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Abstract. Osteosarcoma is the most common primary 
malignancy of the bones, and is associated with a high 
rate of metastasis and a poor prognosis. A tight association 
between the tumor microenvironment (TME) and osteosar‑
coma metastasis has been established. In the present study, 
the Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) algorithm 
was applied to calculate the immune and stromal scores of 
patients with osteosarcoma based on data from The Cancer 
Genome Atlas database. A metagene approach and deconvolu‑
tion method were used to reveal distinct TME landscapes in 
patients with osteosarcoma. Bioinformatics analysis was used 
to identify differentially expressed genes (DEGs) associated 
with metastasis and immune infiltration in osteosarcoma, and 
a risk model was constructed using the DEGs with potential 
prognostic significance. Subsequently, gene set enrichment 
and Spearman's correlation analyses were used to delineate 
the biological processes associated with these prognostic 
biomarkers. Finally, immunohistochemical  (IHC) analysis 
was performed to evaluate the expression levels of immune 
infiltrates and prognostic biomarkers in clinical osteosarcoma 
tissues. The results of the ESTIMATE demonstrated that 
patients with non‑metastatic osteosarcoma presented with 
higher immune/stromal scores and a more favorable prognosis 

compared with those with metastatic osteosarcoma. The TME 
landscapes in patients with osteosarcoma suggested that high 
levels of tumor‑infiltrating immune cells (TIICs) may suppress 
metastasis. Increased numbers of CD56bright natural killer cells, 
immature B cells, M1 macrophages and neutrophils, and lower 
levels of M2 macrophages were observed in the non‑metastatic 
tissues compared with those in the metastatic tissues. A total 
of 69 DEGs were identified to be associated with metastasis 
and immune infiltration in osteosarcoma. Of these, GATA3, 
LPAR5, EVI2B, RIAM and CFH exhibited prognostic poten‑
tial and were highly expressed in non‑metastatic osteosarcoma 
tissues based on the IHC analysis results. These biomarkers 
were involved in various immune‑related biological processes 
and were positively associated with multiple TIICs and 
immune signatures. The risk model constructed using these 
prognostic biomarkers demonstrated high predictive accuracy 
for the prognosis of osteosarcoma. In conclusion, the present 
study proposed a five‑biomarker prognostic signature for the 
prediction of metastasis and immune infiltration in patients 
with osteosarcoma.

Introduction

Osteosarcoma is a malignancy of the bone that stems from 
primitive mesenchymal cells and frequently affects the 
metaphyseal regions of long bones, including the distal femur, 
proximal tibia and the proximal humerus (1,2). The incidence 
of osteosarcoma exhibits bimodal distribution, predominantly 
affecting children and adolescents, with 75% of patients aged 
<20 years (3). Osteosarcoma is rare, with an annual estimated 
worldwide incidence of 2‑3 cases per 1,000,000 individuals (4). 
However, it is highly aggressive and primarily metastasizes to 
the lung; in ~80% of cases, patients exhibit subclinical pulmo‑
nary micrometastases at the time of diagnosis (5). The 5‑year 
survival rate of patients with localized osteosarcoma is ~65%, 
whereas for recurrent and metastatic cases, the long‑term 
survival rate is ~20% (6). Conventionally, treatment strate‑
gies of osteosarcoma comprise neoadjuvant chemotherapy, 
surgical resection and adjuvant chemotherapy (7). However, 
the survival rates have plateaued in the last three decades, and 
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metastasis remains the principal factor underlying mortality in 
patients with osteosarcoma (6). Most patients with metastatic 
osteosarcoma exhibit a poor response to the current standard 
treatments.

The tumor microenvironment (TME) comprises all factors 
recruited to the tumor, including non‑cellular (microves‑
sels and the extracellular matrix) and cellular (cancer cells, 
immune cells and stromal cells) components  (8,9). During 
tumor development, cancer cells pathologically affect the 
TME by inducing various types of stress, including hypoxia, 
oxidative stress and acidosis (10). These effects trigger aber‑
rant responses from neighboring immune and stromal cells, 
which promote necrosis and metastasis (11). Considering the 
importance of tumor‑induced immune escape in osteosarcoma 
recurrence and metastasis, immunotherapy has been proposed 
as a promising therapeutic option for high‑grade osteosar‑
coma (12). Therapeutic strategies targeting tumor‑associated 
macrophages have been demonstrated to significantly suppress 
metastasis in cases of advanced osteosarcoma (13,14). In addi‑
tion, combined therapy using tumor lysate‑pulsed dendritic 
cells (DCs) and an anti‑cytotoxic T lymphocyte antigen‑4 anti‑
body inhibits the outgrowth of lung metastasis and prolongs 
patient survival  (15). Despite the tremendous amounts of 
research efforts performed in the past three decades, no effec‑
tive immunotherapies have been developed for the treatment 
of osteosarcoma, which has been attributed to the rarity and 
heterogeneity of osteosarcoma, absence of specific tumor anti‑
gens and off‑target effects of drugs (16‑18). Thus, an improved 
understanding of the association between metastasis and 
osteosarcoma TME is urgently required to improve survival 
outcomes.

Multiple algorithms have been developed for evaluation of 
the heterogeneity of the TME landscape (19‑21). The metagene 
approach is considered superior to other deconvolution methods 
such as Tumor Immune Estimation Resource (TIMER) as it is 
less sensitive to noise caused by sample impurity or sample 
preparation (19). These two algorithms have been successfully 
applied to assess immune infiltration and identify clinical 
signatures in various types of cancer (19‑25). However, to the 
best of our knowledge, the immune profiles of osteosarcoma 
have not been previously evaluated using these algorithms.

The present study aimed to delineate the distinct profiles 
of immune infiltration in patients with metastatic and 
non‑metastatic osteosarcoma, and to subsequently iden‑
tify metastasis‑ and immune‑related genes that may act as 
potential biomarkers or treatment targets for osteosarcoma. 
Understanding the aberrant expression of the prognostic 
biomarkers and the related pathways may facilitate early 
diagnosis and appropriate therapy for individual patients with 
osteosarcoma.

