value.

TABLE 4 | Estimation of PAF and h2 attributed to three genetic variants with and without the correction for OR.

P(Y = 1) (δ1, δ2, δ3) δ1 δ2 δ3 Average of Average of Average of %

PÂF based PÂF based on ĥ2 bias

on OR corrected OR

Bias Cov1 Bias Cov Bias Cov Bias Cov Bias Cov

% % % % % % % % % %

<5% (0.1,0.1,0.1) 3.97 99.4 −1.51 99.8 −0.01 99.2 4.56 99.8 0.51 99.8 0.000409 5.80

(0.3,0.2,0.1) 4.42 99.2 1.71 99.4 1.78 99.2 6.80 97.6 2.35 99.4 0.001655 −5.91

5–10% (0.1,0.1,0.1) 1.74 99.4 2.46 100.0 −3.68 99.8 5.95 99.4 −2.06 99.0 0.000815 7.53

(0.3,0.2,0.1) 2.74 100.0 3.00 99.6 1.07 99.8 9.73 95.4 0.79 99.6 0.003258 −2.06

1coverage.

TABLE 5 | Estimates of PAF and heritability and 95% CI contributed by individual variants significantly associated with lung cancer in two GWAS conducted in Asian
populations.

Variant1 PX
1 OR PÂF ĥ2 ĥ2

L

rs7086803 0.27 1.28 (1.21,1.35) 0.136 (0.104,0.165) 6.02e-05 (3.57e-05,8.93e-05) 0.0015

rs9387478 0.50 0.85 (0.81, 0.90)2 0.156 (0.102,0.199) 2.93e-05 (1.27e-05,4.79e-05) 0.0005

rs2395185 0.36 1.17 (1.11,1.23) 0.111 (0.074,0.146) 2.69e-05 (1.20e-05,4.65e-05) 0.0005

rs3817963 0.32 1.18 (1.12.1.24) 0.105 (0.072,0.152) 2.88e-05 (1.35e-05,4.86e-05) 0.0006

1The calculation of PAF and heritability of rs7086803, rs9387478, and rs2395185 were based on the first GWAS of N = 7421 never-smoking female lung cancer cases
and 6512 controls drawn from 14 studies from mainland China, South Korea, Japan and Singapore, Taiwan and Hong Kong; the calculation of PAF and heritability of
rs3817963 were based on the second GWAS of lung carcinoma conducted in a Japanese population with a total of 6,029 cases and 13,535 controls.
2The reciprocal of the OR was used to calculate PAF.

of a genetic variant associated with Crohn’s disease, for which the
minor allele frequency was 0.07% and the RR associated with the
minor allele was 0.42 (i.e., the minor allele had a protective effect),
was 81%, while the heritability estimate on the liability scale was
only 1.02% (Jostins et al., 2012; Witte et al., 2014). The small
heritability estimate suggests that this variant contributes very
little to the variability of the population risk because few people
carry the minor allele. On the other hand, the large PAF estimate
indicates a significant reduction in the average population risk if

a successful intervention is available for a very large proportion
of individuals carrying the common risk allele (about 99%). In
summary, both these measures are useful as they describe the
different aspects of the genetic contribution to disease risks.

It is important to point out that heritability does not imply
causality, neither does PAF. In fact, the PAF does not add any
new causal information to the RR (Greenland and Robins, 1988;
Flegal et al., 2015). Unless the biologic mechanism is established,
the PAF does not necessarily imply population “excess” risk
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TABLE 6 | Estimates of PAF and heritability and 95% CI contributed by multiple variants significantly associated with lung cancer in two GWAS conducted in Asian
populations.

