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Sudden infant death syndrome (SIDS) continues to be a major public health issue. 
Following its major decline since the “Back to Sleep” campaign, the incidence of SIDS 
has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United 
States and thousands more throughout the world. The etiology of SIDS, the major cause 
of postneonatal mortality in the western world, is still poorly understood. Although sleep-
ing in prone position is a major risk factor, SIDS continues to occur even in the supine 
sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction 
between a susceptible infant during a critical developmental period and stressor/s in the 
pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control 
to findings of altered neurochemistry, especially the serotonergic system that plays an 
important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem sero-
tonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower 
in SIDS, supporting the evidence that defects in the medullary serotonergic system play 
a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associ-
ated with SIDS, although no direct evidence has been established. We present a new 
hypothesis that the infant’s gut microbiome, and/or its metabolites, by its direct effects 
on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing 
serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT 
levels through the microbiome–gut–brain axis, thus playing a significant role in SIDS 
during the critical period of gut flora development and vulnerability to SIDS. The shared 
similarities between various risk factors for SIDS and their relationship with the infant 
gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are 
required to test our hypothesis.
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introdUCtion

Sudden infant death syndrome (SIDS) is defined as a sudden 
unexplained death in the first year of life in a previously healthy 
infant, where the cause of death remains unidentified despite 
thorough investigations including a complete autopsy, death 
scene investigation, and review of clinical history (1). SIDS is a 
major cause of postneonatal infant mortality in the western world. 
In the United States, ~1,500 infants died of SIDS in 2013 alone, 
despite the steady reduction (1994–2000) in such deaths since the 
“Back to Sleep” campaign. The incidence of SIDS has remained 
fairly constant in the last decade, while the rate of other causes 
of ill-defined, unspecified, and sudden unexpected infant deaths 
has increased (1, 2). Some infant deaths, which would have been 
classified as SIDS in the past, are now being classified as resulting 
from suffocation and asphyxia. The significant reduction in SIDS 
rate in the past 20 years may be related to increasing diagnoses of 
other causes of death (1). Japan and the Netherlands have the low-
est SIDS rates, at 0.09 and 0.1 per 1,000 live births, respectively, 
whereas New Zealand has the highest reported SIDS rate (0.8 per 
1,000 live births) (3–6). The United States and UK have SIDS rates 
of 0.57 and 0.41 per 1,000 live births, respectively (7, 8). Prone 
sleeping position, a significant SIDS risk factor, cannot be easily 
associated with the other epidemiological risk factors related to 
SIDS (9).

Current Hypotheses for sids
Sudden infant death syndrome is a condition without a widely 
accepted singular pathological mechanism.

(1) Triple-risk model: this model proposes that SIDS occurs when 
external stressors simultaneously act upon on a susceptible 
infant with a vulnerable homeostatic system during a critical 
developmental period (10).

(2) Failed autoresuscitation: animal studies have shown that car-
diorespiratory, sleep, and arousal mechanisms are abnormal 
following exposure to risk factors associated with SIDS or in 
infants who later succumb to SIDS (11, 12). Although the 
exact cause of SIDS is unknown, immaturity of brain stem 
autonomic cardiorespiratory/thermoregulatory control 
and failure of autoresuscitation during sleep are significant 
determinants of survival (11, 12). A leading SIDS hypothesis 
states that a structural/neurochemical brainstem abnormal-
ity results in failure of autoresuscitation following exposure 
to a stressor during a critical developmental period (13, 14). 
SIDS vulnerability is specific to failed autoresuscitation from 
an adverse autonomic event (AAE). The initial self-initiated 
gasp during such an event is dependent of optimal serotonin 
homeostasis in the brain, which is undermined in SIDS. 
Imbalance in serotonin homeostasis alters sleep rhythm, thus 
increasing the chances of AAE (15).

(3) Medullary serotonergic network deficiency: SIDS is associ-
ated with multiple serotonergic defects including serotonin 
deficiency (16–19). It has been associated with reduced 
serotonin in the ventral medulla, pointing to a brainstem-
based autonomic dysfunction affecting sleep/arousal/
cardiorespiratory reflexes (20–23). Gene polymorphisms 

related to serotonergic autonomic system may play a role 
in SIDS (24). In a recent study in neonatal rodents, loss of 
brain stem 5HT may explain the cardiovascular collapse 
during apparent severe hypoxic event in some SIDS cases 
(25). Recent neuropathology studies in SIDS implicate 
defective neurotransmitter function in the medullary arcu-
ate nucleus, receptor immaturity of the “respiratory center” 
nucleus tractus solitarius (NTS), and defective function of 
the serotonergic raphé nuclei of the ponto-medullary ventral 
median septum and other brainstem serotonergic neurons 
(26). Abnormalities of the dorsal motor nucleus of the vagus 
(DMNV) have been associated with SIDS (27). In a sig-
nificant number of SIDS infants, cerebellar dentate nucleus 
lesions may represent a developmental susceptibility leading 
to autonomic cardiorespiratory/arousal dysfunction and 
sleep-related death when exposed to homeostatic stressors 
(28). Cummings et al. report that, in addition to respiratory 
and cardiac dysfunction in normoxemic conditions, neona-
tal mice with reduced (by 60–70%) brainstem serotonergic 
neurons from early embryogenesis onward (Pet-1−/−) have 
major defects in autoresuscitation, a life-preserving process 
utilized by neonatal mammals in severely hypoxic conditions 
(29–33).

(4) Neurotransmitters: neurotransmitter systems (e.g., cholin-
ergic and GABA-ergic) have been shown to be involved in 
SIDS (34, 35). Reduced muscarinic cholinergic binding in 
the medullary arcuate nucleus (involved in cardiorespira-
tory control) has been shown to occur in SIDS (34). GABA 
neurons in the medulla help regulate homeostasis through 
interactions with the medullary serotonergic system (35). 
Significant decrease in GABA A receptor binding was found 
in the medullary serotonergic system in SIDS cases associ-
ated with 5-HT defects (35).

neW HypotHesis

We propose a new hypothesis that the infant gut microbiome 
plays an important role in SIDS during the period critical to both 
gut flora maturation/development and vulnerability to SIDS, by 
modulating brainstem serotonergic system through the bidi-
rectional microbiome–gut–brain axis, thus tilting the balance 
in favor of successful autoresuscitation during a sleep-related 
AAE. The components of our hypothesis, though individually 
and separately studied in the past, have never been put together 
as the structure of a SIDS hypothesis. The factors protective 
against as well as the risk factors of SIDS show some compel-
ling circumstantial evidence of their effects on gut microbiome 
leading to beneficial and dysbiotic infant gut flora, respectively, 
with corresponding effects on brainstem serotonergic system. 
The plausibility of such an SIDS hypothesis would open up a 
new paradigm for preventative and therapeutic approaches in 
SIDS. Our hypothesis is the only one till date, which connects 
the protective/risk factors of SIDS with infant gut flora, their 
effect via microbiome–gut–brain axis on brainstem seroton-
ergic system, and subsequent successful autoresuscitation 
(Figure 1).
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FiGUre 1 | new sudden infant death syndrome hypothesis pathway: effect on infant gut flora on brainstem serotonin homeostasis and 
autoresuscitation via microbiome–gut–brain axis.
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Microbiome–Gut–Brain axis
The human adult gut has about 1014 microorganisms, 10-fold the 
human cells and 150-fold the amount of human DNA (36, 37). 
The human gut microbiome comprises more than 1,000 species, 
predominantly obligate anaerobes, and includes viruses, proto-
zoa, archaea, and fungi (36–39). Gastrointestinal homeostasis 
has a significant role in the human general health and well-being 
(39–41). The concept of the brain–gut axis involves the complex 
bidirectional homeostatic neuronal communication through the 
vagus nerve that exists between the central nervous system (CNS) 
and the enteric nervous system (ENS) (42). Current research 
studies the mechanism of such communication along this axis 
and its relationship to normal homeostasis and disease states 
(42–48). The basic skeleton of the microbiome–gut–brain axis 
includes gut microbiome, the CNS, neuroendocrine and neuro-
immune systems, ENS, sympathetic, and parasympathetic arms 

of the autonomic nervous system (49). The gut accounts for 95% 
of the body’s serotonin content. The detailed structure, integra-
tion, and functioning of the various components of the above axis 
have been reviewed extensively elsewhere (45).

Gut microbial colonization also plays a major role in the 
postnatal development of the endocrine and immune systems, 
which in turn support CNS function, particularly the develop-
ing serotonergic system (41, 42, 50–52). Neurotransmitters, 
neurohormones, and receptors are ubiquitous in nature, e.g., 
catecholamines corticotrophin, somatostatin, and GABA derived 
from bacteria (53–56). Evolutionally speaking, bacteria preceded 
humans in developing neurotransmitters and recognizing them 
(57–59). The ontogeny of neurochemicals in mammals has been 
postulated to arise as a consequence of bacterial lateral gene 
transfer (60). Thus, the gut microbiota might have played an 
important role in the evolution of neurodevelopment (61).
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Gut Vagal Afferents and the Medullary Serotonergic 
System
Sudden infant death syndrome is associated with multiple 
serotonergic defects including serotonin deficiency and DMV 
abnormalities (15–18, 62). We briefly review the vagal afferents, 
brainstem respiratory neurons, and the medullary serotonergic 
system.

Vagal afferents outnumber vagal efferents by 10:1, which are 
sensitive to the paracrine effects of the enterochromaffin cells 
(ECC), relay through nodose and dorsal root ganglia before 
synapsing with second-order neurons in the spinal cord, which 
in turn project into the brainstem. The brainstem has major 
respiratory neurons concentrated into three recognizable groups 
comprised of four major nuclei. These include the following: (1) 
dorsal respiratory group (DRG) centered in the NTS; (2) ventral 
respiratory group that encompasses the nucleus ambiguous and 
the nucleus retroambigualis; (3) pre-Botzinger complex (pre-
BotC) which contains putative pacemaker neurons; and (4) BotC 
located in and near the nucleus retrofacialis. The DRG neurons 
through the phrenic neurons in the cervical spinal cord control 
the diaphragm.