Materials and methods

Data preparation and processing. A flowchart of the analysis 
performed in the present study is outlined in Fig. 1. Level 3 gene 
transcriptome profiles of patients with osteosarcoma were down‑
loaded from The Cancer Genome Atlas (TCGA; portal.gdc.
cancer.gov/) on January  16,  2020. The dataset comprised 
88 osteosarcoma cases. Associated clinical data, including sex, 
age, survival status, metastasis, primary tumor sites, overall 

survival and event‑free survival times were also obtained. 
The GDCRNATools package version 1.6.0 (bioconductor.
org/packages/release/bioc/html/GDCRNATools.html) (26) 
was used to integrate and normalize the gene expres‑
sion count matrices in R version 3.6.3 (27). Subsequently, 
the immune and stromal scores were calculated using the 
Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) algo‑
rithm (28) for predicting the presence of infiltrating immune 
and stromal cells in tumor tissues. Unpaired Student's t‑test 
was used to compare the differences of immune and stromal 
scores between metastatic and non‑metastatic cases.

Evaluation of immune infiltration in metastatic and 
non‑metastatic osteosarcoma. To comprehensively charac‑
terize the cellular composition of the immune infiltrates in 
osteosarcoma, a metagene approach and the deconvolution 
method were used independently. The metagene approach 
relies on a set of genes representing various immune cell 
types that are not expressed in cancer cell lines or normal 
tissues. The GSVA package version  1.34.0 (bioconductor.
org/packages/release/bioc/html/GSVA.html)  (29) was used 
to calculate the aggregate scores for each tumor‑infiltrating 
immune cells (TIICs) class, with higher scores indicating a 
higher degree of infiltration. Independently, the processed 
expression matrices of osteosarcoma cohorts were analyzed 
using TIMER version 2.0 (cistrome.shinyapps.io/timer/) (20), 
a web‑accessible deconvolution‑based resource for systematic 
analyses and visualization of immune cell abundance. After 
obtaining the fractions of immune subpopulations in the 
individual samples, the osteosarcoma cases were classified as 
metastatic or non‑metastatic to establish the differential distri‑
bution of TIICs.

Survival analysis. Kaplan‑Meier analysis followed by the 
log‑rank test was used to assess the association between metas‑
tasis and patient prognosis using the survival (version 3.1‑8; 
cran.r‑project.org/web/packages/survival/index.html)  (30) 
and survminer (version  0.4.6; https://CRAN.R‑project.
org/package=survminer) packages. P<0.05 was considered to 
indicate a statistically significant difference.

Identification of differentially expressed genes (DEGs). Next, 
the limma package version 3.42.0 (bioconductor.org/pack‑
ages/release/bioc/html/limma.html) (31) was used to identify 
metastasis‑related DEGs in the metastatic group (n=22) vs. 
the non‑metastatic group (n=66) using the following cutoffs: 
|log2 fold change (FC)|≥log21.5 and P<0.05. The expression 
pattern of the DEGs was visualized using heatmaps and 
volcano plots. The 88 osteosarcoma cases were classified into 
high or low score groups based on the median immune and 
stromal scores, and the aforementioned approach was used 
to identify the immune or stromal score‑related DEGs. The 
intersection genes that were differentially expressed (up‑ or 
downregulated) between the groups were identified using the 
VennDiagram package version 1.6.20 (https://CRAN.R‑project.
org/package=VennDiagram).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses. To determine the 
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functions and pathways associated with the intersection genes, 
GO annotation and KEGG pathway enrichment analyses were 
performed using the clusterProfiler package version 3.14.2 
(bioconductor.org/packages/release/bioc/html/clusterProfiler.
html) (32). P<0.05 was considered to indicate a statistically 
significant difference.

Protein‑protein interaction (PPI) network construction. The 
Search Tool for the Retrieval of Interacting Genes (STRING; 
string.embl.de/) online database was used to establish a 
PPI  network of the intersection genes and evaluate the 
degree of interactivity at the protein level. The results of the 
PPI network were visualized with Cytoscape version 3.7.1 (33). 
A plugin of Cytoscape, cytoHubba (34) was utilized to screen 
for hub genes using the Maximal Clique Centrality (MCC) 
algorithm.

Screening for prognostic target genes. Kaplan‑Meier survival 
analysis and univariate Cox regression models were used to 
identify the prognosis‑associated genes amongst the hub genes 
based on the gene expression values and survival status data. 
The log‑rank test was used for curves without late crossover. The 
Renyi test was performed to detect differences when survival 
curves crossed over with the survMisc package version 0.5.5 
(https://CRAN.R‑project.org/package=survMisc). P<0.05 
was considered to indicate a statistically significant differ‑
ence. The overlapping genes from the two analyses were 
further screened by the least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis for variable selec‑
tion and shrinkage using the glmnet package version 3.0‑2 
(cran.r‑project.org/web/packages/glmnet/index.html)  (35). 
A formula was established to calculate the prognostic risk 

scores for each patient on the basis of the coefficients derived 
from the risk model. According to the median value of the 
risk scores, the patients were grouped into high‑ and low‑risk 
subsets. Kaplan‑Meier survival analysis followed by log‑rank 
test was performed on the two groups, and the receiver oper‑
ating characteristic (ROC) curves were drawn to evaluate the 
stability of the model.

Gene set enrichment analysis (GSEA). The patients with 
osteosarcoma in TCGA dataset were split into high‑ and 
low‑expression subgroups according to the expression levels 
of each target gene (top 50%, high vs. bottom 50%, low). 
GSEA (software.broadinstitute.org/gsea/index.jsp) was used 
to determine whether the pre‑defined KEGG pathways were 
enriched (36,37). The enrichment scores, normalized enrich‑
ment scores and P‑values were calculated. Furthermore, the 
top five pathways of interest were integrated and visualized 
in an enrichment plot based on the enrichment scores. P<0.05 
and a false discovery rate q<0.05 were considered to indicate a 
statistically significant difference.

