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Abstract

Recent human adaptations have shaped population differentiation in genomic regions con-

taining putative functional variants, mostly located in predicted regulatory elements. How-

ever, their actual functionalities and the underlying mechanism of recent adaptation remain

poorly understood. In the current study, regions of genes and repeats were investigated for

functionality depending on the degree of population differentiation, FST or ΔDAF (a differ-

ence in derived allele frequency). The high FST in the 5´ or 3´ untranslated regions (UTRs),

in particular, confirmed that population differences arose mainly from differences in regula-

tion. Expression quantitative trait loci (eQTL) analyses using lymphoblastoid cell lines indi-

cated that the majority of the highly population-specific regions represented cis- and/or

trans-eQTL. However, groups having the highest ΔDAFs did not necessarily have higher

proportions of eQTL variants; in these groups, the patterns were complex, indicating recent

intricate adaptations. The results indicated that East Asian (EAS) and European populations

(EUR) experienced mutual selection pressures. The mean derived allele frequency of the

high ΔDAF groups suggested that EAS and EUR underwent strong adaptation; however,

the African population in Africa (AFR) experienced slight, yet broad, adaptation. The DAF

distributions of variants in the gene regions showed clear selective pressure in each popula-

tion, which implies the existence of more recent regulatory adaptations in cells other than

lymphoblastoid cell lines. In-depth analysis of population-differentiated regions indicated

that the coding gene, RNF135, represented a trans-regulation hotspot via cis-regulation by

the population-specific variants in the region of selective sweep. Together, the results pro-

vide strong evidence of actual intricate adaptation of human populations via regulatory

manipulation.

Introduction

Recent large-scale human genome studies have revealed that all human beings share an almost

identical genome [1–4]; however, minor differences among human populations exist as a

result of genetic drift and adaptation. Using the genotyping data from the HapMap consor-

tium [5], genome-wide FST estimates and a composite method involving FST have been used to

identify genes under selection pressure [6–8]. It was found that genic regions harbored higher

proportions of highly differentiated variants than non-genic regions, indicating selection
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pressure [6, 9]. Recent studies indicated that classic selective sweeps were rare in the human

genome [10, 11]; however, analysis of the 1000 Genomes Project Data identified many genes

under positive selection using the composite method [7, 12]. More recent efforts to identify

classic selective sweeps were successful in ascertaining a considerable number of genes under

hard selective sweeps [13, 14], using differences in derived allele frequencies (ΔDAF) [15] and

two methods that were robust against background selection [16, 17].

A region exhibiting a selective sweep suggests the presence of a local functional variant.

This association has been demonstrated via the relationship between gene expression levels

and variants showing selection signals [18]. Based on the composite method for the genome-

wide scan, the identified regions under selection pressure were suggested to be likely involved

in the regulation of gene expression, with a small number of nonsynonymous variants and

many variants in the putative regulatory regions [12]. A more recent study evaluated the puta-

tive functionality of the population-differentiated regions based on ΔDAF and found that

these regions were enriched with genic sites, especially transcription factor-binding sites [13].

Despite the strong evidence that the population-differentiated regions under positive selection

are regulatory elements, these recent studies failed to find evidence of relationships between

the identified regions and eQTLs, probably because the eQTL analyses were underpowered

due to tissue specificity [12].

For the population-specific variants, separate eQTL analyses of each population would fail

to identify eQTLs as the derived alleles of target variants are rare in one population and almost

fixed in another. Therefore, it is important to perform eQTL analyses in combined popula-

tions, assuming that the functional variants affect both populations equally. Accordingly, the

patterns in population differences and their functionalities were reinvestigated using whole-

genome sequencing data from the 1000 Genomes Project [4]. Two population datasets of Afri-

can descent in Africa (AFR) and of European descent (EUR) were chosen for the availability of

their RNA-sequencing data [19]. These two datasets were examined intensively, and a popula-

tion of East Asian descent (EAS) was used for comparison. Among the various available esti-

mators of genetic population differences [20–23], the traditional FST statistic and ΔDAF were

respectively chosen in the current study to examine the detailed, region-based population dif-

ferences at a genome-wide scale and to understand their relationship with functional variants.

