
Systems biology

PolyRound: polytope rounding for random sampling in

metabolic networks

Axel Theorell1,2,*, Johann F. Jadebeck2,3, Katharina Nöh2 and Jörg Stelling 1,*

1Department of Biosystems Science and Engineering, SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland, 2Institute of Bio-

and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany and 3Computational Systems

Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on December 1, 2020; revised on May 25, 2021; editorial decision on July 24, 2021; accepted on July 29, 2021

Abstract

Summary: Random flux sampling is a powerful tool for the constraint-based analysis of metabolic networks. The
most efficient sampling method relies on a rounding transform of the constraint polytope, but no available rounding
implementation can round all relevant models. By removing redundant polytope constraints on the go, PolyRound
simplifies the numerical problem and rounds all the 108 models in the BiGG database without parameter tuning,
compared to �50% for the state-of-the-art implementation.

Availability and implementation: The implementation is available on gitlab: https://gitlab.com/csb.ethz/PolyRound.

Contact: axel.theorell@bsse.ethz.ch or joerg.stelling@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Random sampling of constraint-based models of metabolism is a power-
ful approach to characterize the potential behaviors of metabolic net-
works (Schellenberger and Palsson, 2009; Herrmann et al., 2019). The
field is actively developed, for example, with recent extensions to model
inference (Theorell and Nöh, 2020). Algorithmically, Markov Chain
Monte Carlo (MCMC) based coordinate hit-and-run with rounding
(CHRR) (Haraldsdóttir et al., 2017) showed superior performance in
computational benchmarks (Herrmann et al., 2019) and it is available
in a highly efficient and modular implementation (Jadebeck et al.,
2021).

The relevant sampling space is a polytope P: a bounded set in Rn

constrained by hyperplanes. In constraint based models, P originates
from stoichiometric reaction constraints and capacity constraints that
give rise to equalities and inequalities. P :¼ fx 2 Rn : Aeqx ¼ beq;
Aineqx � bineqg with matrices Aeq 2 Rm;n and Aineq 2 Rk;n, and vec-
tors beq 2 Rm and bineq 2 Rk. For Hit-and-Run samplers, such as
CHRR, the asymptotic mixing time (a common efficiency measure in
MCMC) depends quadratically on the sandwiching ratio, the ratio of
radii of the largest sphere contained in P and the smallest sphere con-
taining P (Lovász and Vempala, 2006). Efficient random sampling
therefore relies on an efficient ’rounding’ preprocessing step: it applies a
linear transformation to make the polytope more spherical. In practice,
sampling the rounded polytope converges within minutes, whereas sam-
pling the unrounded polytope fails to converge in reasonable time.

Deterministic and stochastic algorithms for polytope rounding
exist (Mangoubi and Vishnoi, 2019; Martino et al., 2015). All cur-
rent implementations of CHRR rely on deterministic search for the

maximum volume ellipsoid (MVE) (Zhang and Gao, 2003); after
rounding via a linear transform, the MVE equals the unit sphere. An
implementation that handles polytopes formulated as P is interfaced
from the CobraToolbox (CT) (Heirendt et al., 2019). However, we
found that it rounds only about half of the models in the BiGG re-
pository (King et al., 2016) due to numerical failures. Because this
strongly limits the scope of models for random sampling, we provide
PolyRound, an open source Python toolbox that uses a modified re-
formulation and rounding scheme optimized for robustness.

2 Materials and methods

2.1 Workflow
In a first step, PolyRound reformulates P in a form with only in-
equality constraints and embeds it in a space where it has non-zero
hypervolume. With the null space matrix N 2 Rl;n of Aeq (computed
by SVD), we express P in the null space coordinates u ¼ Nx þ x0 (x0

is an arbitrary feasible point) using only inequality constraints.
However, P may still have zero hyper volume, since the inequality
constraints may contain the so-called 0-facets, directions in which
the width of P is 0. Therefore, prior to reformulation, PolyRound
computes all facet widths by sequentially locating the minimal and
maximal feasible point in the direction orthogonal to each inequality
constraint. This requires solving two linear programs (LPs) per con-
straint. If the width is smaller than a threshold (e.g. 10�7), the corre-
sponding constraint is a de-facto equality constraint and is moved to
the equality system. PolyRound also checks for redundant inequality
constraints and removes these, using a third LP in which the right

VC The Author(s) 2021. Published by Oxford University Press. 566

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(2), 2022, 566–567

doi: 10.1093/bioinformatics/btab552

Advance Access Publication Date: 30 July 2021

Applications Note

https://orcid.org/0000-0002-1145-891X
https://gitlab.com/csb.ethz/PolyRound
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/

hand side of the constraint under investigation is relaxed. After all
redundant constraints have been removed and 0-facet constraints
have been refunctioned, the now smaller problem can be solved
more accurately, so that new redundant constraints and 0-facets
may be detected. Therefore, PolyRound iterates until no more
changes of P are induced.

In a second step, PolyRound computes the MVE using the F2PD
algorithm by Zhang and Gao (2003). The PolyRound MVE is an
optimized python implementation of CT’s default routine
Bounciness/Volume-and-Sampling (Haraldsdóttir et al., 2017),
including an iterative scheme that improves numerical stability
(Supplementary Information S3).