Analysis of correlation between target genes and immune 
infiltrates. Next, the correlations between TIICs or immune 
cell markers and the target genes were evaluated using TIMER 
and Gene Expression Profiling Interactive Analysis (GEPIA; 
gepia.cancer‑pku.cn/) (38), respectively. Spearman correlation 
analysis was used to determine the correlation coefficients in 
the two databases. P<0.05 was considered to indicate a statisti‑
cally significant difference.

Clinical specimens. Ethics approval for the use of clinical 
material was obtained from the Ethics Committee of the 

Figure 1. Flowchart of data analysis in present study. TCGA, the Cancer Genome Atlas; TIMER, Tumor IMmune Estimation Resource; ESTIMATE, Estimation 
of STromal and Immune cells in MAlignant Tumor tissues using Expression data; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; GEPIA, Gene Expression Profiling Interactive Analysis; TIICs, tumor‑infiltrating 
immune cells.
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Affiliated Zhujiang Hospital of Southern Medical University 
(Guangzhou, China; approval  no.  2018‑GJGBWK‑002). 
Patients were recruited between May 2018 and April 2020. 
Written informed consent was obtained from all participants 
or their legal guardians prior to sample collection. A total 
of 16 metastatic (mean age, 21.56±5.30; range, 14‑33 years; 
9 male and 7 female patients) and 18 non‑metastatic (mean 
age, 17.56±6.45; range, 10‑34 years; 11 male and 7 female 
patients) osteosarcoma tissues were obtained and stored 
at ‑80˚C. Osteosarcoma diagnosis was verified by histopatho‑
logical evaluation. The patient cohort comprised 20 male and 
14 female individuals, with a mean age of 19.44±6.19 years. 
There were eight cases at stage I, 10 cases at stage II and 
16 cases at stage III.

Immunohistochemical analysis. All 34 specimens from 
patients with osteosarcoma were embedded in paraffin. 
Following dewaxing in xylene and rehydration with graded 
ethanol series (100, 95, 90, 80 and 70%) at room temperature, 
the tissue slides were boiled in 0.01 M sodium citrate buffer 
(pH 6.0; Beijing Zhongshan Golden Bridge Biotech, Co., 
Ltd.) at 95˚C in a water bath for 10 min and immersed in 
3% hydrogen peroxide at room temperature for 30 min to block 
endogenous peroxidase activity. Subsequently, the slides were 
incubated with 5% bovine serum albumin (Wuhan Servicebio 
Technology, Co., Ltd.) at room temperature for 30 min and 
stained with primary antibodies overnight at 4˚C. Finally, 
the slides were incubated with horseradish peroxidase‑conju‑
gated secondary antibodies (1:50; cat. no. A0208; Beyotime 
Institute of Biotechnology) for 60 min at room tempera‑
ture and stained using a horseradish peroxidase‑DAB kit 
(Tiangen Biotech, Co., Ltd.) according to the manufacturer's 
protocol. The following primary antibodies were used for 
immunostaining: CD56bright natural killer (NK) cell‑specific 
antibody CD56 (1:100; cat.  no.  14255‑1‑AP; ProteinTech 
Group, Inc.), immature B cell‑specific antibody CD22 (1:200; 
cat. no. 21894‑1‑AP; ProteinTech Group, Inc.), M1 macro‑
phage‑specific antibody CD86 (1:100; cat.  no.  DF6332; 
Affinity Biosciences), M2 macrophage‑specific antibody 
CD163 (1:100; cat. no. 16646‑1‑AP; ProteinTech Group, Inc.), 
neutrophil‑specific antibody CD11B (1:200; cat. no. bs‑1014R; 
BIOSS), GATA3 (1:200; cat. no. 10417‑1‑AP; ProteinTech 
Group, Inc.), LPAR5 (1:500; cat. no. bs‑15366R; BIOSS), 
EVI2B (1:50; cat.  no.  24891‑1‑AP; ProteinTech Group, 
Inc.), RIAM (1:100; cat.  no.  13500‑1‑AP; ProteinTech 
Group, Inc.) and CFH (1:400; cat. no. bs‑9525R; BIOSS). 
Images were captured with a light orthophoto microscope 
(magnification, x200). Immunohistochemical staining was 
evaluated using a semiquantitative scoring method based on 
the staining intensity and the percentage of positively‑stained 
cells (39). The staining intensity was scored as follows: 0 (no 
staining), 1 (+), 2 (++) and 3 (+++); the percentage of posi‑
tive‑stained cells was scored as follows: 0 (0‑1%), 1 (1‑33%), 
2 (34‑66%) and 3 (67‑100%). The total staining scores were 
defined according to the sum of the intensity and percentage 
scores: Low expression (0‑2); medium expression (3 and 4); 
and high expression (5 and 6). Statistical significance of the 
semi‑quantified immunohistochemical staining between 
patients with non‑metastatic and metastatic osteosarcoma for 
each marker was determined by the Mann‑Whitney U test.

Statistical analysis. The IHC scores are presented as median 
and range. Other numerical data are presented as mean ± stan‑
dard deviation. All statistical analyses were performed using 
SPSS version 20.0 (IBM Corp.). Prior to analysis, normal 
distribution and homogeneity of variance of all variables were 
assumed with Shapiro‑Wilk and Levene's tests, respectively. 
Parametric testing between two groups was performed by 
unpaired Student's t‑test. For non‑parametric two‑group 
comparisons, the Mann‑Whitney U test was performed. A 
two‑sided P<0.05 was considered to indicate a statistically 
significant difference.