The medullary serotonergic system projects to brainstem 
cardiorespiratory nuclei (including the DMNV), cerebellum, 
and spinal cord, thus modulating cardiorespiratory protective 
reflexes, central chemoprotective reflexes, arousal/sleep cycles, 
thermoregulatory reflexes, and maintenance of upper airway 
patency (63).

Vagal afferents affect respiratory control as shown by altered 
respiratory pattern after stimulation of visceral vagal afferents in 
guinea pigs which died within a few hours of bilateral vagotomy; 
their frequency of breathing significantly decreased within 
minutes of the procedure (64, 65). Serotonin may regulate devel-
opmental brainstem neuronal apoptosis with its pro- or antiapop-
totic effects as a result of the receptor sub-family activated (66). 
Animal studies have shown that the highest density of 5-HT3 
receptors are found within the afferent vagal fibers of dorsal 
vagal complex (67, 68) and vagotomy was found to significantly 
reduce receptor density (69–71). Stimulation of the NTS 5-HT3 
receptors leads to elevation of blood pressure and inhibition of 
the chemoreceptor-mediated bradycardia and the Bezold–Jarisch 
reflexes. As an example of sensory neural plasticity, recent rat 
studies have shown that glucose in the intestinal tract probably 
induces serotonin release from neuroendocrine cells, which acti-
vates 5HT3 on vagal afferent terminals and transmitted centrally 
(72–79).

Gut Microbiome affects the Brainstem
There is emerging evidence from animal and clinical studies on 
the role of gut microbiome in CNS signaling.

Animal Studies
Evidence from rodent studies indicates that the gut microbiome 
can affect neural development, chemistry, and behaviors, e.g., 
emotion, pain perception, and stress responses. As rodent 
gut colonization pattern is similar to humans, they are sub-
jects of choice for gut microbiome studies. CNS tryptophan 

concentrations are dependent on peripheral content, which sug-
gests that gut flora might play a part in regulating peripheral and 
central serotonin synthesis (44, 80, 81). TPH2 is responsible for 
the synthesis of serotonin in brainstem raphe nuclei, which is the 
origin of most central serotonergic projections (82). Probiotics 
have been shown to modulate serotonin—a critical central neu-
rotransmitter through multiple strain-specific mechanisms (83). 
Lyte et al. proposed a “delivery system” by which gut flora can 
communicate neurochemical messages to the brain. Gut bacteria 
produce and react to the same neurotransmitters (e.g., serotonin, 
norepinephrine, dopamine, and GABA) that play a role centrally 
in modulation of mood (84). Animal studies studying effects of 
probiotics on CNS function have been extensively and system-
atically reviewed elsewhere (85). In addition, we have listed few 
rodent studies looking at the role of pathogenic bacteria and vagus 
on CNS neurochemistry and behavior (52, 86–92) (Table 1).

Clinical Studies
Emerging evidence from clinical studies in autism indicates a 
relationship between gut flora and cognitive function. Researchers 
have reported gut flora dysbiosis with increases in Clostridium 
spp. in autism (93). A probiotic mixture of Lactobacillus helveticus 
and Bifidobacterium longum for a month has been reported to 
decrease anxiety and depression in healthy human (94). Other 
adult human clinical studies looking at probiotic effects on 
neurobehavior have been systematically reviewed elsewhere (85).

Brain affects Gut Microbiome
Stress induces gut permeability, which allows bacteria/bacte-
rial antigen translocation across the epithelial barrier, thereby 
activating immune response and resulting in changes in the gut 
microbiome characteristics (95). Psychological stressors have 
been reported to modulate infant gut microbiome (47). Prenatal 
stressors have been reported to cause dysbiosis by decreasing gut 
Bifidobacteria and Lactobacilli in infant rhesus monkeys (96). 
In rodent studies, the stress of maternal separation significantly 
decreased stool lactobacilli on the third day, which returned to 
baseline by day 7 following separation (97). Stressors acting on 
an at-risk infant during the critical window period could affect 
the favorable nature of infant gut flora and consequently affect the 
brainstem neurotransmitters through bidirectional communica-
tion and/or gut barrier function locally.

Based on the evidence from the experimental and clinical 
studies discussed above, we propose that an optimal (diversity, 
complexity, and colony counts) gut flora interacts with ECC and 
modulates (possibly by its serotonin and other paracrine effects) 
through the afferent vagal endings to the brain stem medullary 
serotonergic cardiorespiratory centers in infants at risk for SIDS. 
Recent research in microbiome–gut–brain axis supports role of 
probiotics to modulate central brain neurochemistry, thus open-
ing up a site for therapeutic targeting for central brain disorders.

Shared Risk Factors for SIDS and Gut Dysbiosis
In the following section, we report how each of the protective as 
well as risk factors for SIDS seems to offer evidence of promoting 
symbiotic (favorable) and dysbiotic gut (non-favorable) flora, 
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taBle 1 | animal studies showing effect of gut microbiome/probiotics on the central nervous system (Cns).

reference study characteristics

1. Sudo et al. 
(86)

Participants: mice study, in vivo. Germ-free (GF) at 9 weeks of age
Intervention: stress protocol
Controls: specific pathogen-free (SPF) BALBc mice, gnotobiotic mice
Primary outcome: plasma ACTH, corticosterone levels, fecal microflora analysis, plasma cytokine assays
Conclusion: plasma ACTH and corticosterone responses of GF mice were more susceptible to stress than those of SPF mice. Gut flora regulates the 
development of the HPA stress response

2. Bravo et al. 
(87)

Participants: adult male BALB/c mice, in vivo (n = 36)
Intervention: Lactobacillus rhamnosus 109 cfu gavaged for 28 days
Control: control broth
Type of probiotic: L. rhamnosus (JB-1)
Primary outcome: corticosterone level, behavioral analysis, GABA B1b mRNA expression in hippocampus, amygdala, and locus coeruleus
Conclusion: L. rhamnosus supplementation reduced corticosterone response to stress and modulated the GABAergic system in mice. Vagotomized 
mice did not show the neurochemical effects of this bacterium

3. Desbonnet 
et al. (88)

Participants: adult Sprauge-Dawley rats (n = 20)
Intervention: Bifidobacterium infantis 35624 gavaged for 14 days (n = 12)
Controls: n = 8
Type of probiotic: B. infantis 35624
Primary outcome: corticosterone level, tryptophan and IFN-g, TNF-alpha and IL-6, brain monoamines analysis
Conclusion: attenuation of pro-inflammatory immune responses and the elevation of the serotonergic precursor, tryptophan, in probiotic-treated group

4. Alenina 
et al. (89)

Participants: Tph2-deficient (Tph2−/−) mice, in vivo study
Intervention: gene targeting leading to mice with absent TPH2, n = 4
Type of probiotic: none
Controls: n = 6
Primary outcome: serotonin in the brain of Tph2−/− mice
Conclusion: the lack of central serotonin in these mice leads to impaired early postnatal growth and altered autonomic control of sleep, 
thermoregulation, and cardiorespiratory reflexes

5. Lyte et al. 
(84)

Participants: 9-week-old CF-1 male mice, in vivo study
Intervention: in an animal model of IBD, infection with Citrobacter rodentium, to determine whether the infection could lead to anxiety-like behavior
Controls: saline
Type of probiotic: none
Primary outcome: tested for anxiety-like behavior measurement, immune cytokine analysis, and colon for histological analysis
Conclusion: C. rodentium infection could induce anxiety-like symptoms that are likely mediated via vagus

6. Gareau 
et al. (90)

Participants: mouse in vivo study
Intervention: behavior was assessed following infection with the non-invasive enteric pathogen, C. rodentium in both C57BL/6 mice and GF Swiss-
Webster mice
Primary outcome: whether daily treatment with probiotics normalized behavior was assessed
Conclusion: memory dysfunction occurred in infected mice exposed to acute stress, while in the GF setting, memory was altered at baseline

7. McVey 
Neufeld et al. 
(91)

Participants: mouse ex vivo study
Intervention: segments of jejunum from 8- to 12-week old GF, SPF, and CONV-GF mice dissected to expose myenteric plexus. Intracellular recordings 
by impaling cells with sharp microelectrodes
Type of probiotic: none
Primary outcome: action potential shapes, firing thresholds, the number of APs fired at 2× threshold, and passive membrane characteristics were 
measured
Conclusion: commensal intestinal microbiota are essential for normal excitability of gut sensory neurons. When the vagus nerve is severed, effects of 
gut bacteria on brain biochemistry, stress response, and behavior disappear

8. Heijtz et al. 
(92)

Participants: mouse in vivo study GF versus SPF mice with normal microbiological gut flora
Intervention: motor activity and anxiety-like behavior measured
Conclusion: unstressed GF mice were more active and willing to explore exposed areas of a maze than mice that had normal gut microbiota. 
Transplanting normal gut bacteria into the GF mice erased those behavioral differences only in early life, suggesting that there is a critical window for 
gut bacteria to establish normal patterns of behavior

9. Clarke 
et al. (52)

Participants: male GF animals compared with conventionally colonized control animals
Intervention: measurement of 5-HT in hippocampus
Male GF animals have a sex-specific significant elevation in hippocampal 5-HT and 5-HIAA compared with conventionally colonized control animals. 
Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which 
the microbiota can influence CNS serotonergic neurotransmission
Conclusion: microbiome–gut–brain axis in early life modulate hippocampal serotonin levels in a gender-dependent manner
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respectively, during the critical window when both SIDS tends 
to occur and early infant gut colonization is being established.

Demographic Factors
(1) Ethnicity: studies in indigenous populations have reported 

a higher SIDS rate compared to the non-indigenous groups 

within the same countries (98). These differences may reflect 
differences in maternal smoking, which could affect fre-
quency and density of colonization of infants by potentially 
pathogenic bacteria and induction/control of inflammatory 
responses (98). Maternal cigarette smoking and/or alcohol 
consumption may contribute to abnormal fetal medullary 
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5-HT development in Native American SIDS infants (99). A 
recent study has reported diet-related differences in gut flora 
composition between African-Americans and native Africans. 
African-Americans had higher levels of 7-α-dehydroxylating 
bacteria and lower levels of Lactobacillus plantarum (which 
produce methane and is protective against dysbiosis) (100, 
101).