Materials and Methods

Genome-wide FST estimations based on sequencing data from the 1000

Genomes Project

Sequencing data from the 1000 Genomes Project were used for estimation of FST. Among vari-

ous populations, three populations of African ancestry (AFR), East Asian ancestry (EAS), and

European ancestry (EUR) were selected for analyses. In AFR, only Africans residing in Africa

were included in the current study; therefore, the populations of African ancestry in the South-

west US (ASW) and the African Caribbeans in Barbados (ACB) were excluded. The final num-

bers were 504 for AFR, 504 for EAS, and 503 for EUR. Whole-genome sequencing data for 22

autosomal chromosomes were examined in the current study.

The Hudson estimator of FST [24] with bias corrections was used for genome-wide FST esti-

mations as suggested in the previous study [20]; the ratios of averages were applied to the FST

estimates of a certain genomic range as recommended [20]. Multi-allele variants were divided

into multiple variants depending on each allele. For the genome-wide estimates, two different

ranges of 1,000 bp and 10,000 bp were used to compare distributions. The start site and the

end site were based on the multiples of 1,000 bp or 10,000 bp, and the remnants were excluded

from the estimations. Therefore, as shown in Table 1, the number of total variants of the
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genome-wide estimation based on the 10,000 bp range was smaller than the total number of

variants (81,451,971). When examining the derived allele frequencies (DAFs), ancestral alleles

that were determined only when all methods provided concordant results were applied from a

previous study [25].

The gene-based FST analyses were performed in two ways: 1) analyses of each gene and 2)

whole genome-wide analyses as shown in Table 1. For genome-wide analyses, each region of the

5´ UTR, coding sequences (CDS), 3´ UTR, noncoding gene regions, and introns was examined

separately based on ENSEMBL perl API [26]. Additional regions near the gene were also exam-

ined: from −5,000 bp to the gene start site, from −1,000 bp to the gene start site, from the gene

end site to +1,000 bp, and from the gene end site to +5,000 bp. When there were several tran-

scripts or genes in the same region, priorities were assigned depending on the following order:

1) CDS; 2) 5´ UTR; 3) 3´ UTR; 4) noncoding gene regions; 5) intron; 6) the region between

-1,000 bp and the gene start site; 7) the region between +1,000 bp and the gene end site; 8) the

region between -5,000 bp and the gene start site; and 9) the region between +5,000 bp and the

gene end site. For example, if a genomic region contained an intron of one gene and a 5´ UTR

of another gene, the genomic region was considered a 5´ UTR. For repeats and non-repeats, the

repeat regions were defined as genomic regions containing at least one repeat sequence, and

non-repeat regions as the remainder of genomic sequences containing no repeat sequences.

Simulations

Simulations were performed based on the forward simulations of the Wright-Fisher model, as

reported in previous studies [25]. To examine the differences between the divided populations,

the randomly mating original population, with a population size of N, was divided into two

populations, each of size N/2. To perform division at the equilibrium state, the original popula-

tion was randomly mated for 8N generations before division. After division, no migration was

assumed and each randomly mating population gradually increased in size from N/2 to N, at a

rate of one individual per generation, for N/2 generations. After the restoration of the popula-

tion size to that of the original population, each population underwent random mating for 4N

generations. For the simulations, constant mutation and recombination rates were assumed as

Table 1. Summary of FST estimates (ratios of averages) of the total target regions in the human genome.

Index Coverage # Variant FST_AFR vs EUR FST_AFR vs EAS FST_EAS vs EUR

genome-wide - 81445891 0.130 0.155 0.098

repeat - 43098205 0.130 0.155 0.098

non-repeat - 38355766 0.131 0.156 0.099

CDS 31227897 935636 0.130 0.156 0.099

5’UTR 9738399 309216 0.133 0.170 0.104

3’UTR 40641568 1188614 0.134 0.156 0.100

non-coding 45086573 1443311 0.133 0.159 0.100

intron 1212597386 36125625 0.132 0.157 0.100

-1000 31163028 929196 0.129 0.156 0.097

1000 32474063 980814 0.130 0.155 0.096

-5000 94904972 2824410 0.129 0.156 0.098

5000 166684490 2511340 0.130 0.155 0.098

remainder 1215651307 34205809 0.129 0.153 0.097

gene region 1339291823 40002402 0.132 0.157 0.100

non-genic region 1540877860 41451569 0.129 0.154 0.097

sum(shaded) 2880169683 81453971 - - -

doi:10.1371/journal.pone.0165870.t001

Intricate Human Adaptation

PLOS ONE | DOI:10.1371/journal.pone.0165870 December 19, 2016 3 / 19



10−7/bp per generation. When the population size was 200, a 2,000,000 bp sequence was simu-

lated 10 times in parallel; however, when the population size was 400, a 1,000,000 bp sequence

was simulated 20 times in parallel, due to computational limitations.