Results

Dif ferential immune inf iltration in metastatic vs. 
non‑metastatic osteosarcoma. TCGA gene expression 
datasets from 88 patients with osteosarcoma were analyzed. 
Patient demographics are summarized in Table  I. The 
mean  ±  SD age of enrolled patients was 15.16±4.86, and 
58.0% of these patients were male. Of the 88 osteosarcoma 
cases, 22 were metastatic. The results of the ESTIMATE 
analysis revealed that the immune (range, ‑1,820.49‑1,965.19) 
and stromal (range,  ‑731.86‑1,880.48) scores were associ‑
ated with metastasis. High immune and stromal scores were 
associated with non‑metastatic osteosarcoma, although the 
associations were not statistically significant (Fig. 2A and B). 
Kaplan‑Meier analysis demonstrated that metastatic osteosar‑
coma was significantly associated with shorter overall survival 
(P<0.001) and event‑free survival (P<0.001) times compared 
with non‑metastatic osteosarcoma (Fig. 2C and D).

To further def﻿ine the patterns of immune infiltration in 
metastatic vs. non‑metastatic osteosarcoma, metagene and 
TIMER analyses were performed independently. Based on 
the metagene approach, a set of metagenes for 25 immune cell 
subpopulations were initially defined (Table SI). Subsequently, 
the relative expression levels of the metagenes in metastatic 
vs. non‑metastatic osteosarcoma were determined. The results 
demonstrated that the proportions of CD56bright NK cells, 
immature B cells and M1 macrophages were significantly 
higher in the non‑metastatic group compared with those in the 
metastatic group, whereas the proportion of M2 macrophages 
was significantly lower (Fig. 3A). Higher proportions of acti‑
vated B cells, activated CD8 T cells, γδ T cells, immature 
DCs, NK cells, T follicular helper cells, type 1 T helper cells 
and type 2 T helper cells were observed in the non‑metastatic 
group compared with those in the metastatic group. TIMER 
analysis revealed a higher proportion of neutrophils in 
non‑metastatic osteosarcoma compared with that in metastatic 
osteosarcoma (Fig. 3B).

Identification of DEGs associated with metastasis and 
immune infiltration. A total of 611 metastasis‑associated 
DEGs were identified from the osteosarcoma datasets obtained 
from TCGA, of which 300 were significantly upregulated and 
311 were significantly downregulated in metastatic compared 
with non‑metastatic cases. Due to the close relationship between 
metastasis and immune infiltration, the cases of osteosarcoma 
were stratified into high‑ (n=44) and low‑ (n=44) score groups 
based on the median immune and stromal scores. Subsequently, 
2,584 DEGs (1,586 upregulated and 998 downregulated) were 
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Table I. Clinical characteristics of the 88 patients with osteosarcoma included in the present study. 

Characteristic	 Male	 Female	 Total

Total, n (%)	 51 (58.0%)	 37 (42.0%)	 88 (100.0%)
Age, years	 16.73±5.08	 13.01±3.59	 15.16±4.86
Survival status, n (%)			 
  Alive	 34 (38.7%)	 23 (26.1%)	 57 (64.8%)
  Dead	 15 (17.0%)	 14 (15.9%)	 29 (32.9%)
  Unknown	 2 (2.3%)	 0 (0.0%)	 2 (2.3%)
Metastasis, n (%)			 
  Present	 10 (11.4%)	 12 (13.6%)	 22 (25.0%)
  Absent	 41 (46.6%)	 25 (28.4%)	 66 (75.0%)
Primary tumor site, n (%)			 
  Leg or foot	 47 (53.4%)	 33 (37.5%)	 80 (90.9%)
  Arm or hand	 2 (2.3%)	 4 (4.5%)	 6 (6.8%)
  Pelvis	 2 (2.3%)	 0 (0.0%)	 2 (2.3%)
Overall survival, years	 4.52±3.22	 3.65±2.72	 4.15±3.03
Event‑free survival, years	 3.45±2.99	 3.08±2.80	 3.30±2.90

Continuous variables are presented as the mean ± standard deviation.

Figure 2. Patients with non‑metastatic osteosarcoma present with higher immune/stromal scores and a more favorable prognosis compared with those with 
metastatic osteosarcoma. Distribution of (A) immune and (B) stomal scores between the metastatic and non‑metastatic groups. Kaplan‑Meier analyses of 
patients' (C) OS and (D) EFS between the metastatic and non‑metastatic groups. OS, overall survival; EFS, event‑free survival.
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identified in the high immune score group, and 2,541 DEGs 
(1,679 upregulated and 862 downregulated) were identified in 
the high stromal‑score group. The expression profiles of DEGs 
were visualized using heatmaps and volcano plots (Fig. 4A‑F). 
A total of 69 metastasis‑ and immune‑associated DEGs were 
common to both the metastatic and low immune and stromal 
score groups (Fig. 4G and H).

Functional enrichment and PPI  network analysis. The 
results of the GO term analysis demonstrated that the inter‑
section DEGs may be associated with several biological 
processes (BP), including ‘T cell activation’ (GO:0042110), 
‘leukocyte differentiation’ (GO:0002521), ‘negative regula‑
tion of cytokine production’ (GO:0001818) and ‘regulation 
of leukocyte activation’ (GO:0002694) (Fig. 5A). The signifi‑
cantly enriched cellular components (CC) included ‘secretory 

granule membrane’ (GO:0030667), ‘ficolin‑1‑rich granule’ 
(GO:0101002), ‘intrinsic component of organelle membrane’ 
(GO:0031300) and ‘lamell ipodium’ (GO:0030027) 
(Fig.  5B). Among the molecular function  (MF) terms, 
the intersection DEGs were enriched for ‘heparan sulfate 
proteoglycan binding’ (GO:0043395), ‘cytokine receptor 
activity’ (GO:0004896), ‘G protein‑coupled chemoattractant 
receptor activity’ (GO:0001637) and ‘chemokine receptor 
activity’ (GO:0004950) (Fig. 5C). KEGG pathway analysis 
revealed enrichment for pathways associated with ‘lipid 
metabolism’ (hsa00565), ‘pantothenate and CoA biosyn‑
thesis’ (hsa00770), and ‘glycerophospholipid metabolism’ 
(hsa00564) (Fig. 5D).