(2) Low socioeconomic status: SIDS has been associated with 
lower socioeconomic groups (102). Fecal lactobacilli num-
bers have been related to socioeconomic status (103). Gut 
flora differences related to diet, smoking status, and access 
to health services could be a proxy for lower socioeconomic 
status.

(3) Gender: SIDS shows a male preponderance. Animal studies 
have shown gender differences in the regulation of seroton-
ergic system (104, 105). Estrogen has been implicated in the 
modulation of hippocampal serotoninergic system (106, 
107). Gender influences gut microbiome (108–111) through 
unclear mechanisms (110) including hormone–microbe 
interactions (111, 112) and gender-specific immune 
responses (113).

(4) Genetic control: genes regulating serotonergic network, brain 
function and development, and cardiac function play an 
important role in SIDS (114). Studying the role of genetics 
on gut microbiome is important in understanding the patho-
genesis of bacterial diseases (115, 116).

Prenatal Risk Factors
(1) Maternal smoking: SIDS is five times more common in 

infants born to mothers who smoked during pregnancy and 
three times more common in those exposed postnatally to 
smoking (117, 118). Cigarette smoke exposure and prone 
sleep position is associated with decreased 5HT1A recep-
tors in the DMNV of SIDS infants (119). A reduction in 
5HT1A receptors has been reported in the DMNV of piglets 
subjected to intermittent hypercapnic hypoxia and nicotine 
exposure (120). A recent study showed that cessation of 
smoking improved gut microbial diversity (121). Smoking 
may play a role in SIDS through its effects on infant gut flora 
and brainstem serotonin homeostasis.

(2) Being overweight: overweight infants and mothers have a 
higher risk of SIDS (122). Obese human adults had less 
Bacteroides and more Firmicutes in their gut flora com-
pared with lean controls (123). A recent review looked at 
maternal obesity-related pro-inflammatory state and its 
effect on maternal and in utero fetal gut microbiome and 
development (124).

(3) Delivery route: infants delivered by cesarean section have an 
increased risk of SIDS than those born by vaginal route (125). 
The mode of delivery has a significant effect on newborn gut 
flora development (126–128). The gut flora in infants born by 
cesarean may be altered till 6 months following delivery (129). 
Prolonged duration of labor during vaginal birth increases 
the chances of isolation of viable microbes from the stomach 
and mouth of the infant (130, 131). In addition to exposure 
to maternal flora, infants born by cesarean section acquire 

gut flora from their exposure to the immediate environment 
(132). Aseptic precautions in obstetrics and neonatal units 
may result in dysbiosis of the infant gut microbiome (133).

Postnatal Risks
(1) Season: SIDS is more common during winter months 

(134). There is an association of a viral infection in the 
days preceding SIDS (135). Stressors such as viral infec-
tions during winter may cause dysbiosis in infants (136). 
Such dysbiosis could play a role in successful autoresusci-
tation via microbiome–gut–brainstem pathway.

(2) Low birth weight: the rate of SIDS is higher in low birth 
weight infants (137). This may be related to the gut colo-
nization patterns of very low birth weight (VLBW) infants 
compared with normal weight infants. In an elegant study, 
the initial gut colonization by Enterobacteria and Strep-
tococci was similar in both VLBW and full-term infants; 
however, both microorganisms predominated for a longer 
period of time and the establishment of Bifidobacterium, 
Bacteroides, Clostridium, and Lactobacillus was delayed in 
VLBW infants (138).

(3) Prone sleep position: prone sleeping position has been the 
most important risk factor associated with SIDS (139). In 
addition to decreased arousal response related to prone 
sleeping, body temperature seems to be slightly elevated 
in prone infants (140, 141). Prone sleep position has been 
associated with Staphylococcus aureus gut colonization in 
SIDS. The increased risk of ingestion/inhalation of bacte-
ria contaminating the sleeping surface during prone po-
sition, with resultant gut dysbiosis, could account for the 
increased risk of SIDS in such infants (22).

(4) Breastfeeding: breastfeeding has been shown to be protec-
tive against SIDS (142, 143). Breast milk oligosaccharides 
when fermented by gut flora to form fatty acids results in 
modulation of infant gut flora. Breast-fed infants show 
predominant proliferation of Bifidobacteria and Lacto-
bacilli, whereas formula-fed infants show more Entero-
cocci and Enterobacteria in their gut flora. In addition, 
infants who are breast-fed exclusively have been repor-
ted to have better sleep arousal patterns than formula-fed  
infants (144).

(5) Elevated or reduced room temperature: overheating of 
infants has been reported with an elevated risk of SIDS 
(2, 145). Animal studies have showed that the presence 
of certain gut flora elevates body temperature of mice 
and rats. Conn et  al. demonstrated that Gram-positive 
organisms are a major source of the stimulatory effect 
of gut flora on normal body temperature in mice (146). 
Body temperature has been shown to have effects on the 
intestinal flora of hibernating squirrels (147, 148). Oral 
antibiotics have been shown to reduce nighttime body 
temperature in rabbits as a result of their effect on their 
native intestinal flora (149). These studies may help in un-
derstanding whether the increased body temperature as a 
risk factor for SIDS could be a result of aberrant gut flora 
or vice versa. Elevated body temperature associated with 
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prone sleep position may also play a role in affecting gut 
flora composition (140, 141).

(6) Pacifier use: pacifier sucking has been shown to be strongly 
associated with the oral colonization of salivary lactoba-
cilli (150). Thus, pacifier use might play a role in favorable 
oral and subsequently gut flora in infants.

(7) Sleep surface, bedding, and stuffed toys: apart from mecha-
nical suffocation and overheating issues, these may act as 
fomites contributing to the infant gut flora. Sherburn et al. 
showed that simulated infant head movements and mat-
tress-related factors affect aerial release of bacteria from 
beds (151).

(8) Co-sleeping: recent meta-analyses showed that bed sharing 
during sleep increases the risk of SIDS, which is further 
increased when combined with parental smoking, ma-
ternal alcohol consumption, and/or drug use (152). The  
results of a Swedish study suggest that parental skin  
S. aureus establish readily in the infant’s gut, perhaps due 
to poor competition from other gut bacteria (153). The 
possible role of acquiring abnormal gut flora from parents/
caregivers skin/gut flora by prolonged close contact during 
bed sharing needs to be investigated further.

(9) Infant’s age: SIDS incidence peaks around 2–4  months 
of the infant’s age, and subsequently decreases by 1 year. 
Infant gut flora develops through a period of instability 
in the early months of infancy and reaches more mature 
adult-like microbiome by 1 year of age, the time by which 
SIDS disappears. Another condition, not fully explained, 
affecting the infant during a typical window period is in-
fant colic, in which aberrant gut flora has been recently 
shown to play a role, amenable to probiotics. Infantile co-
lic is associated with a greater extent with near-miss SIDS 
infants than among control infants, thereby hypothesizing 
that colic might play a role as a protective arousal me-
chanism in such infants (154). From infection/immuni-
ty standpoint, this is the time when maternal antibodies 
reach their nadir making infants more susceptible to in-
fections, including from indigenous pathogenic gut flora. 
Introduction of supplementary foods around 6 months of 
age leads to more gut microbial diversity.

(10) Gestation at birth: prematurity is associated with a fourfold 
increased risk of SIDS (137) as well as a dysbiotic intesti-
nal flora, and impaired gut mucosal barrier function and 
permeability (155–161). Lactobacillus GG has been shown 

to decrease the frequency of Escherichia coli K1A translo-
cation in a neonatal rabbit model (162, 163). Extremely 
preterm newborns (<28 weeks) have a 5- to 10-fold higher  
incidence of microbial infections than term newborn 
(164). The preterm neonatal gut colonization is different 
from that in the healthy, full-term infant gut. Preterm ne-
onates requiring intensive care are colonized by organisms 
such as Bifidobacteria only gradually and in a delayed 
fashion. Schwiertz et al. reported similar bacterial coloni-
zation patterns in preterm infants in contrast to breast-fed, 
full-term infants. Bacterial colonization has been observed 
to be similar in different preterm neonates irrespective of 
birth weight, feeding regime, and antibiotic therapy. The 
initial colonization of the newborn GI tract is highly de-
pendent on the environment, and cross-transmission of 
bacteria is a serious problem in the hospital (165).

(11) Small for gestational age (SGA): it has been hypothesized 
that SGA infants may have a higher incidence of SIDS as 
a result of fetal hypoxia-induced decrease in brain seroto-
nergic receptors (16, 166–169).

ConClUsion

We have provided a new SIDS hypothesis whereby the right com-
position of gut flora in the early critical stage of infant development 
could possibly optimize or modulate serotonin homeostasis in 
the serotonergic cardiorespiratory/thermoregulatory brain stem 
nuclei by a direct communication via the vagal afferents as part of 
the microbiome–gut–brain axis. This may tip the balance in favor 
of a successful autoresuscitation response to an AAE during sleep. 
Investigating the role of infant microbiome using newer culture-
independent techniques as well as the developmental physiology 
and neuropathology associated with SIDS may provide more 
specific strategies than those available currently to define the at 
risk population. As Hippocrates once stated “All diseases begin 
in the gut,” research on the gut flora in at risk infants would open 
new avenues for identifying potential biomarkers and strategies 
for prevention (e.g., maternal and/or early postnatal probiotic/
synbiotic supplementation, diet changes) of SIDS (170).

aUtHor ContriBUtions

VP was involved in concept and manuscript preparation. SP was 
involved in editing of the final manuscript.

reFerenCes

1. Moon RY, Fu L. Sudden infant death syndrome: an update. Pediatr Rev (2012) 
33(7):314–20. doi:10.1542/pir.33-7-314 

2. Moon RY. Task force on sudden infant death syndrome. SIDS and other 
sleep-related infant deaths: expansion of recommendations for a safe 
infant sleeping environment. Pediatrics (2011) 128(5):1030–9. doi:10.1542/
peds.2011-2284 

3. Maternal and Child Health Statistics of Japan: Boshi Eisei Kenkyuu Kai. (2006).
4. Central Bureau of Statistics. Netherlands (2006). Available from: http://www.

cbs.nl/en-GB (accessed July 5, 2007).
5. New Zealand Health Information Service. (2003). Available from:  

http://www.nzhis.govt.nz (accessed July 5, 2007).