eQTL analyses

RNA sequencing data of lymphoblastoid cell lines from a previous study [19] were used for the

current analyses. Data were obtained from a total of 465 individuals comprising Utah residents

with Northern and Western European ancestry (CEU), Toscani in Italy (TSI), British in

England and Scotland (GBR), Finnish in Finland (FIN), and Yoruba in Ibadan, Nigeria (YRI).

The final data set of RNA sequencing retained 462 individuals after quantification and normal-

ization [19]. By excluding individuals not found in the Phase 3 sequencing data of the 1000

Genomes Project, eQTL analyses in the current study were conducted for 445 individuals. The

previous study divided the samples into Europeans (a total of 373 individuals) and YRI (a total

of 89 individuals) to provide two different eQTL results [19]; however, to obtain population-

wide functional variants, the current study analyzed all of the samples collectively, thereby pro-

viding new results with improved power. In accordance with the previous study [19], variants

with a minor allele frequency higher than 0.05 were analyzed.

Fig 1. Distribution of genome-wide FST estimates: (a) AFR vs EUR for the 10,000 bp range; (b) AFR vs EAS for the 10,000 bp range; (c) EAS vs EUR

for the 10,000 bp range; (d) AFR vs EUR for the 1,000 bp range; (e) AFR vs EAS for the 1,000 bp range; (f) EAS vs EUR for the 1,000 bp range.

doi:10.1371/journal.pone.0165870.g001
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For eQTL analyses, Matrix eQTL, an R package, was used as in previous studies [19, 27].

Since population-specific expression might exist regardless of the individual genotype, the lin-

ear model with a covariate was used to adjust the inherent population specificity [27]. For the

regions with the highest FST estimates, the following four different quantitative traits were ana-

lyzed for their relation to genotypes: gene expression, exon expression, repeat expression, and

transcription ratios; however, gene expression analyses were conducted for ΔDAF variants,

considering the priority and similarity between results for different quantitative traits. For the

definition of cis- and trans-eQTL, the default setting of the program [27] was applied, in which

cis-eQTL was taken as a significant correlation between a variant and a transcript located

within a 106 bp range of the variant position. The cut-off p-value of the trans-eQTL was 0.01,

and the cut-off p-value of the cis-eQTL was 0.05. The cut-off for the false discovery rate was

0.05 in the current study.

Results

Genome-wide FST estimation

To identify population-specific regions within the genome, the genome-wide FST estimates

were examined in three populations: AFR, EUR, and EAS. Based on a previous study [20],

which enabled the estimation of FST for a certain range, including rare variants, the current

study examined the FST estimates of two different ranges: 10,000 bp and 1,000 bp. As shown in

Fig 1, the distribution of FST estimates differed depending on the range examined. As the esti-

mating range decreased, the distribution of FST estimates became more dispersed, as smaller

numbers of variants in the regions resulted in more diverse FST estimates. The bias correction

term suggested by the previous study [20] resulted in many estimates with negative values (Fig

1), especially for regions with only small numbers of rare variants.

More variants existed in AFR, and the FST distributions for AFR showed higher degrees of

freedom if considered as chi-squared distributions [22]. For the FST between AFR and EUR,

the population-specific regions of the highest 1% of FST estimates contained many genes

(1,220 and 5,730 for the 10,000 bp and 1,000 bp, respectively). However, the number of genes

in these regions with the highest 1% of the total FST estimates was less than the number of

genes in the least population-specific region (bottom 1% of total FST estimates; 1,359 and

11,574 for 10,000 bp and 1,000 bp regions, respectively). These results indicate that genes are

preferentially located in the least population-specific regions.