To identify the potential interaction patterns among the 
transcripts of the 69 intersection DEGs, a PPI network was 
constructed using the STRING database. Analysis of the 

Figure 3. Distinct patterns of immune infiltrates in patients with metastatic vs. non‑metastatic osteosarcoma. Evaluation of immune infiltration in metastatic 
and non‑metastatic osteosarcoma based on (A) the metagene approach and (B) the Tumor Immune Estimation Resource method. 
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PPI network on Cytoscape using the cytoHubba plugin identi‑
fied the top 20 genes, which were considered the hub genes. 
These hub genes included PTPRC, LCP2, TLR7, CX3CR1, 
CX3CL1, NCKAP1L, LPAR5, EVI2B, DOCK8, IL17RA, 
PLD4, MNDA, GATA3, CLEC7A, RIAM, CD200R1, PIK3CG, 
JAK3, CFH and KLRB1 (Fig. 5E). In addition, 737 GO terms 
and 12 KEGG pathways were identified based on additional 
functional analyses of the hub genes, indicating that the hub 
genes were primarily enriched in immune‑related biological 
processes, including ‘T cell activation’, ‘leukocyte migra‑
tion’, ‘cytokine receptor activity’ and ‘chemokine signaling 
pathway’ (Fig. S1).

Construction of the prognostic risk model. Kaplan‑Meier 
survival analysis revealed that eight of the 20 hub genes were 
significantly associated with the prognosis of patients with 
osteosarcoma (Fig. 6). Univariate Cox regression analysis 
identified 11 hub genes as predictors of favorable prognosis 
(Fig. 7A). Subsequently, the seven overlapping genes identi‑
fied by both analytical methods were included in the LASSO 
Cox regression analysis, which identified five target genes 
with prognostic potential: GATA3, LPAR5, EVI2B, RIAM 
and CFH (Fig. 7B and C). The prognostic risk scores for each 
osteosarcoma case were calculated based on the coefficients 
and the expression values of the target genes as follows: Risk 

Figure 4. Identification of DEGs associated with metastasis and immune infiltration in osteosarcoma. (A) Heatmap and (D) volcano plot of DEGs between 
patients with and without metastatic osteosarcoma. (B) Heatmap and (E) volcano plot of DEGs based on immune scores. (C) Heatmap and (F) volcano plot 
of DEGs based on stromal scores. Venn diagrams of (G) co‑upregulated and (H) co‑downregulated DEGs amongst the metastatic and low immune/stromal 
score groups. In the heatmaps, upregulated genes are presented in red, and downregulated genes are presented in blue. DEGs, differentially expressed genes.
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score = (‑0.4107 x expression value of GATA3) + (‑0.1253 x 
expression value of LPAR5) + (‑0.0985 x expression value of 
EVI2B) + (‑0.2954 x expression value of RIAM) + (‑0.2732 x 
expression value of CFH).

The patients with osteosarcoma in TCGA dataset were 
stratified into high‑ and low‑risk groups based on the 
median value of the risk scores. As presented in Fig. 8A 
and B, a high risk score was associated with shorter survival 
and a higher incidence of death compared with those 
in the low risk score group. Heatmap analysis indicated 

that the expression levels of the five target genes with 
prognostic potential were downregulated in the high‑risk 
cases compared with those in the low‑risk group (Fig. 8C). 
The results of the survival analysis demonstrated that the 
5‑year survival rates of patients with high and low risk 
scores were 38.4 and 88.2%, respectively (Fig. 8D). The 
ROC curve analysis revealed that the areas under the curve 
for predicting 1, 3 and 5‑year survival were 0.817, 0.849 
and 0.876, respectively, indicating that the risk model had a 
high prognostic capacity (Fig. 8E).

Figure 5. Functional enrichment analysis of the intersection of genes and the PPI network. Significantly enriched GO terms including (A) biological process, 
(B) cellular component and (C) molecular function. (D) KEGG enrichment results of the intersection genes. (E) Top 20 hub genes screened using the Maximal 
Clique Centrality algorithm. The color of a node reflects the connectivity degree; warmer colors indicate a higher degree value. PPI, protein‑protein interac‑
tion; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.



ONCOLOGY LETTERS  21:  180,  2021 9

GSEA of the target genes. GSEA was performed for 
subgroups of patients with osteosarcoma based on the 
expression levels of each target gene aiming to uncover the 
significant KEGG pathways enriched in the DEGs between 
the high‑ and low‑expression subgroups. GATA3 expression 
was significantly associated with cell adhesion molecules 
(‘CAMs’), ‘complement and coagulation cascades’, ‘Th1 and 
Th2 cell differentiation’ and ‘NK cell mediated cytotoxicity’ 
(Fig. 9A). The LPAR5 high‑expression subgroup was enriched 
for ‘antigen processing and presentation’, ‘BCR signaling 
pathway’, ‘CAMs’ and ‘TCR signaling pathway’ (Fig. 9B). 
EVI2B expression was associated with enrichment for ‘antigen 
processing and presentation’, ‘BCR signaling pathway’, 
‘hematopoietic cell lineage’ and ‘CAMs’ (Fig. 9C). The RIAM 
high‑expression subgroup was enriched for ‘FeγR‑mediated 
phagocytosis’, ‘chemokine signaling pathway’, ‘NK  cell 
mediated cytotoxicity’ and ‘TCR signaling pathway’ 
(Fig. 9D). Finally, CFH was associated with enrichment for 
the ‘renin‑angiotensin system’, ‘TLR signaling pathway’, 

‘complement and coagulation cascades’ and ‘apoptosis’ 
(Fig. 9E). Notably, there was a significant association between 
all target genes and the ‘NF‑κB signaling pathway’.