6. Hoyert DL, Mathews TJ, Menacker F, Strobino DM, Guyer B. Annual 
summary of vital statistics: 2004. Pediatrics (2006) 117:168–83. doi:10.1542/
peds.2005-2587 

7. Fleming P, Blair P, Bacon C, Berry J, editors. Sudden unexpected deaths in 
infancy. The CESDI SUDI Studies 1993–1996. London: The Stationary Office 
(2000).

8. Office for National Statistics. Report: unexplained deaths in infancy, 2005. 
Health Stat Q (2006) 31:82–6. 

9. Guntheroth WG, Spiers PS. Sleeping prone and the risk of SIDS. J Am Med 
Assoc (1992) 267:2359–62. doi:10.1001/jama.1992.03480170085034 

10. Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims 
of the sudden infant death syndrome: the triple-risk model. Biol Neonate 
(1994) 65(3–4):194–7. doi:10.1159/000244052 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
https://doi.org/10.1542/pir.33-7-314
https://doi.org/10.1542/peds.2011-2284
https://doi.org/10.1542/peds.2011-2284
http://www.cbs.nl/en-GB
http://www.cbs.nl/en-GB
http://www.nzhis.govt.nz
https://doi.org/10.1542/peds.2005-2587
https://doi.org/10.1542/peds.2005-2587
https://doi.org/10.1001/jama.1992.03480170085034
https://doi.org/10.1159/000244052


8

Praveen and Praveen Microbiome–Gut–Brain Axis in SIDS

Frontiers in Pediatrics | www.frontiersin.org January 2017 | Volume 4 | Article 136

11. Galland BC, Elder DE. Sudden unexpected death in infancy: biological 
mechanisms. Paediatr Respir Rev (2014) 15(4):287–92. doi:10.1016/j.prrv. 
2014.09.003 

12. Machaalani R, Waters KA. Neurochemical abnormalities in the brainstem 
of the sudden infant death syndrome (SIDS). Paediatr Respir Rev (2014) 
15(4):293–300. doi:10.1016/j.prrv.2014.09.008 

13. Poets CF, Meny RG, Chobanian MR, Bonofiglo RE. Gasping and other 
cardiorespiratory patterns during sudden infant deaths. Pediatr Res (1999) 
45:350–4. doi:10.1203/00006450-199903000-00010 

14. Sridhar R, Thach BT, Kelly DH, Henslee JA. Characterization of successful 
and failed autoresuscitation in human infants, including those dying of SIDS. 
Pediatr Pulmonol (2003) 36:113–22. doi:10.1002/ppul.10287 

15. Bergmen NJ. Proposal for mechanisms of protection of supine sleep against 
sudden infant death syndrome: an integrated mechanism review. Pediatr Res 
(2015) 77(1–1):10–9. doi:10.1038/pr.2014.140 

16. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, 
Darnall R, et  al. Multiple serotonergic brainstem abnormalities in sudden 
infant death syndrome. JAMA (2006) 296(17):2124–32. doi:10.1001/
jama.296.17.2124 

17. Penatti EM, Berniker AV, Kereshi B, Cafaro C, Kelly ML, Niblock MM, et al. 
Ventilatory response to hypercapnia and hypoxia after extensive lesion of 
medullary serotonergic neurons in newborn conscious piglets. J Appl Physiol 
(1985) (2006) 101(4):1177–88. doi:10.1152/japplphysiol.00376.2006 

18. Paterson DS, Thompson EG, Kinney HC. Serotonergic and glutamatergic 
neurons at the ventral medullary surface of the human infant: observations 
relevant to central chemosensitivity in early human life. Auton Neurosci 
(2006) 124(1–2):112–24. doi:10.1016/j.autneu.2005.12.009 

19. Cummings KJ, Hewitt JC, Li A, Daubenspeck JA, Nattie EE. Postnatal loss 
of brainstem serotonin neurones compromises the ability of neonatal rats 
to survive episodic severe hypoxia. J Physiol (2011) 589(Pt 21):5247–56. 
doi:10.1113/jphysiol.2011.214445 

20. Duncan JR, Paterson DS, Hoffman JM. Brainstem serotonergic deficiency 
in sudden infant death syndrome. JAMA (2010) 303(5):430–7. doi:10.1001/
jama.2010.45 

21. Blood-Siegfried J. The role of infection and inflammation in sudden infant 
death syndrome. Immunopharmacol Immunotoxicol (2009) 31(4):516–23. 
doi:10.3109/08923970902814137 

22. Highet AR, Berry AM, Bettelheim KA, Goldwater PN. Gut microbiome in 
sudden infant death syndrome (SIDS) differs from that in healthy compar-
ison babies and offers an explanation for the risk factor of prone position. 
Int J Med Microbiol (2014) 304(5–6):735–41. doi:10.1016/j.ijmm.2014.05.007 

23. Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo 
JA, et al. Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a 
proteomics analysis in the sudden infant death syndrome. Mol Cell Proteomics 
(2012) 11(1):M111.009530. doi:10.1074/mcp.M111.009530 

24. Moon RY, Horne RS, Hauck FR. Sudden infant death syndrome. Lancet 
(2007) 370(9598):1578–87. doi:10.1016/S0140-6736(07)61662-6 

25. Yang HT, Cummings KJ. Brain stem serotonin protects blood pressure 
in neonatal rats exposed to episodic anoxia. J Appl Physiol (1985) (2013) 
115(12):1733–41. doi:10.1152/japplphysiol.00970.2013 

26. Rubens D, Sarnat HB. Sudden infant death syndrome: an update and new 
perspectives of etiology. Handb Clin Neurol (2013) 112:867–74. doi:10.1016/
B978-0-444-52910-7.00008-8 

27. Bejjani C, Machaalani R, Waters KA. The dorsal motor nucleus of the vagus 
(DMNV) in sudden infant death syndrome (SIDS): pathways leading to 
apoptosis. Respir Physiol Neurobiol (2013) 185(2):203–10. doi:10.1016/ 
j.resp.2012.09.001 

28. Kinney HC, Cryan JB, Haynes RL, Paterson DS, Haas EA, Mena OJ, et al. 
Dentate gyrus abnormalities in sudden unexplained death in infants: mor-
phological marker of underlying brain vulnerability. Acta Neuropathol (2015) 
129(1):65–80. doi:10.1007/s00401-014-1357-0 

29. Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto 
B, et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and 
is required for normal anxiety-like and aggressive behavior. Neuron (2003) 
37:233–47. doi:10.1016/S0896-6273(02)01167-4 

30. Kiyasova V, Fernandez SP, Laine J, Stankovski L, Muzerelle A, Doly S, et al. 
A genetically defined morphologically and functionally unique subset of 
5-HT neurons in the mouse raphe nuclei. J Neurosci (2011) 31:2756–68. 
doi:10.1523/JNEUROSCI.4080-10.2011 

31. Fewell JE. Protective responses of the newborn to hypoxia. Respir Physiol 
Neurobiol (2005) 149:243–55. doi:10.1016/j.resp.2005.05.006 

32. Erickson JT, Shafer G, Rossetti MD, Wilson CG, Deneris ES. Arrest of 5-HT 
neuron differentiation delays respiratory maturation and impairs neonatal 
homeostatic responses to environmental challenges. Respir Physiol Neurobiol 
(2007) 159:85–101. doi:10.1016/j.resp.2007.06.002 

33. Cummings KJ, Commons KG, Hewitt JC, Daubenspeck JA, Kinney HC, 
Nattie EE. Failed heart rate recovery at a critical age in 5-HT-deficient mice 
exposed to episodic anoxia: implications for SIDS. J Appl Physiol (2011) 
111:825–33. doi:10.1152/japplphysiol.00336.2011 

34. Kinney HC, Filiano JJ, Sleeper LA, Mandell F, Valdes-Dapena M, White 
WF. Decreased muscarinic receptor binding in the arcuate nucleus in 
sudden infant death syndrome. Science (1995) 8:1446–50. doi:10.1126/
science.7660131 

35. Broadbelt K, Paterson DS, Belliveau RA, Trachtenberg FL, Haas EA, Stanley 
C, et al. Decreased GABAA receptor binding in the medullary serotonergic 
system in the sudden infant death syndrome. J Neuropathol Exp Neurol 
(2011) 70(9):799–810. doi:10.1097/NEN.0b013e31822c09bc 

36. Gill SR, Pop M, Deboy R, Eckburg PB, Turnbaugh PJ, Samuel BS, et  al. 
Metagenomic analysis of the human distal gut microbiome. Science (2006) 
312:1355–9. doi:10.1126/science.1124234 

37. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human 
gut microbial gene catalogue established by metagenomic sequencing. Nature 
(2010) 464:59–65. doi:10.1038/nature08821 

38. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, et al. 
Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 
(2007) 5:e156. doi:10.1371/journal.pbio.0050156 

39. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 
Diversity of the human intestinal microbial flora. Science (2005) 308:1635–8. 
doi:10.1126/science.1110591 

40. Bischoff SC. ‘Gut health’: a new objective in medicine? BMC Med (2010) 9:24. 
doi:10.1186/1741-7015-9-24 

41. Grenham S, Clarke G, Cryan J, Dinan TG. Brain-gut-microbe communica-
tion in health. Front Physiol (2011) 2:94. doi:10.3389/fphys.2011.00094

42. Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: from bowel to behav-
ior. Neurogastroenterol Motil (2001) 23:187–92. doi:10.1111/j.1365-2982. 
2010.01664.x 

43. Lyte M. The microbial organ in the gut as a driver of homeostasis and disease. 
Med Hypotheses (2010) 74:634–8. doi:10.1016/j.mehy.2009.10.025 

44. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut 
feelings. Brain Behav Immun (2010) 24:9–16. doi:10.1016/j.bbi.2009.05.058 