Simulation results (S1 Fig) showed distributions similar to those shown in Fig 1, which

appear similar to a chi-squared distribution as previously predicted [22]. The simulations

reflected the original population and no sampling of the population was performed; therefore,

bias corrections were omitted, providing no FST estimates below zero. As seen in Fig 1, the FST

distribution was more dispersed as the estimating range became smaller. For the same muta-

tion and recombination rates of 10−7, the mean of the total FST estimates decreased with

increasing population size, resulting in slower population differentiation. The means of the

FST estimates were 0.29 and 0.25 for population sizes of 200 and 400, respectively, when the

estimating range was 10,000 bp. Similarly, the means were 0.14 and 0.13, respectively, when

the range was 1,000. As expected, as the mutation and recombination rates increased, the FST

estimates increased rapidly under the same conditions. The exact relationship between popula-

tion size and FST estimates requires further studies.

Considering the importance and variability of structural variants in the genome, the FST

between AFR and EUR was estimated for each structural variant (a total of 38,336) including

copy number variants, large deletions or insertions, and inversions as provided by the 1000

Genomes Project. As expected, most structural variants were rare in both populations, and the
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FST distribution skewed toward zero. Many structural variants were large enough to involve

genes and were therefore likely to be deleterious [28], preventing an increase in their frequency

in both populations. The top 1% of FST structural variants were copy number deletions, which

represented the most common structural variant. The total FST estimate of all structural vari-

ants was 0.094. The maximum FST between AFR and EUR in the current study was 0.508 for a

copy number deletion in chromosome 2, harboring ANKRD36, followed by 0.494 for a copy

number deletion in chromosome 15 harboring MYO9A, and 0.472 for a copy number deletion

in chromosome 4 harboring PDLIM3.

FST estimates of genes and repeats

FST was estimated for each gene in the human genome registered in ENSEMBL [26]. As shown

in S2 Fig, the distribution of FST estimates for noncoding genes was more dispersed than that

for the coding genes, with a longer tail, because the sizes of noncoding genes were more diverse

with many genes smaller than coding genes. Therefore, the highest FST estimates of total genes

mostly represented noncoding genes rather than coding genes. The highest FST estimates of

noncoding genes were derived from only one or two population-specific variants within the

gene region. For the regions of coding and noncoding genes with the highest FST estimates, the

population with the higher allele frequency of the population-specific variants (mostly AFR)

usually represented more variants with common frequencies in the extended regions (±5,000

bp of the start and the end sites of the target gene) as shown in S3 Fig. The extended regions

also exhibited strong linkage disequilibrium (LD) through D’, and some regions showed strong

LD through r2 between many variants in the target region (S4 Fig). The data for EAS behaved

in accordance to the population with which it shared similarity depending on the population-

specific allele examined. DAFs were often almost fixed in the EUR and EAS populations (S5

Fig), similar to a previous study [9].

Eleven of the top 1% of coding genes (a total of 181) were concordant with the gene list (a

total of 55) of a previous study [6] based on the FST estimate of each genotyped variant, which

included SLC24A5, associated with skin pigmentation, and EXOC5 and RNF135, the 4th and

5th topmost genes, respectively. Many coding genes with the highest FST estimates were much

larger than the topmost noncoding genes, and therefore included numerous population-spe-

cific variants within the gene region. For the relatively large genes, as shown in S3B Fig, many

population-specific variants showed similar or identical frequencies in the gene region, and

these variants were also in strong LD through r2 (S4B Fig), suggesting strong selection

pressure.

When the overall genome-wide FST estimates were examined, the gene regions showed

higher FST estimates than the non-genic regions (Table 1), consistent with previous findings

[6, 9]. Among the various gene components, the highest FST estimate for AFR vs. EUR was

obtained for the 3´ UTRs and the highest FST estimates for AFR vs. EAS and EAS vs. EUR

were obtained for the 5´ UTRs. In addition, the FST estimates of the CDS were relatively

smaller than those for the total gene regions. These results indicated that the population differ-

ences were mostly based on regulation of gene expression rather than on the gene products

themselves. However, the regions between ±1,000 bp (or ±5,000 bp) and the gene start (or

end) sites showed lower FST estimates than the gene regions themselves. It is noteworthy that

the FST estimates for EAS were extraordinarily high for the 5´ UTRs, suggesting that the 5´

UTRs of many coding genes were highly differentiated in EAS.