Analysis of correlations between target genes with TIICs and 
immune signatures. TIMER analysis was used to evaluate the 
correlations between the target genes and a range of TIICs in 
the osteosarcoma TME. The target genes were positively corre‑
lated with B cells, CD8 T cells, CD4 T cells, neutrophils and 
DC infiltration levels (Fig. 10). Similar results were obtained 
following analysis of the correlations between target genes and 
crucial immune signatures in the GEPIA database (Table II). 
Taken together, these results suggested that high levels of the 
target genes may confer a favorable prognosis for patients with 
osteosarcoma by modulating immune cells.

Immunohistochemical analysis. Immunohistochemical 
staining was performed in 16 metastatic osteosarcoma tissues 
and 18  non‑metastatic tissues (Fig.  11A). Compared with 

Figure 6. Kaplan‑Meier survival curves of the hub genes. All hub genes from the protein‑protein interaction network were analyzed using Kaplan‑Meier 
analysis, and plots for those with significant differences are presented. (A) GATA3, (B) RIAM, (C) LPAR5, (D) CD200R1, (E) EVI2B, (F) CFH, (G) TLR7 and 
(H) NCKAP1L. Comparisons between the high and low gene expression groups were performed using the log‑rank or Renyi test.
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the metastatic cases, patients with non‑metastatic osteosar‑
coma presented with significantly higher expression levels 
of the CD56bright NK cell‑specific marker CD56, immature 
B cell‑specific marker CD22, M1 macrophage‑specific marker 
CD86 and neutrophil‑specific marker CD11B, but lower levels 
of the M2 macrophage‑specific marker CD163 (Fig. 11B). 
Additionally, these results revealed that the expression levels 
of all target genes were higher in the non‑metastatic tissues 
compared with those in the metastatic tissues (Table  III; 
Fig. 11).

Discussion

Osteosarcoma is the most prevalent malignancy of the bone 
and is characterized by a high propensity for metastasis and 
a poor patient prognosis (2,5). Treatment outcomes are often 

poor for patients with recurrent or metastatic osteosarcoma. 
With the rapid development of molecular biology technology, 
there has been a growing interest in anticancer immuno‑
therapies, including immune modulators, immune checkpoint 
inhibitors and genetically modified T cells (40,41). Previous 
studies have demonstrated that the TME influences the devel‑
opment, recurrence and metastasis of osteosarcoma (42‑44). 
Patients with osteosarcoma lacking immune cell infiltra‑
tion present with high rates of metastasis and poor clinical 
outcomes (45). Immune reconstitution has been reported to 
suppress osteosarcoma recurrence and improve metastatic 
osteosarcoma survival (46,47). However, the currently avail‑
able immunotherapy strategies have limited efficacy against 
metastatic osteosarcoma.

ESTIMATE has been widely used to calculate the 
proportions of immune and stromal cells in various types 

Figure 7. Construction of a prognostic risk model for osteosarcoma. (A) Univariate Cox regression analysis identified 11 hub genes (highlighted in red) as 
independent prognostic factors. (B) LASSO coefficient profiles of overlapping hub genes from the Kaplan‑Meier survival and univariate Cox regression 
analyses. (C) Tuning parameter λ selection in the LASSO model. Dotted vertical lines indicate the optimal values using the minimum criteria and the standard 
error of the minimum criteria. LASSO, least absolute shrinkage and selection operator.
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of tumor  (48,49). In the present study, the results of the 
ESTIMATE analysis demonstrated that non‑metastatic 
osteosarcomas were associated with higher immune and 
stromal scores as well as more favorable prognoses compared 
with those in the metastatic cases. Furthermore, indepen‑
dent analyses using the metagene and TIMER algorithms 
revealed that the level of favorable TIIC infiltration was lower 
in patients with metastatic osteosarcoma compared with that 
in non‑metastatic cases, suggesting that impaired immune 
cell infiltration may promote osteosarcoma progression and 
metastasis. These results are consistent with previous studies, 
which have reported that immune infiltrates or immune 
responses in the local microenvironment serve an important 
role in the carcinogenesis of osteosarcoma  (50‑62). The 
exhaustion of cytotoxic T  lymphocytes (CTLs) has been 
demonstrated to promote osteosarcoma invasion and metas‑
tasis, whereas the blockade of programmed cell death‑1 
(PD‑1)/PD‑1 ligand 1 interactions efficiently reverse the 
immunosuppressive effects on CTLs, decreasing the tumor 
burden of metastatic osteosarcoma (50‑52). DCs are involved 

in the activation of multiple types of adaptive immune 
cells (53). Preclinical studies have demonstrated the thera‑
peutic potential of DC vaccines in osteosarcoma (54,55). 
Recently, a role for NK  cells in the recruitment of DCs 
into the TME via C‑C  motif chemokine ligand  5 and 
X‑C motif chemokine ligand 1 has been reported (56). In 
osteosarcoma, NK cell‑mediated immunotherapy has been 
associated with favorable clinical outcomes (57,58). In addi‑
tion, neutrophils have been demonstrated to exert anticancer 
effects by not only orchestrating the recruitment of other 
immune cells, but also mediating antibody‑dependent 
cellular cytotoxicity (59,60). According to previous reports, 
tumor‑infiltrating macrophages are classified as antitumor 
M1‑polarized macrophages and pro‑tumor M2‑polarized 
macrophages (61,62). Consistent with previous studies, the 
results of the present study demonstrated high numbers 
of M1 macrophages and low levels of M2 macrophages in 
patients with non‑metastatic osteosarcoma. However, to the 
best of our knowledge, no studies are currently available on 
the function of immature B cells in osteosarcoma.