45. Mayer EA. Gut feelings: the emerging biology of gut-brain communication. 
Nat Rev Neurosci (2011) 12:453–66. doi:10.1038/nrn3071 

46. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 
(2006) 7:688–93. doi:10.1038/sj.embor.7400731 

47. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of 
the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol (2009) 
6:306–14. doi:10.1038/nrgastro.2009.35 

48. Bercik P, Collins SM, Verdu EF. Microbes and the gut-brain axis. 
Neurogastroenterol Motil (2012) 24:405–13. doi:10.1111/j.1365-2982. 
2012.01906.x 

49. O’Mahony SM, Hyland NP, Dinan TG, Cryan JF. Maternal separation as 
a model of brain-gut axis dysfunction. Psychopharmacology (Berl) (2001) 
214:71–88. doi:10.1007/s00213-010-2010-9 

50. Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: 
news from mouse molecular genetics. Nat Rev Neurosci (2003) 4:1002–12. 
doi:10.1038/nrn1256 

51. Leonard BE. HPA and immune axes in stress: involvement of the seroto-
nergic system. Neuroimmunomodulation (2006) 13:268–76. doi:10.1159/ 
000104854 

52. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. 
The microbiome-gut-brain axis during early life regulates the hippocampal 
serotonergic system in a sex-dependent manner. Mol Psychiatry (2013) 
18(6):666–73. doi:10.1038/mp.2012.77 

53. Lenard J. Mammalian hormones in microbial cells. Trends Biochem Sci 
(1992) 17:147–50. doi:10.1016/0968-0004(92)90323-2 

54. LeRoith D, Liotta AS, Roth J, Shiloach J, Lewis ME, Pert CB, et al. Corticotropin 
and beta-endorphin-like materials are native to unicellular organisms. Proc 
Natl Acad Sci U S A (1982) 79:2086–90. doi:10.1073/pnas.79.6.2086 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
https://doi.org/10.1016/j.prrv.2014.09.003
https://doi.org/10.1016/j.prrv.2014.09.003
https://doi.org/10.1016/j.prrv.2014.09.008
https://doi.org/10.1203/00006450-199903000-00010
https://doi.org/10.1002/ppul.10287
https://doi.org/10.1038/pr.2014.140
https://doi.org/10.1001/jama.296.17.2124
https://doi.org/10.1001/jama.296.17.2124
https://doi.org/10.1152/japplphysiol.00376.2006
https://doi.org/10.1016/j.autneu.2005.12.009
https://doi.org/10.1113/jphysiol.2011.214445
https://doi.org/10.1001/jama.2010.45
https://doi.org/10.1001/jama.2010.45
https://doi.org/10.3109/08923970902814137
https://doi.org/10.1016/j.ijmm.2014.05.007
https://doi.org/10.1074/mcp.M111.009530
https://doi.org/10.1016/S0140-6736(07)61662-6
https://doi.org/10.1152/japplphysiol.00970.2013
https://doi.org/10.1016/B978-0-444-52910-7.00008-8
https://doi.org/10.1016/B978-0-444-52910-7.00008-8
https://doi.org/10.1016/j.resp.2012.09.001
https://doi.org/10.1016/j.resp.2012.09.001
https://doi.org/10.1007/s00401-014-1357-0
https://doi.org/10.1016/S0896-6273(02)01167-4
https://doi.org/10.1523/JNEUROSCI.4080-10.2011
https://doi.org/10.1016/j.resp.2005.05.006
https://doi.org/10.1016/j.resp.2007.06.002
https://doi.org/10.1152/japplphysiol.00336.2011
https://doi.org/10.1126/science.7660131
https://doi.org/10.1126/science.7660131
https://doi.org/10.1097/NEN.0b013e31822c09bc
https://doi.org/10.1126/science.1124234
https://doi.org/10.1038/nature08821
https://doi.org/10.1371/journal.pbio.0050156
https://doi.org/10.1126/science.1110591
https://doi.org/10.1186/1741-7015-9-24
https://doi.org/10.3389/fphys.2011.00094
https://doi.org/10.1111/j.1365-2982.
2010.01664.x
https://doi.org/10.1111/j.1365-2982.
2010.01664.x
https://doi.org/10.1016/j.mehy.2009.10.025
https://doi.org/10.1016/j.bbi.
2009.05.058
https://doi.org/10.1038/nrn3071
https://doi.org/10.1038/sj.embor.7400731
https://doi.org/10.1038/nrgastro.2009.35
https://doi.org/10.1111/j.1365-2982.
2012.01906.x
https://doi.org/10.1111/j.1365-2982.
2012.01906.x
https://doi.org/10.1007/s00213-010-2010-9
https://doi.org/10.1038/nrn1256
https://doi.org/10.1159/
000104854
https://doi.org/10.1159/
000104854
https://doi.org/10.1038/mp.2012.77
https://doi.org/10.1016/0968-0004(92)90323-2
https://doi.org/10.1073/pnas.79.6.2086


9

Praveen and Praveen Microbiome–Gut–Brain Axis in SIDS

Frontiers in Pediatrics | www.frontiersin.org January 2017 | Volume 4 | Article 136

55. LeRoith D, Pickens W, Vinik AI, Shiloach J. Bacillus subtilis contains multiple 
forms of somatostatin-like material. Biochem Biophys Res Commun (1985) 
127:713–9. doi:10.1016/S0006-291X(85)80001-2 

56. Guthrie GD, Nicholson-Guthrie CS, Leary HL Jr. A bacterial high-affinity 
GABA binding protein: isolation and characterization. Biochem Biophys Res 
Commun (2000) 268:65–8. doi:10.1006/bbrc.1999.1960 

57. LeRoith D, Shiloach J, Berelowitz M, Berelowitz M, Holtgrefe M, Shiloach J, 
et al. Are messenger molecules in microbes the ancestors of the vertebrate 
hormones and tissue factors? Fed Proc (1983) 42:2602–7. 

58. LeRoith D. Vertebrate hormones and neuropeptides in microbes: evolu-
tionary origin of intercellular communication. In: Martini L, Ganong WF, 
editors. Frontiers in Neuroendocrinology (Vol. 8), New York: Raven Press 
(1984). p. 1–25.

59. Roth J, LeRoith D, Shiloach J, Rosenzweig JL, Lesniak MA, 
Havrankova J. The evolutionary origins of hormones, neurotrans-
mitters, and other extracellular chemical messengers: implications 
for mammalian biology. N Engl J Med (1982) 306:523–7. doi:10.1056/
NEJM198203043060907 

60. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV. Evolution of cell-cell 
signaling in animals: did late horizontal gene transfer from bacteria have a 
role? Trends Genet (2004) 20:292–9. doi:10.1016/j.tig.2004.05.007 

61. Saulnier DM, Ringel Y, Heyman MB, Foster JA, Bercik P, Shulman RJ, et al. 
The intestinal microbiome, probiotics and prebiotics in neurogastroenterol-
ogy. Gut Microbes (2013) 4(1):17–27. doi:10.4161/gmic.22973 

62. Waters KA, Meehan B, Huang JQ, Gravel RA, Michaud J, Côté A. Neuronal 
apoptosis in sudden infant death syndrome. Pediatr Res (1999) 45(2):166–72. 
doi:10.1203/00006450-199902000-00002 

63. Kinney HC, Thach BT. The sudden infant death syndrome. N Engl J Med 
(2009) 361(8):795–805. doi:10.1056/NEJMra0803836 

64. Prabhakar NR, Marek W, Loeschcke HH. Altered breathing pattern elic-
ited by stimulation of abdominal visceral afferents. J Appl Physiol (1985) 
58(6):1755–60. 

65. Glogowska M. The significance of afferent vagal information in the control of 
breathing in guinea pigs. Acta Neurobiol Exp (1975) 35:139–47. 

66. Azmitia EC. Modern views on an ancient chemical: serotonin effects on cell 
proliferation, maturation, and apoptosis. Brain Res Bull (2001) 56(5):413–24. 
doi:10.1016/S0361-9230(01)00614-1 

67. Doucet E, Miquel MC, Nosjean A, Verge D, Hamon M, Emerit MB. 
Immunolabeling of the rat central nervous system with antibodies partially 
selective of the short form of the 5-HT3 receptor. Neuroscience (2000) 
95:881–92. doi:10.1016/S0306-4522(99)00494-7 

68. Steward LJ, West KE, Kilpatrick GJ, Barnes NM. Labeling of 5-HT3 
receptor recognition sites in the rat brain using the agonist radio-ligand 
[3H]meta-chlorophenylbiguanide. Eur J Pharmacol (1993) 243:13–8. 
doi:10.1016/0014-2999(93)90161-A 

69. Kidd EJ, Laporte AM, Langlois X, Fattaccini CM, Doyen C, Lombard 
MC, et  al. 5-HT3 receptors in the rat central nervous system are mainly 
located on nerve fibers and terminals. Brain Res (1990) 612:289–98. 
doi:10.1016/0006-8993(93)91674-H 

70. Leslie RA, Reynolds DJ, Andrews PL, Grahame-Smith DG, Davis CJ, Harvey 
JM. Evidence for presynaptic 5-hydroxytryptamine-3 recognition sites on 
vagal afferent terminals in the brainstem of the ferret. Neuroscience (1990) 
38:667–73. doi:10.1016/0306-4522(90)90060-H 

71. Pratt GD, Bowery NG. The 5-HT3 receptor ligand [3H]BRL 43694, binds to 
presynaptic sites in the nucleus tractus solitarius of the rat. Neuropharmacology 
(1989) 28:1367–76. doi:10.1016/0028-3908(89)90012-9 

72. Wan S, Browning KN. Glucose increases synaptic transmission from vagal 
afferent central nerve terminals via modulation of 5-HT3 receptors. Am 
J Physiol Gastrointest Liver Physiol (2008) 295(5):G1050–7. doi:10.1152/
ajpgi.90288.2008 

73. Hillsley K, Grundy D. Sensitivity to 5-hydroxytryptamine in different afferent 
subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol 
(1998) 509:717–27. doi:10.1111/j.1469-7793.1998.717bm.x 

74. Li Y, Wu XY, Zhu JX, Owyang C. Intestinal serotonin acts as paracrine 
substance to mediate pancreatic secretion stimulated by luminal factors. Am 
J Physiol Gastrointest Liver Physiol (2001) 281:G916–23. 