Regions containing repeats undergo evolutionary processes different from those of non-

repeat regions. Variants within repeats have been found to experience more rapid evolutionary

change than those in non-repeat regions [29, 30]; therefore, FST estimates of repeat regions
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might be higher than those of non-repeat regions, if the variants are neutral. However, as

shown in Table 1, the total repeat region, throughout the whole genome, showed a slightly

smaller FST estimate of 0.130 compared to the value of 0.131 obtained for the total non-repeat

region. The same trend was observed for FST estimates for other populations, as shown in

Table 1. The distribution of FST estimates also showed a slightly longer tail for the non-repeat

regions, although the longer tail resulted from a single high FST estimate of a specific non-

repeat region. The regions of repeats and non-repeats with the highest FST estimates showed

allele frequency distributions, LD plots, and DAF distributions similar to those of genes with

the highest FST estimates.

eQTL analyses of population-specific genes and variants

The functionalities of regions with the highest and lowest FST estimates were examined using

RNA sequencing data, generated in a previous study [19], for lymphoblastoid cell lines derived

from individuals participating in the 1000 Genomes Project. The regions with the highest FST

estimates for four genomic categories, i.e., repeats, non-repeats, noncoding genes, and coding

genes, were examined. To examine whether the highest FST regions were likely eQTLs, the pro-

portions of regions with at least one eQTL, defined by a false discovery rate (FDR) < 0.05,

were examined. For coding and noncoding genes, the variants were analyzed in the regions

with the highest and lowest 1% of the FST estimates; for repeat and non-repeat regions, the var-

iants were analyzed in the regions with the highest and lowest 100 FST estimates.

The highest FST regions contained overwhelming proportions of eQTL regions compared

to the lowest FST regions (S6 Fig), most of which contained only rare variants. Because the

eQTL analyses were conducted for variants with minor allele frequencies > 0.05, most of the

regions with the lowest FST did not consist of variants to be analyzed, as indicated previously

[13]. Even when only the regions with the lowest FST that had variants for eQTL analyses were

included, the trend that the regions with the highest FST were still more likely to consist of

eQTLs did not change, except for a few repeat cis-eQTLs. Repeats had trends that were similar

to those of non-repeats, and coding genes had trends that were similar to those of noncoding

genes, with a higher proportion of exon cis-eQTLs than exon trans-eQTLs. Accepting the con-

cerns described previously [13], the regions with lengths that were matched to the genes with

the highest 1% of FST genes were examined as shown in Fig 2. The regions with the highest FST

clearly were more likely to be eQTL when compared to the regions with matched lengths,

Fig 2. Proportions of regions having eQTLs with FDR < 0.05 among the total regions analyzed.

doi:10.1371/journal.pone.0165870.g002
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showing significant p-values through simple chi-squared tests (most p-values < 0.001), except

for the proportions of repeat cis-eQTLs. These results indicated that the genes with the top FST

likely included eQTLs.

For the top ten regions, many population-specific variants were classified as eQTL with

FDR< 0.05 (S1 Table); many were also both cis- and trans-eQTLs. Notably, population-spe-

cific variants in repeats or non-repeats with the highest Fst estimates tended to regulate repeat

expression rather than gene expression, and noncoding and coding genes tended to regulate

gene rather than repeat expression. Several population-specific variants in repeats and non-

repeats were found to be eQTL hotspots, regulating many genes simultaneously (S1 Table).

Several population-specific variants in noncoding genes were also eQTL hotspots, and most of

the population-specific coding genes were strong cis- and trans-eQTLs (S1 Table). Especially,

most population-specific variants with similar allele frequencies in these genes were also iden-

tified as eQTLs, which substantially increased the number of eQTLs with FDR <0.05. The evi-

dence of strong population-specific regulator variants suggested the importance of these genes

in determining the phenotypic differences between AFR and EUR.