Figure 8. Robustness of the five‑gene signature model. (A) The risk score of each sample in the osteosarcoma cohort from The Cancer Genome Atlas. 
(B) Survival time and status of each patient in the osteosarcoma cohort. (C) Heatmap of the target genes between the high‑ and low‑risk groups. Red, upregu‑
lated genes; blue, downregulated genes. (D) Kaplan‑Meier survival curve between the high‑ and low‑risk groups based on the five‑gene signature. (E) Receiver 
operating characteristic analysis of the sensitivity and specificity of the five‑gene signature for the prediction of 1‑, 3‑ and 5‑year overall survival in patients 
with osteosarcoma. AUC, area under the curve.
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To determine the molecular mechanisms underlying the 
changes in the TME, 69 DEGs that were associated with metas‑
tasis and immune infiltration in patients with osteosarcoma were 
identified in the present study. Functional enrichment analyses 
verified that the DEGs participated in multiple immune‑related 
pathways, including ‘leukocyte differentiation’, ‘regulation 
of leukocyte activation’ and ‘chemokine receptor activity’. 
Further analyses of the intersection of DEGs was performed 
using the MCC algorithm, Kaplan‑Meier survival analysis 

and LASSO Cox regression analysis. Ultimately, five protec‑
tive biomarkers (GATA3, LPAR5, EVI2B, RIAM and CFH) 
were used to establish a risk model with a high prognostic 
capacity for osteosarcoma. The expression levels of the five 
genes were positively associated with multiple types of TIICs 
and immune signatures, and negatively associated with the 
risk scores. Notably, all five genes were associated with the 
NF‑κB signaling pathway, which has been reported to mediate 
immune escape in osteosarcoma (63).

Figure 9. GSEA of the target genes. GSEA of (A) GATA3, (B) LPAR5, (C) EVI2B, (D) RIAM and (E) CFH. GSEA, gene set enrichment analysis; Th, T helper 
cell; NK cell, natural killer cell; CAMs, cell adhesion molecules; BCR, B cell receptor; TCR, T cell receptor; FcγR, Fc γ receptor; TLR, Toll‑like receptor.
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GATA3 belongs to the zinc‑finger transcription factor 
family and is implicated in the pathogenesis of various 
diseases, including cancer (64). A reciprocal feedback regula‑
tory loop between GATA3/G9A/MTA3 and ZEB2/G9A/MTA1 
has recently been identified; the absence of GATA3 in this 
axis contributes to breast cancer invasion and metastasis by 
upregulating the ZEB2 expression levels (65). GATA3 has also 
been reported to suppress osteosarcoma EMT progression by 
targeting the transcription factor Slug (66). The present study 
demonstrated for the first time that GATA3 was involved in the 

immunomodulation of osteosarcoma. Several immune‑related 
pathways were significantly enriched for GATA3, including 
‘complement and coagulation cascades’, ‘Th1 and Th2 cell 
differentiation’ and ‘NK cell mediated cytotoxicity’, suggesting 
that GATA3 may modulate immune responses and affect the 
development of osteosarcoma.

LPAR5, an orphan G protein‑coupled receptor, has 
been reported to encode a subtype of lysophosphatidic 
acid (LPA) receptors, LPA5  (67). Aberrant LPA receptor 
function affects the progression of multiple types of 

Figure 10. Analysis of the correlation between target genes and infiltration levels of immune cells. Correlation between target genes and infiltration levels 
of (A) B cells, (B) CD8 T cells, (C) CD4 T cells, (D) neutrophils and (E) dendritic cells based on the Tumor Immune Estimation Resource analysis. *P<0.05, 
**P<0.01 and ***P<0.001. Cor, Spearman's R value.
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cancer including ovarian, bladder, breast and pancreatic 
cancer (68). However, the role of LPAR5 in osteosarcoma is 
controversial. It has been reported that LPAR5 may act as a 
negative regulator of malignant properties in osteosarcoma 
by inhibiting matrix metalloproteinase‑2 activation, thereby 
suppressing cell migration  (69). LPA signaling via LPA5 
has also been demonstrated to decrease cell migration and 
invasion in osteosarcoma and fibrosarcoma cells (70). By 
contrast, Minami et al (71) have revealed that the inhibition 
of LPA5 using an antagonist or RNA interference decreased 
the motility of osteosarcoma MG‑63 cells. In the present 
study, LPAR5 was identified to be a favorable predictor for 
the clinical outcomes of patients with osteosarcoma and was 
significantly correlated with the levels of multiple types of 
TIICs and immune responses.

Although there are limited reports on the biological 
roles of EVI2B, the gene has been demonstrated to serve an 
essential role in the maintenance of normal physiological 
conditions (72). Using bioinformatics analyses based on the 
osteosarcoma cohorts, EVI2B was revealed to be involved 
in antigen processing and presentation, B  cell receptor 

signaling pathways and CAMs in the present study. Notably, 
the transmembrane protein encoded by EVI2B has been 
reported to be highly expressed in various types of immune 
cells, including B cells, T cells, monocytes and NK cells (73), 
and the results of the present study demonstrated a positive 
correlation between EVI2B and the infiltration levels of 
multiple TIICs.

RIAM is localized in the cytosol and is recruited to sites 
of actin dynamics upon activation  (74). As a downstream 
effector of a range of inside‑out signaling pathways, RIAM 
has been implicated in various functions of innate and adap‑
tive immunity. A previous study has demonstrated that RIAM 
interacts with Rap1, resulting in the activation of αMβ2 integrin, 
enhancing neutrophil‑platelet interactions in the production 
of neutrophil extracellular pathogen traps and promoting 
pathogen clearance through complement‑mediated phagocy‑
tosis and ROS production (75). Additionally, RIAM is essential 
for the activation of NK cell cytotoxicity (76). In agreement 
with previous studies, the results of the present study demon‑
strated that RIAM participated in various immunoregulatory 
processes in osteosarcoma.

Table II. Correlation analysis between target genes and immune signatures in Gene Expression Profiling Interactive Analysis. 