75. Raybould HE. Does your gut taste? Sensory transduction in the gastrointes-
tinal tract. News Physiol Sci (1998) 13:275–80. 

76. Raybould HE. Primary afferent response to signals in the intestinal lumen. 
J Physiol (2001) 530:343. doi:10.1111/j.1469-7793.2001.0343k.x 

77. Raybould HE. Visceral perception: sensory transduction in visceral 
afferents and nutrients. Gut (2002) 251(Suppl 1):I11–4. doi:10.1136/gut.51.
suppl_1.i11 

78. Raybould HE, Glatzle J, Robin C, Meyer JH, Phan T, Wong H, et al. Expression 
of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal 
inhibition of gastric emptying. Am J Physiol Gastrointest Liver Physiol (2003) 
284:G367–72. doi:10.1152/ajpgi.00292.2001 

79. Zhu JX, Wu XY, Owyang C, Li Y. Intestinal serotonin acts as a paracrine 
substance to mediate vagal signal transmission evoked by luminal factors in 
the rat. J Physiol (2001) 530:431–42. doi:10.1111/j.1469-7793.2001.0431k.x 

80. Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. 
Tryptophan metabolism in the central nervous system: medical implications. 
Expert Rev Mol Med (2006) 8:1–27. doi:10.1017/S1462399406000068 

81. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous 
bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 
(2015) 161(2):264–76. doi:10.1016/j.cell.2015.02.047 

82. Dahlstrom A, Fuxe K. Evidence for the existence of monoamine-containing 
neurons in the central nervous system. Acta Physiol Scand (1964) 62:1–55. 

83. Quigley EM. Probiotics in functional gastrointestinal disorders: what are the 
facts? Curr Opin Pharmacol (2008) 8:704–8. doi:10.1016/j.coph.2008.08.007 

84. Lyte M, Li W, Opitz N, Gaykema R, Goehler LE. Induction of anxiety-like 
behavior in mice during the initial stages of infection with the agent of 
murine colonic hyperplasia Citrobacter rodentium. Physiol Behav (2006) 
89:350–7. doi:10.1016/j.physbeh.2006.06.019 

85. Wang H, Lee IS, Braun C, Enck P. Effect of probiotics on central nervous system 
functions in animals and humans: a systematic review. J Neurogastroenterol 
Motil (2016) 22(4):589–605. doi:10.5056/jnm16018 

86. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et  al. Postnatal 
microbial colonization programs the hypothalamic-pituitary-adrenal system 
for stress response in mice. J Physiol (Lond) (2004) 558:263–75. doi:10.1113/
jphysiol.2004.063388 

87. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. 
Ingestion of Lactobacillus strain regulates emotional behavior and central 
GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad 
Sci U S A (2011) 108(38):16050–5. doi:10.1073/pnas.1102999108 

88. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic 
Bifidobacteria infantis: an assessment of potential antidepressant properties in 
the rat. J Psychiatr Res (2008) 43:164–74. doi:10.1016/j.jpsychires.2008.03.009 

89. Alenina N, Kikic D, Todiras M, Mosienko V, Qadri F, Plehm R, et  al. 
Growth retardation and altered autonomic control in mice lacking brain 
serotonin. Proc Natl Acad Sci U S A (2009) 106(25):10332–7. doi:10.1073/
pnas.0810793106 

90. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. 
Bacterial infection causes stress-induced memory dysfunction in mice. Gut 
(2011) 60:307–17. doi:10.1136/gut.2009.202515 

91. McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA. The 
microbiome is essential for normal gut intrinsic primary afferent neuron 
excitability in the mouse. Neurogastroenterol Motil (2013) 25(2):183–e88. 
doi:10.1111/nmo.12049 

92. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et  al. 
Normal gut microbiota modulates brain development and behavior. Proc 
Natl Acad Sci U S A (2011) 108:3047–52. doi:10.1073/pnas.1010529108 

93. Parracho HM, Bingham MO, Gibson GR, Mccartney AL. Differences 
between the gut microflora of children with autistic spectrum disorders and 
that of healthy children. J Med Microbiol (2005) 54:987–91. doi:10.1099/
jmm.0.46101-0 

94. Messaoudi M, Violle N, Bisson J, Desor D, Javelot H, Rugeot C. Beneficial 
psychological effects of a probiotic formulation (Lactobacillus helveticus 
R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut 
Microbes (2011) 2(4):256–61. doi:10.4161/gmic.2.4.16108 

95. Kiliaan AJ, Saunders PR, Bijlsma PB, Berin MC, Taminiau JA, Groot JA, et al. 
Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am 
J Physiol (1998) 275:G1037–44. 

96. Bailey MT, Lubach GR, Coe CL. Prenatal stress alters bacterial colonization 
of the gut in infant monkeys. J Pediatr Gastroenterol Nutr (2004) 38:414–21. 
doi:10.1097/00005176-200404000-00009 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
https://doi.org/10.1016/S0006-291X(85)80001-2
https://doi.org/10.1006/bbrc.1999.1960
https://doi.org/10.1056/NEJM198203043060907
https://doi.org/10.1056/NEJM198203043060907
https://doi.org/10.1016/j.tig.2004.05.007
https://doi.org/10.4161/gmic.22973
https://doi.org/10.1203/00006450-199902000-00002
https://doi.org/10.1056/NEJMra0803836
https://doi.org/10.1016/S0361-9230(01)00614-1
https://doi.org/10.1016/S0306-4522(99)00494-7
https://doi.org/10.1016/0014-2999(93)90161-A
https://doi.org/10.1016/0006-8993(93)91674-H
https://doi.org/10.1016/0306-4522(90)90060-H
https://doi.org/10.1016/0028-3908(89)90012-9
https://doi.org/10.1152/ajpgi.90288.2008
https://doi.org/10.1152/ajpgi.90288.2008
https://doi.org/10.1111/j.1469-7793.1998.717bm.x
https://doi.org/10.1111/j.1469-7793.2001.0343k.x
https://doi.org/10.1136/gut.51.suppl_1.i11
https://doi.org/10.1136/gut.51.suppl_1.i11
https://doi.org/10.1152/ajpgi.00292.2001
https://doi.org/10.1111/j.1469-7793.2001.0431k.x
https://doi.org/10.1017/S1462399406000068
https://doi.org/10.1016/j.cell.2015.02.047
https://doi.org/10.1016/j.coph.2008.08.007
https://doi.org/10.1016/j.physbeh.2006.06.019
https://doi.org/10.5056/jnm16018
https://doi.org/10.1113/jphysiol.2004.063388
https://doi.org/10.1113/jphysiol.2004.063388
https://doi.org/10.1073/pnas.1102999108
https://doi.org/10.1016/j.jpsychires.2008.03.009
https://doi.org/10.1073/pnas.0810793106
https://doi.org/10.1073/pnas.0810793106
https://doi.org/10.1136/gut.2009.202515
https://doi.org/10.1111/nmo.12049
https://doi.org/10.1073/pnas.1010529108
https://doi.org/10.1099/jmm.0.46101-0
https://doi.org/10.1099/jmm.0.46101-0
https://doi.org/10.4161/gmic.2.4.16108
https://doi.org/10.1097/00005176-200404000-00009


10

Praveen and Praveen Microbiome–Gut–Brain Axis in SIDS

Frontiers in Pediatrics | www.frontiersin.org January 2017 | Volume 4 | Article 136

97. Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intesti-
nal microflora in infant rhesus monkeys. Dev Psychobiol (1999) 35:146–55. 
doi:10.1002/(SICI)1098-2302(199909)35:2<146::AID-DEV7>3.0.CO;2-G 

98. Blackwell CC, Moscovis SM, Gordon AE, Al Madani OM, Hall ST, Gleeson M, 
et al. Ethnicity, infection and sudden infant death syndrome. FEMS Immunol 
Med Microbiol (2004) 42(123):53–65. doi:10.1016/j.femsim.2004.06.007 

99. Kinney HC, Randall LL, Sleeper LA, Willinger M, Belliveau RA, Zec N, 
et  al. Serotonergic brainstem abnormalities in Northern Plains Indians 
with the sudden infant death syndrome. J Neuropathol Exp Neurol (2003) 
62(11):1178–91. doi:10.1093/jnen/62.11.1178 

100. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. 
Enterotypes of the human gut microbiome. Nature (2011) 473(7346):174–80. 
doi:10.1038/nature09944 

101. O’Keefe SJ, Chung D, Mahmoud N, Sepulveda AR, Manafe M, Arch J, et al. 
Why do African Americans get more colon cancer than Native Africans. 
J Nutr (2007) 137(1 Suppl):175S–82S. 

102. Stockwell EG, Swanson DA, Wicks JW. Economic status differences in infant 
mortality by cause of death. Public Health Rep (1988) 103:135–42. 