Among the population-specific genes that were also eQTLs, one coding gene (RNF135) and

one noncoding gene (RN7SL138P) were located close to each other on the NF1 microdeletion

region of chromosome 17 [31]. The extended region from –10,000 bp from the start site of

RN7SL138P to +10,000 bp from the end site of RNF135 was therefore examined in depth (Fig

3). Consistent with the findings for allele frequency distributions of the extended regions of

each gene, more variants with high frequencies were observed in AFR than in EUR (Fig 3A),

possibly due to the reference genome. The entire region was in strong LD through both D’ and

r2, as shown in Fig 3B; however, the LD was strongest in EAS and stronger in EUR than in

AFR. As shown in Fig 3C, most population-specific variants in this region regulated the

expression of RNF135, indicating that the strong cis-eQTL resulted from this regulation. Fur-

thermore, as shown in Fig 3D, most variants in strong LD with each other in the region were

also strong trans-regulators. Therefore, in this region, the gene product of RNF135 most likely

acted as a trans-regulator to control the expression of many other genes at distant loci via a cis

activation. To summarize, one or several population-specific variants in this region regulate

the expression of RNF135, and, in turn, the gene product of RNF135 regulates other genes at

distant loci.

One variant (rs113617171) in the region showed an extraordinarily large number of trans-

eQTLs (Fig 3C); however, the number of eQTLs with FDR<0.05 was not high compared with

other variants. Most gene enrichment analyses using gene ontology failed to produce a mean-

ingful biological process that was enriched in the gene lists; however, the gene list obtained

from rs113617171 showed significant p-values for the following enriched biological processes

[32, 33]: RNA splicing (1.8 × 10−2), chromatin organization (2.3 × 10−4), organelle organiza-

tion (6.14 × 10−4), cellular component organization (2.48 × 10−2), protein metabolic process

(5.89 × 10−3), metabolic process (9.66 × 10−8), and primary metabolic process (3.04 × 10−5), in

the order of fold enrichment. The biological processes that showed fewer numbers of expected

genes were as follows: developmental process (3.82 × 10−2), system development (2.98 × 10−4),

ectoderm development (1.42 × 10−2), and nervous system development (5.27 × 10−5). The Bon-

ferroni correction was applied to all of the results.

As shown in Fig 3E, most of the high-frequency alleles in AFR shown in Fig 3A were ances-

tral alleles, and many derived alleles were almost fixed in EAS and EUR; both EAS and EUR

contained small numbers of common variants. This result suggests a recent selective sweep in

the region of chromosome 17 harboring RN7SL138P and RNF135, which was also a strong cis-

and trans-regulator as described above. As previously suggested [18], a bottleneck and expo-

sure to new environment could explain the reason why EAS and EUR were primarily affected

Intricate Human Adaptation
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Fig 3. Extended regions from the population-specific regions between AFR and EUR on chromosome 17: (a) Allele frequency

distribution; (b) linkage disequilibrium; (c) expression QTL; (d) quantile-quantile plot of cis- and trans-eQTL; (e) derived allele

frequency distribution.

doi:10.1371/journal.pone.0165870.g003
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by the selective sweep representing extreme population differences in the region; however, the

allele frequency distribution and strong LD indicated the possibility that AFR had also experi-

enced selection pressure. A recent study found that a missense variant (rs111902263) in

RNF135 was associated with autism [34]; however, although the accuracy problem of detecting

ancestral alleles exists, the derived allele frequencies of the variant were very low (0.002, 0.027,

and 0 for AFR, EUR, and EAS, respectively), indicating this variant might not be the driver.

Relationship between ΔDAF and eQTLs

The FST estimates of certain regions were dependent on the length of the estimated regions

based on simulation studies (S1 Fig); therefore, the attempts to determine an overall connec-

tion between eQTLs and population differentiation based on gene-based FST estimates results

in a false relationship due to the intrinsic dependency of eQTLs on the lengths. However, sin-

gle-variant analyses could provide no such correlation regarding the impact of functional vari-

ants on population differentiation. The FST estimate of each single variant could be applicable;

however, for simplicity, ΔDAF was examined in the current study, especially for the ΔDAFs of

all variants in coding and noncoding genes. As variants with minor allele frequencies higher

than 0.05 in the data were included in the eQTL analyses, the ΔDAFs of these variants were

examined. In total, 2,895,539 variants in coding genes and 1,071,250 variants in noncoding

genes were included.