2.2 Implementation
PolyRound is implemented in Python 3 and equipped with an easy-
to-use command line interface. It reads constraint based models in
SBML format (Hucka et al., 2003) using COBRApy (Ebrahim et al.,
2013), and generic polytopes in plain HDF5 and csv representations.
LPs are solved via optlang (Jensen et al., 2017), enabling easy use of
different solvers. To reproduce the benchmarks, see Supplementary
Information.

3 Benchmarks

We first assessed success in terms of obtaining a rounded polytope.
PolyRound successfully rounded 100% of the 108 models in the
BiGG database (King et al., 2016) (Fig. 1A) , compared to at most
51% (Supplementary Fig. S1) for CT, using different parameters and
versions. The performance difference is due to PolyRound’s primary
invention, removal of redundant constraints: without it,
PolyRound’s success rate dropped to 67% (see Supplementary
Information). PolyRound and CT produced similar reductions in
dimensionality, compared to the expected original dimensionality,
but PolyRound achieved substantially larger reductions of the num-
ber of constraints (Fig. 1A, Supplementary Fig. S2), thus easing
numerical computations in the rounding workflow. To validate
that the polytopes generated by PolyRound yield efficient sampling,
we collected 11 models spanning a range of sizes (Supplementary
Table S1). The effective sample size (ESS) per time for uniform

sampling with the HOPS library (Jadebeck et al., 2021) was consist-
ently higher for PolyRound than for CT (Fig. 1B).

4 Conclusion

PolyRound is an open-source, robust implementation of polytope
rounding, which, by numerical craftsmanship, strongly widens the
number of constraint based models for random sampling. Rounded
models are maximally constraint reduced, which speeds up later
computations.

Acknowledgements

The authors thank Mattia Gollub for fruitful discussions and feedback.

Funding

This work was supported by the Swiss National Science Foundation (Sinergia

project #177164 to J.S.) and the Helmholtz School for Data Science in Life,

Earth and Energy (HDS-LEE).

Conflict of Interest: none declared.

References

Ebrahim,A. et al. (2013) COBRApy: constraints-based reconstruction and

analysis for python. BMC Syst. Biol., 7, 74.

Haraldsdóttir,H.S. et al. (2017) CHRR: coordinate hit-and-run with rounding

for uniform sampling of constraint-based models. Bioinformatics, 33,

1741–1743.

Heirendt,L. et al. (2019) Creation and analysis of biochemical

constraint-based models using the COBRA toolbox v.3.0. Nat. Protocols,

14, 639–702.

Herrmann,H.A. et al. (2019) Flux sampling is a powerful tool to study metab-

olism under changing environmental conditions. NPJ Syst. Biol. Appl., 5,

32.

Hucka,M., et al.; SBML Forum. (2003) The systems biology markup language

(SBML): a medium for representation and exchange of biochemical network

models. Bioinformatics, 19, 524–531.

Jadebeck,J.F. et al. (2021) HOPS: high-performance library for (non-) uniform

sampling of convex-constrained models. Bioinformatics, 37, 1776–1777.

Jensen,K. et al. (2017) Optlang: an algebraic modeling language for mathemat-

ical optimization. J. Open Source Software, 2, 139.

King,Z.A. et al. (2016) BiGG models: a platform for integrating, standardizing

and sharing genome-scale models. Nucleic Acids Res., 44, D515–D522.

Lovász,L. and Vempala,S. (2006) Hit-and-run from a corner. SIAM J.

Comput., 35, 985–1005.

Mangoubi,O. and Vishnoi,N.K. (2019). Faster polytope rounding, sampling,

and volume computation via a sub-linear ball walk. In: 2019 IEEE 60th

Annual Symposium on Foundations of Computer Science (FOCS), pp.

1338–1357. IEEE.

Martino,D.D. et al. (2015) Uniform sampling of steady states in metabolic net-

works: heterogeneous scales and rounding. PLoS One, 10, e0122670.

Schellenberger,J. and Palsson,B.Ø. (2009) Use of randomized sampling for

analysis of metabolic networks. J. Biol. Chem., 284, 5457–5461.

Theorell,A. and Nöh,K. (2020) Reversible jump MCMC for multi-model infer-

ence in metabolic flux analysis. Bioinformatics, 36, 232–240.

Zhang,Y. and Gao,L. (2003) On numerical solution of the maximum volume

ellipsoid problem. SIAM J. Optim., 14, 53–76.

0.0 0.2 0.4 0.6 0.8 1.0
Rel. # constraints (-)

0

20

40

60

80

#
m
od
el
s
(-
)

A
PolyRound
CT

0 100 200 300 400 500 600
dimensions (-)

10 5

10 4

10 3

10 2

10 1

100

ES
S/
tim
e
(1
/s
)

B
PolyRound
CT

Fig. 1. (a) Fraction of constraints after rounding (number of rows of the processed

inequality matrix), relative to the number for unrounded BiGG models (number of

rows of Aineq). Results for CT: best commit and default parameters. Due to failed

rounding, the orange bars have �50% of the surface area of the blue bars. (B) ESS

per time for a selection of models (Supplementary Table S1). The number of dimen-

sions refers to the PolyRound processed models

PolyRound 567

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab552#supplementary-data