103. Mello RM, Morais MB, Tahan S, Melli LC, Rodrigues MS, Mello CS, 
et  al. Lactobacilli and bifidobacteria in the feces of schoolchildren of two 
different socioeconomic groups: children from a favela and children 
from a private school. J Pediatr (Rio J) (2009) 85(4):307–14. doi:10.1590/
S0021-75572009000400007 

104. Jones MD, Lucki I. Sex differences in the regulation of serotonergic transmis-
sion and behavior in 5-HT receptor knockout mice. Neuropsychopharmacology 
(2005) 30:1039–47. doi:10.1038/sj.npp.1300664 

105. Maswood S, Truitt W, Hotema M, Caldarola-Pastuszka M, Uphouse L. 
Estrous cycle modulation of extracellular serotonin in mediobasal hypothal-
amus: role of the serotonin transporter and terminal autoreceptors. Brain Res 
(1999) 831:146–54. doi:10.1016/S0006-8993(99)01439-0 

106. Bethea CL, Lu NZ, Gundlah C, Streicher JM. Diverse actions of ovarian 
steroids in the serotonin neural system. Front Neuroendocrinol (2002) 
23:41–100. doi:10.1006/frne.2001.0225 

107. Imwalle DB, Gustafsson JA, Rissman EF. Lack of functional estrogen receptor 
beta influences anxiety behavior and serotonin content in female mice. 
Physiol Behav (2005) 84:157–63. doi:10.1016/j.physbeh.2004.11.002 

108. Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype 
is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol 
(2011) 61:423–8. doi:10.1007/s00248-010-9787-2 

109. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The 
application of ecological theory toward an understanding of the human 
microbiome. Science (2012) 336:1255–62. doi:10.1126/science.1224203 

110. Freire AC, Basit AW, Choudhary R, Piong CW, Merchant HA. Does sex 
matter? The influence of gender on gastrointestinal physiology and drug 
delivery. Int J Pharm (2011) 415:15–28. doi:10.1016/j.ijpharm.2011.04.069 

111. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, 
et al. Host remodeling of the gut microbiome and metabolic changes during 
pregnancy. Cell (2012) 150:470–80. doi:10.1016/j.cell.2012.07.008 

112. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-
Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-de-
pendent regulation of autoimmunity. Science (2013) 339:1084–8. doi:10.1126/
science.1233521 

113. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et  al. 
Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat 
Commun (2014) 5:4500. doi:10.1038/ncomms5500 

114. Opdal SH, Rognum TO. Gene variants predisposing to SIDS: current knowl-
edge. Forensic Sci Med Pathol (2011) 7:26–36. doi:10.1007/s12024-010-9182-9 

115. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota 
transplants from zebrafish and mice to germ-free recipients reveal host 
habitat selection. Cell (2006) 127:423–33. doi:10.1016/j.cell.2006.08.043 

116. Toivanen P, Vaahtovuo J, Eerola E. Influence of major histocompatibility 
complex on bacterial composition of fecal flora. Infect Immun (2001) 
69(4):2372–7. doi:10.1128/IAI.69.4.2372-2377.2001 

117. Poetsch M, Czerwinski M, Wingenfeld L, Vennemann M, Bajanowski T. A 
common FMO3 polymorphism may amplify the effect of nicotine exposure 
in sudden infant death syndrome (SIDS). Int J Legal Med (2010) 124:301–6. 
doi:10.1007/s00414-010-0428-6 

118. Naeye RL, Ladis B, Drage JS. Sudden infant death syndrome. A prospective 
study. Am J Dis Child (1976) 130:1207–10. 

119. Machaalani R, Say M, Waters KA. Serotoninergic receptor 1A in the sudden 
infant death syndrome brainstem medulla and associations with clinical risk 
factors. Acta Neuropathol (2009) 117:257–65. doi:10.1007/s00401-008-0468-x 

120. Say M, Machaalani R, Waters KA. Changes in serotoninergic receptors 
1A and 2A in the piglet brainstem after intermittent hypercapnic 
hypoxia (IHH) and nicotine. Brain Res (2007) 1152:17–26. doi:10.1016/ 
j.brainres.2007.03.037 

121. Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, et al. 
Smoking cessation induces profound changes in the composition of the 
intestinal microbiota in humans. PLoS One (2013) 8(3):e59260. doi:10.1371/
journal.pone.0059260 

122. Carroll-Pankhurst C, Mortimer EA. Sudden infant death syndrome, 
bedsharing, parental weight, and age at death. Pediatrics (2001) 107:530–6. 
doi:10.1542/peds.107.3.530 

123. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human 
gut microbes associated with obesity. Nature (2006) 21(444):1022–3. 
doi:10.1038/4441022a 

124. Gohir W, Ratcliffe EM, Sloboda DM. Of the bugs that shape us: maternal 
obesity, the gut microbiome, and long-term disease risk. Pediatr Res (2015) 
77:196–204. doi:10.1038/pr.2014.169 

125. Sanghavi DM. Epidemiology of sudden infant death syndrome (SIDS) for 
Kentucky infants born in 1990: maternal, prenatal, and perinatal risk factors. 
J Ky Med Assoc (1995) 93(7):286–90. 

126. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G. Cesarean delivery 
may affect the early biodiversity of intestinal bacteria. J Nutr (2008) 
138(9):1796S–800S. 

127. Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of 
delivery on gut microbiota composition in seven year old children. Gut 
(2004) 53(9):1388–9. doi:10.1136/gut.2004.041640 

128. Hallstrom M, Eerola E, Vuento R, Janas M, Tammela O. Effects of mode of 
delivery and necrotising enterocolitis on the intestinal microflora in preterm 
infants. Eur J Clin Microbiol Infect Dis (2004) 23(6):463–70. doi:10.1007/
s10096-004-1146-0 

129. Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy 
infants born by different methods of delivery: permanent changes in intestinal 
flora after cesarean delivery. J Pediatr Gastroenterol Nutr (1999) 28(1):19–25. 
doi:10.1097/00005176-199901000-00007 

130. Bettelheim KA, Breadon A, Faiers MC, O’Farrell SM, Shooter RA. The origin 
of O serotypes of Escherichia coli in babies after normal delivery. J Hyg (Lond) 
(1974) 72(1):67–70. doi:10.1017/S0022172400023226 

131. Brook I, Barrett CT, Brinkman CR III, Martin WJ, Finegold SM. Aerobic and 
anaerobic bacterial flora of the maternal cervix and newborn gastric fluid and 
conjunctiva: a prospective study. Pediatrics (1979) 63(3):451–5. 

132. Lennox-King SM, O’Farrell SM, Bettelheim KA, Shooter RA. Escherichia coli 
isolated from babies delivered by caesarean section and their environment. 
Infection (1976) 4(3):139–45. doi:10.1007/BF01638940 

133. de La Cochetière MF, Rougé C, Darmaun D, Rozé JC, Potel G, Leguen CG. 
Intestinal microbiota in neonates and preterm infants: a review. Curr Pediatr 
Rev (2007) 3:21–34. doi:10.2174/157339607779941697 

134. Osmond C, Murphy M. Seasonality in the sudden infant death syndrome. 
Paediatr Perinat Epidemiol (1988) 2:337–45. doi:10.1111/j.1365-3016.1988.
tb00228.x 

135. Hoffman HJ, Damus K, Hillman L, Krongrad E. Risk factors for SIDS. Results 
of the National Institute of Child Health and Human Development SIDS 
Cooperative Epidemiological Study. Ann N Y Acad Sci (1988) 533:13–30.  
doi:10.1111/j.1749-6632.1988.tb37230.x 

136. Nelson AM, Walk ST, Taube S, Taniuchi M, Houpt ER, Wobus CE, et  al. 
Disruption of the human gut microbiota following norovirus infection. PLoS 
One (2012) 7(10):e48224. doi:10.1371/journal.pone.0048224 

137. Hunt CE. Small for gestational age infants and sudden infant death syndrome: 
a confluence of complex conditions. Arch Dis Child Fetal Neonatal Ed (2007) 
92:F428–9. doi:10.1136/adc.2006.112243 

138. Sakata H, Yoshioka H, Fujita K. Development of the intestinal flora in very 
low birth weight infants compared to normal full-term newborns. Eur 
J Pediatr (1985) 144(2):186–90. 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
https://doi.org/10.1002/(SICI)1098-2302(199909)35:2 < 146::AID-DEV7 > 3.0.CO;2-G
https://doi.org/10.1016/j.femsim.2004.06.007
https://doi.org/10.1093/jnen/62.11.1178
https://doi.org/10.1038/nature09944
https://doi.org/10.1590/S0021-75572009000400007
https://doi.org/10.1590/S0021-75572009000400007
https://doi.org/10.1038/sj.npp.1300664
https://doi.org/10.1016/S0006-8993(99)01439-0
https://doi.org/10.1006/frne.2001.0225
https://doi.org/10.1016/j.physbeh.2004.11.002
https://doi.org/10.1007/s00248-010-9787-2
https://doi.org/10.1126/science.1224203
https://doi.org/10.1016/j.ijpharm.2011.04.069
https://doi.org/10.1016/j.cell.2012.07.008
https://doi.org/10.1126/science.1233521
https://doi.org/10.1126/science.1233521
https://doi.org/10.1038/ncomms5500
https://doi.org/10.1007/s12024-010-9182-9
https://doi.org/10.1016/j.cell.2006.08.043
https://doi.org/10.1128/IAI.69.4.2372-2377.2001
https://doi.org/10.1007/s00414-010-0428-6
https://doi.org/10.1007/s00401-008-0468-x
https://doi.org/10.1016/j.brainres.2007.03.037
https://doi.org/10.1016/j.brainres.2007.03.037
https://doi.org/10.1371/journal.pone.0059260
https://doi.org/10.1371/journal.pone.0059260
https://doi.org/10.1542/peds.107.3.530
https://doi.org/10.1038/4441022a
https://doi.org/10.1038/pr.2014.169
https://doi.org/10.1136/gut.2004.041640
https://doi.org/10.1007/s10096-004-1146-0
https://doi.org/10.1007/s10096-004-1146-0
https://doi.org/10.1097/00005176-199901000-00007
https://doi.org/10.1017/S0022172400023226
https://doi.org/10.1007/BF01638940
https://doi.org/10.2174/157339607779941697
https://doi.org/10.1111/j.1365-3016.1988.tb00228.x
https://doi.org/10.1111/j.1365-3016.1988.tb00228.x
https://doi.org/10.1111/j.1749-6632.1988.tb37230.x
https://doi.org/10.1371/journal.pone.0048224
https://doi.org/10.1136/adc.2006.112243


11

Praveen and Praveen Microbiome–Gut–Brain Axis in SIDS

Frontiers in Pediatrics | www.frontiersin.org January 2017 | Volume 4 | Article 136

139. Willinger M, Hoffman HJ, Hartford RB. Infant sleep position and risk for 
sudden infant death syndrome: report of meeting held January 13 and 14, 
1994, National Institutes of Health, Bethesda, MD. Pediatrics (1994) 93:814–9. 