To examine the overall relationship between population differentiation and functionality,

the variants were ordered and grouped based on ΔDAF, with each group consisting of 20,000

or 10,000 variants depending on the decreasing order of ΔDAF for coding or noncoding genes

respectively. Therefore, there were 145 groups for 2,895,539 coding variants and 107 groups

for 1,071,250 noncoding variants. The proportions of variants having eQTLs with FDR< 0.05

in each group were plotted, as shown in Fig 4. Assuming no influence of the eQTLs on popula-

tion differentiation, random yet constant proportions were expected as shown in Fig 4A and

4C for cis-eQTLs, although a slight tendency to decrease was observed, especially in coding

genes in this study. As shown in Fig 4B and 4D for trans-eQTLs, high proportions in the

groups with high ΔDAF between AFR and EUR (or EAS) indicated selection pressure acting

on a specific population, and high proportions in the groups with low ΔDAF, specifically

between EAS and EUR, indicated global selection pressure on both populations. The patterns

of eQTL proportions grouped depending on the ΔDAF between AFR and EUR were similar to

those between AFR and EAS and different from those between EAS and EUR. The patterns

were very similar between coding and noncoding genes, but differed between cis-eQTLs and

trans-eQTLs. The spikes in Fig 4 were usually derived from one region containing many vari-

ants with similar DAFs, possibly due to selection pressures on broad regions.

The mean DAFs of functional variants depending on the ΔDAF groups showed larger mean

DAFs in EAS and EUR among the most highly differentiated groups in Figs 5 and S7, indicating

strong recent adaptations in these two populations. The same trends were observed in all plots.

The mean DAFs of cis-eQTLs showed patterns similar to those of all variants, in which the differ-

ences between population groups reduced as ΔDAF decreased for cis-eQTLs. For the trans-

eQTLs in Fig 4, the groups with high, yet not the highest, ΔDAF between AFR and EUR (or EAS)

showed high proportions, indicating either more recent or weaker adaptation. Fig 5 showed a

larger mean DAF for AFR than for EAS and EUR in the groups with high, yet not the highest,

ΔDAF, suggesting that such more recent or slower adaptation occurred specifically in AFR.

Notably, in Fig 4, the groups with the lowest ΔDAF between EAS and EUR showed very

high proportions of trans-eQTLs, indicating common selective pressures in both EAS and

EUR. The selective pressures were likely negative rather than positive because the mean DAF
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of EAS and EUR was low for the corresponding low ΔDAF groups between EAS and EUR (Fig

5C and 5F). Here, because the mean DAF of AFR was higher than the overall DAFs as well as

the mean DAF of both EAS and EUR, the negative selection of the corresponding functional

variants in EAS and EUR looks slightly positive or at least neutral in AFR. The slightly higher

trans-eQTL proportions shown in Fig 4B and 4D in groups with the low, yet not the lowest,

ΔDAF between AFR and EUR indicated common negative selective pressures on trans-eQTLs

strongly in AFR and less strongly in EUR as shown in Fig 5A and 5D.

For neutral variants, the distribution of DAFs exhibited a very high density near zero, fol-

lowed by rapid continuous decrement. Notably, the DAFs for all frequency variants in the

Fig 4. Proportions of eQTLs in groups with decreasing ΔDAF: (a) cis-eQTLs in coding genes; (b) trans-eQTLs in coding genes; (c)

cis-eQTLs in noncoding genes; (d) trans-eQTLs in noncoding genes.

doi:10.1371/journal.pone.0165870.g004
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gene regions showed unusual distributions (Figs 6 and S8). The DAF distributions of all three

populations showed a slight bump near one, indicating the existence of functional variants

under selective pressure close to fixation. The phenomena can be observed with false identifi-

cations of ancestral alleles [25]; however, because the ancestral identifications based on the

concordance of all three methods did not produce the phenomena in the previous study, the

DAF distributions for gene regions clearly presented the existence of functional variants close

to fixation. All three populations also showed a bump at specific points prior to 0.01 that dif-

fered depending on population. AFR showed the most distinctive peak, indicating many vari-

ants under ongoing selection pressure, whereas EAS showed a gentle slope almost buried at

the starting peak. Overall, for all populations, the observations indicated that variants under

selection pressure existed in gene regions, some of which were close to fixation, and others

under very recent or weak selective pressure.

Discussion

The unusual patterns of allele frequencies and strong LD of the topmost differentiated regions

supported the existence of selective sweeps, as has been recently suggested [12, 14]. More

importantly, the intricate relationship between the grouped ΔDAF and eQTLs conclusively

indicated the complexities of recent human adaptation, mainly via regulatory manipulations.