	 Spearman's R value
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Immune cells	 Markers	 GATA3	 LPAR5	 EVI2B	 RIAM	 CFH

B cell	 CD19	 0.32a	 0.51a	 0.54a	 0.51a	 0.36a

	 CD79A	 0.38a	 0.34a	 0.43a	 0.35a	 0.16a

General T cell	 CD3D	 0.47a	 0.58a	 0.75a	 0.58a	 0.29a

	 CD3E	 0.49a	 0.57a	 0.74a	 0.56a	 0.31a

	 CD2	 0.46a	 0.55a	 0.75a	 0.57a	 0.31a

CD8 T cell	 CD8A	 0.50a	 0.55a	 0.66a	 0.52a	 0.30a

	 CD8B	 0.43a	 0.51a	 0.65a	 0.51a	 0.25a

Th1	 TBX21	 0.46a	 0.50a	 0.69a	 0.56a	 0.28a

	 STAT4	 0.43a	 0.57a	 0.72a	 0.62a	 0.40a

	 IFNG	 0.40a	 0.40a	 0.56a	 0.43a	 0.19a

	 TNF	 0.28a	 0.37a	 0.44a	 0.36a	 0.14a

Th2	 LAMP3	 0.45a	 0.48a	 0.58a	 0.44a	 0.33a

	 CXCR6	 0.44a	 0.54a	 0.72a	 0.56a	 0.31a

	 IL13	 0.08	 0.02	 0.12a	 0.05	 0.01
NK cell	 KIR2DL1	 0.28a	 0.23a	 0.38a	 0.34a	 0.15a

	 KIR2DL3	 0.27a	 0.32a	 0.45a	 0.44a	 0.20a

	 KIR2DL4	 0.24a	 0.43a	 0.55a	 0.55a	 0.22a

	 KIR3DL1	 0.26a	 0.27a	 0.43a	 0.43a	 0.22a

Neutrophil	 CD11B	 0.31a	 0.78a	 0.86a	 0.79a	 0.40a

	 CASP5	 0.29a	 0.60a	 0.63a	 0.58a	 0.29a

Dendritic cell	 HLA‑DQB1	 0.37a	 0.46a	 0.61a	 0.40a	 0.31a

	 HLA‑DRA	 0.40a	 0.67a	 0.84a	 0.60a	 0.33a

	 BDCA‑1	 0.21a	 0.21a	 0.45a	 0.28a	 0.17a

	 BDCA‑4	 0.11	 0.11	 0.16a	 0.29a	 0.39a

	 CD11c	 0.41a	 0.46a	 0.70a	 0.41a	 0.21a

aP<0.05. Th, T helper cell; NK cell, natural killer cell.
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Figure 11. Clinical validation of tumor‑infiltrating immune cells and target genes in clinical osteosarcoma tissues with and without metastasis. (A) Representative images and 
(B) statistical analyses of immunohistochemical staining for CD56, CD22, CD86, CD163, CD11B, GATA3, LPAR5, EVI2B, RIAM and CFH. Magnification, x200. *P<0.05. 

Table III. Quantitative results of immunohistochemical analysis in metastatic and non‑metastatic osteosarcoma specimens.

	 Expression level
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Marker	 Tissue	 Low	 Medium	 High	 Median score

CD56	 Metastatic	 11	 3	 2	 2
	 Non‑metastatic	   1	 4	 13	 5
CD22	 Metastatic	 10	 2	 4	 2
	 Non‑metastatic	   2	 1	 15	 5
CD86	 Metastatic	 12	 2	 2	 2
	 Non‑metastatic	   3	 2	 13	 5
CD163	 Metastatic	   3	 1	 12	 5
	 Non‑metastatic	 15	 1	 2	 2
CD11B	 Metastatic	 10	 5	 1	 2
	 Non‑metastatic	   2	 5	 11	 5
GATA3	 Metastatic	 13	 1	 2	 2
	 Non‑metastatic	   1	 1	 16	 5
LPAR5	 Metastatic	 10	 3	 3	 2
	 Non‑metastatic	   3	 2	 13	 5
EVI2B	 Metastatic	 14	 2	 0	 1
	 Non‑metastatic	   3	 3	 12	 5
RIAM	 Metastatic	 11	 3	 2	 2
	 Non‑metastatic	   3	 2	 13	 5
CFH	 Metastatic	 11	 4	 1	 2
	 Non‑metastatic	   1	 2	 15	 5
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As a major soluble inhibitor of the complement system, 
CFH can be hijacked by cancer cells and pathogens to escape 
complement‑mediated attack  (77). However, other studies 
have challenged this paradigm, revealing that CFH may serve 
anticancer roles in specific types of cancer by dampening 
cancer‑related inflammation (78,79). In the present study, CFH 
was identified for the first time to serve a tumor‑suppressive 
rather than an oncogenic role in osteosarcoma. Notably, 
a significant association was observed between CFH and 
various KEGG pathways, including the ‘renin‑angiotensin 
system’, ‘NF‑κB signaling pathway’, ‘TLR signaling pathway’, 
‘complement and coagulation cascades’ and ‘apoptosis’. These 
results are in agreement with previous studies reporting that 
CFH may inhibit excessive tumor angiogenesis and may be 
actively internalized by apoptotic cells (80,81).

The present study had certain limitations that should be 
taken into consideration when interpreting the results. First, 
the number of patients enrolled was relatively small owing to 
the low incidence of osteosarcoma. Secondly, detailed clinical 
information, such as chemotherapeutic regimens and tumor 
stages was lacking, which limited the in‑depth subgroup 
analyses. Finally, further experimental evidence is required to 
verify the molecular functions of the biomarkers in osteosar‑
coma, which will be the focus of our future studies.

In conclusion, the results of the present study revealed 
distinct TME landscapes between metastatic and non‑metastatic 
osteosarcoma patients based on data obtained from TCGA. In 
addition, five protective biomarkers, including GATA3, LPAR5, 
EVI2B, RIAM and CFH, were identified, which exhibited high 
predictive accuracy for the prognosis of osteosarcoma.
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