140. Chong A, Murphy N, Matthews T. Effect of prone sleeping on circulatory con-
trol in infants. Arch Dis Child (2000) 82(3):253–6. doi:10.1136/adc.82.3.253 

141. Ponsonby AL, Dwyer T, Gibbons LE, Cochrane JA, Wang YG. Factors 
potentiating the risk of sudden infant death syndrome associated with 
the prone position. N Engl J Med (1993) 329(6):377–82. doi:10.1056/
NEJM199308053290601 

142. McKenna JJ, McDade T. Why babies should never sleep alone: a review of the 
co-sleeping controversy in relation to SIDS, bedsharing and breast feeding. 
Paediatr Respir Rev (2005) 6:134–52. doi:10.1016/j.prrv.2005.03.006 

143. Hauck FR, Thompson JM, Tanabe KO, Moon RY, Vennemann MM. 
Breastfeeding and reduced risk of sudden infant death syndrome: a 
meta-analysis. Pediatrics (2011) 128(1):103–10. doi:10.1542/peds.2010-3000 

144. Horne RS, Parslow PM, Ferens D, Watts AM, Adamson TM. Comparison of 
evoked arousability in breast and formula fed infants. Arch Dis Child (2004) 
89(1):22–5. 

145. Ponsonby AL, Dwyer T, Gibbons LE, Cochrane JA, Jones ME, McCall 
MJ. Thermal environment and sudden infant death syndrome: case-control 
study. BMJ (1992) 304(6822):277–82. doi:10.1136/bmj.304.6822.277 

146. Conn CA, Franklin B, Freter R, Kluger MJ. Role of Gram-negative and Gram-
positive gastrointestinal flora in temperature regulation of mice. Am J Physiol 
(1991) 6(2):R1358–63. 

147. Schmidt JP, Becker RE. Changes in the Intestinal Flora of Ground Squirrels 
during Periods of Hibernation. Fort Wainwright, Alaska: Arctic Aeromedical 
Laboratory, Aerospace Medical Division, Air Force Systems Command 
(1963).

148. Allen SD, Brock TD. The temperature optimum of the intestinal flora of the 
rat. Can J Microbiol (1968) 14(6):699–704. doi:10.1139/m68-116 

149. Fuller A, Mitchell D. Oral antibiotics reduce body temperature of healthy 
rabbits in a thermoneutral environment. J Basic Clin Physiol Pharmacol 
(1999) 10(1):1–13. doi:10.1515/JBCPP.1999.10.1.1 

150. Ollila P, Niemelä M, Uhari M, Larmas M. Risk factors for colonization of 
salivary lactobacilli and Candida in children. Acta Odontol Scand (1997) 
55(1):9–13. doi:10.3109/00016359709091933 

151. Sherburn RE, Jenkins RO. Aerial release of bacteria from cot mattress 
materials and the sudden infant death syndrome. J Appl Microbiol (2005) 
98(2):293–8. doi:10.1111/j.1365-2672.2004.02456.x 

152. Carpenter R, McGarvey C, Mitchell EA, Tappin DM, Vennemann MM, Smuk 
M, et al. Bed sharing when parents do not smoke: is there a risk of SIDS? An 
individual level analysis of five major case-control studies. BMJ Open (2013) 
3(5):e002299. doi:10.1136/bmjopen-2012-002299 

153. Lindberg E, Adlerberth I, Hesselmar B, Saalman R, Strannegård IL, Aberg 
N, et al. High rate of transfer of Staphylococcus aureus from parental skin 
to infant gut flora. J Clin Microbiol (2004) 42(2):530–4. doi:10.1128/
JCM.42.2.530-534.2004 

154. Weissbluth M. Infantile colic and near-miss sudden infant death syndrome. 
Med Hypotheses (1981) 7(9):1193–9. doi:10.1016/0306-9877(81)90062-1 

155. Duffy LC. Interactions mediating bacterial translocation in the immature 
intestine. J Nutr (2000) 130(2S Suppl):432S–6S. 

156. Edde L, Hipolito RB, Hwang FF, Headon DR, Shalwitz RA, Sherman MP. 
Lactoferrin protects neonatal rats from gut-related systemic infection. Am 
J Physiol Gastrointest Liver Physiol (2001) 281(5):G1140–50. 

157. Moy J, Lee DJ, Harmon CM, Drongowski RA, Coran AG. Confirmation of 
translocated gastrointestinal bacteria in a neonatal model. J Surg Res (1999) 
87(1):85–9. doi:10.1006/jsre.1999.5745 

158. Seehofer D, Rayes N, Schiller R, Stockmann M, Müller AR, Schirmeier A, 
et al. Probiotics partly reverse increased bacterial translocation after simul-
taneous liver resection and colonic anastomosis in rats. J Surg Res (2004) 
117(2):262–71. doi:10.1016/j.jss.2003.11.021 

159. Yajima M, Nakayama M, Hatano S, Yamazaki K, Aoyama Y, Yajima 
T, et  al. Bacterial translocation in neonatal rats: the relation between 
intestinal flora, translocated bacteria, and influence of milk. J Pediatr 
Gastroenterol Nutr (2001) 33(5):592–601. doi:10.1097/00005176-200111000- 
00015 

160. Katayama M, Xu D, Specian RD, Deitch EA. Role of bacterial adherence 
and the mucus barrier on bacterial translocation: effects of protein 
malnutrition and endotoxin in rats. Ann Surg (1997) 225(3):317–26. 
doi:10.1097/00000658-199703000-00012 

161. Clapp DW. Developmental regulation of the immune system. Semin Perinatol 
(2006) 30(2):69–72. doi:10.1053/j.semperi.2006.02.004 

162. Lee DJ, Drongowski RA, Coran AG, Harmon CM. Evaluation of probiotic 
treatment in a neonatal animal model. Pediatr Surg Int (2000) 16(4):237–42. 
doi:10.1007/s003830050736 

163. Mussi-Pinhata MM, Rego MA. [Immunological peculiarities of extremely 
preterm infants: a challenge for the prevention of nosocomial sepsis]. 
J Pediatr (Rio J) (2005) 81(1 Suppl):S59–68. doi:10.2223/1301 

164. Zhang B, Ohtsuka Y, Fujii T, Baba H, Okada K, Shoji H, et al. Immunological 
development of preterm infants in early infancy. Clin Exp Immunol (2005) 
140(1):92–6. doi:10.1111/j.1365-2249.2005.02741.x 

165. Schwiertz A, Gruhl B, Lobnitz M, Michel P, Radke M, Blaut M. Development 
of the intestinal bacterial composition in hospitalized preterm infants in 
comparison with breast-fed, full-term infants. Pediatr Res (2003) 54(3):393–9. 
doi:10.1203/01.PDR.0000078274.74607.7A 

166. Alm B, Norvenius SG, Wennergren G, Skjaerven R, Oyen N, Milerad 
J, et  al. Changes in epidemiology of sudden infant death syndrome in 
Sweden 1973–1996. Arch Dis Child (2001) 84:24–30. doi:10.1136/adc.84. 
1.24 

167. Getahun D, Amre K, Rhoads GG, demissie K. Maternal and obstetric risk 
factors for sudden infant death syndrome in the United States. Obstet Gynecol 
(2004) 103:646–52. doi:10.1097/01.AOG.0000117081.50852.04 

168. Malloy MH, MacDorman M. Changes in the classification of sudden 
unexpected infant deaths: United States, 1992–2001. Pediatrics (2005) 
115:1247–53. doi:10.1542/peds.2004-2188 

169. D’Inca R, Kloareg M, Gras-Le Guen C, Le Huerou-Luron I. Intrauterine 
growth restriction modifies the developmental pattern of intestinal structure, 
transcriptomic profile, and bacterial colonization in neonatal pigs. J Nutr 
(2010) 140:925–31. doi:10.3945/jn.109.116822 

170. Johnson CL, Versalovic J. The human microbiome and its potential 
importance to pediatrics. Pediatrics (2012) 129(5):950–60. doi:10.1542/
peds.2011-2736 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Praveen and Praveen. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive
https://doi.org/10.1136/
adc.82.3.253
https://doi.org/10.1056/NEJM199308053290601
https://doi.org/10.1056/NEJM199308053290601
https://doi.org/10.1016/j.prrv.2005.03.006
https://doi.org/10.1542/peds.2010-3000
https://doi.org/10.1136/bmj.304.6822.277
https://doi.org/10.1139/m68-116
https://doi.org/10.1515/JBCPP.1999.10.1.1
https://doi.org/10.3109/00016359709091933
https://doi.org/10.1111/j.1365-2672.2004.02456.x
https://doi.org/10.1136/bmjopen-2012-002299
https://doi.org/10.1128/JCM.42.2.530-534.2004
https://doi.org/10.1128/JCM.42.2.530-534.2004
https://doi.org/10.1016/0306-9877(81)90062-1
https://doi.org/10.1006/jsre.1999.5745
https://doi.org/10.1016/j.jss.2003.11.021
https://doi.org/10.1097/00005176-200111000-00015
https://doi.org/10.1097/00005176-200111000-00015
https://doi.org/10.1097/00000658-199703000-00012
https://doi.org/10.1053/j.semperi.2006.02.004
https://doi.org/10.1007/s003830050736
https://doi.org/10.2223/1301
https://doi.org/10.1111/j.1365-2249.2005.02741.x
https://doi.org/10.1203/01.PDR.0000078274.74607.7A
https://doi.org/10.1136/adc.84.1.24
https://doi.org/10.1136/adc.84.1.24
https://doi.org/10.1097/01.AOG.0000117081.50852.04
https://doi.org/10.1542/peds.2004-2188
https://doi.org/10.3945/jn.109.116822
https://doi.org/10.1542/peds.2011-2736
https://doi.org/10.1542/peds.2011-2736
http://creativecommons.org/licenses/by/4.0/

	Microbiome–Gut–Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS—A Novel Hypothesis
	Introduction
	Current Hypotheses for SIDS

	New Hypothesis
	Microbiome–Gut–Brain Axis
	Gut Vagal Afferents and the Medullary Serotonergic System

	Gut Microbiome Affects the Brainstem
	Animal Studies
	Clinical Studies

	Brain Affects Gut Microbiome
	Shared Risk Factors for SIDS and Gut Dysbiosis
	Demographic Factors
	Prenatal Risk Factors
	Postnatal Risks



	Conclusion
	Author Contributions
	References