Variants PÂF ĥ2 ĥ2
L

rs7086803,rs9387478,rs23951851 0.336 (0.288,0.383) 0.000329 (0.00025,0.00043) 0.0140

rs2395185, rs38179632 0.148 (0.110,0.189) 0.000144 (0.00008,0.00023) 0.0061

1These three alleles are expected to be independent because rs7086803 is on a different chromosome with rs9387478 and rs2395185. rs9387478 and rs2395185 are
both on chromosome 6 but at different regions.
2rs2395185 and rs3817963 are both at 6p21.3 locus, the r2 between these two variants in Han Chinese and Japanese HapMap samples was 0.18 and 0.10, respectively.
An average r2 of 0.14 is used here. The estimated OR for lung adenocarcinoma associated with rs2398185 is 1.20 (1.12,1.28).

attributed to the exposure. While the effect estimate of a genetic
exposure may be more robust to confounding factors and reverse
causality than environmental risk factors, the observed effects
of genetic variants may result from LD as well as bias from
population stratification. When the variant examined is not
causal but in LD with the causal one, the heritability is likely to be
underestimated because of the attenuation of the effect estimate
(Visscher et al., 2010), and so is the PAF. Thus, the PAF also needs
to be interpreted cautiously in genetic studies.

The overall PAF attributed to multiple alleles denoted by

(X1, ...,XK), when they are independent is PAF = 1−
K∏

k=1
(1−

PAFXK ), where PAFXK is obtained based on the marginal OR
of Xk (Witte et al., 2014). However, when the risk alleles are
positively correlated, the marginal OR of each individual risk
allele is larger than the true OR as it includes a fraction
of the effect of the other correlated risk alleles. Therefore,

1−
K∏

k=1
(1− PAFXK ) can significantly overestimate the overall

PAF (Rockhill et al., 1998). When alleles are correlated, the

overall PAF should be approximated by 1−
K∏

k=1
(1− PAFaXk

),

where PAFaXK
is obtained based on the OR adjusted for

other variants. In our example of lung adenocarcinoma, the
marginal ORs associated with the two correlated risk alleles
of rs2395185 and rs3817963 were 1.20 and 1.18, respectively,
while the corresponding adjusted ORs were 1.13 and 1.10. As
a result, the PAFaXK

estimates (0.087 and 0.061 for rs2395185
and rs3817963, respectively) were smaller than the PAF estimates
based on marginal ORs (Table 5). The joint PAF based on
the adjusted ORs can be approximated by 1-(1-0.087) (1-
0.061) = 0.142, which is very close to what we obtained in
Table 6.

In this paper, we developed an empirical method to estimate
the joint effects of multiple alleles. As mentioned earlier, the
joint effect estimates in a linear regression model can be
mathematically obtained from the GWAS summary statistics
of individual variants (Pasaniuc and Price, 2017). However,
to our knowledge there is no existing method available for
a logistic regression. The difficulty primarily results from
the fact that in a logistic regression model the parameter
estimation does not have a closed-form solution. Instead,
it requires an iteratively reweighted least square algorithm.
The proposed empirical Monte-Carlo method is conceptually
straightforward, but is computationally intensive when the
number of genetic variants is large. It is desirable in our

future work to derive a numerical solution to estimate the
joint effects from summary statistics of logistic and log linear
regression models. This work is critical because not only can
it simplify the computation and hence allow us to examine
a large number of variants simultaneously but also can have
other important applications, e.g., building a prediction model
of disease risk on multiple genetic variants using the GWAS
summary statistics.

Furthermore, our approach can be extended beyond the main
effects of genetic variants to situations when gene-environment
interactions exist [e.g., coal use as a risk exposure to lung cancer
(Hosgood et al., 2015)] by examining the PAF separately for
subjects with and without the environmental exposure. However,
future research is warranted for the assessment of the overall PAF
attributed by gene and environmental exposures simultaneously
and when the environmental exposure is a continuous variable.

CONCLUSION

In conclusion, we show that there is a one-to-one relationship
between the estimates of PAF and heritability. Each of these two
measures indicates a distinct and useful aspect of the genetic
contribution to disease risk. We hope this paper will help to
provide a more comprehensive understanding of PAF and foster
a wider use of PAF in genetic studies.
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