Fig 5. Mean DAFs in groups with decreasing ΔDAF: (a) AFR vs EUR: coding genes; (b) AFR vs EAS: coding genes; (c) EAS vs EUR: coding genes; (d)

AFR vs EUR: noncoding genes; (e) AFR vs EAS: noncoding genes; (f) EAS vs EUR: noncoding genes.

doi:10.1371/journal.pone.0165870.g005
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When the top 1% of coding genes in the current study were compared with the genes located

in the top 1% of regions under classic selective sweeps in a previous study [14], a few genes

common to both lists were identified. The previous study did not highlight RNF135 on chro-

mosome 17 as a region of selective sweep, although this gene was included in the gene list

under strong selection pressure in another study by the same group [6]. Additionally, no genes

of ancient selective sweeps from another recent study [35] were found in the list of the highest

1% of coding genes in the current study, indicating that the selection pressure on the highly

differentiated genes was possibly quite recent.

The method based on long-range haplotype did not find this RNF135 region under selec-

tion pressure [36]. However, 22 genes under positive selection discovered using the composite

method were coincident with the highest 1% of coding genes [12]. Among the top ten coding

genes in the current study, five genes (including RNF135) were also listed in the identified

region using the composite method; however, RNF135 was found to be under selection pres-

sure only in the population from Yoruba in Ibadan, Nigeria (YRI) in this previous study [12],

although stronger selective sweeps occurred in EAS and EUR than in AFR, as shown in Fig 3E.

Only nine population-differentiated regions from the recent study [13] were coincident with

the highest 1% of coding genes, including CTXN2 and ZMYM6, among the top ten coding

Fig 6. Distributions of DAFs of all variants, analyzed variants, cis-eQTLs, and trans-eQTLs in gene regions.

doi:10.1371/journal.pone.0165870.g006
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genes. This discordance again indicated the difficulty in detecting selection pressure [37], and

improvements in identifying regions under selection pressure might be useful to resolve the

remaining problems.

The FST estimator suggested in a previous study [20] showed reliable results in finding the

population-specific regions of the human genome. However, the bias correction terms in the

equation [20] led to unrealistic FST distributions with many negative estimates. Although the

bias term approaches zero as the sample sizes increases, it may be preferable to reconsider the

use of an unbiased FST estimator, especially when the distribution of FST, or small regions, is of

interest. The distributions of FST estimates differed depending on the range examined, when

the simulations were performed assuming genetic drift for neutral regions. As the estimating

range decreased, the smaller numbers of variants in the regions resulted in more diverse FST

estimates and finally more dispersed distribution of FST estimates. Therefore, smaller genes

were observed more frequently than larger genes in the groups with the highest and lowest FST

estimates, and larger genes were mostly observed in the group with mid-range FST estimates.

When the proportions of large genes (> 10,000 bp in size) in FST groups were plotted similarly

to Fig 4, a slight skew towards groups with high FST was observed. Large population-specific

genes under strong selective sweeps would harbor many population-specific variants with sim-

ilar allele frequencies under strong LD, possibly representing overlapping eQTL signals.

There have been concerns on the use of FST regarding their dependency on diversity within

a population, and these concerns have lead to multiple other estimates that are also applicable

to multi-allelic variants [38–41]. The concern was mainly due to the highly mutable and highly

variable sites such as microsatellites. In the current study, the effect of within population diver-

sity might not be critical because the main focus was on nucleotide subsitutions and inser-

tions/deletions. Similarly, the VST statistic, which is applicable to multi-allelic variants [42],

was applied to structural variants [43]. The VST statistic is specialized for structural variants

based on the variance of the log2 ratios in the identification of structural variants [42]. How-

ever, when identifying population-specific structural variants, each population-specific allele

could be of interest as opposed to examining all of the alleles within the multi-allele variants.

Therefore, the current study utilized the traditional FST statistic rather than other statistics.

Furthermore, structural variants exhibited smaller FST estimates than other types of variants,

which suggested that structural variants might not play a crucial role in population-specific

phenotypes.

Regarding the DAF distributions for eQTLs, because the constitution of populations for

eQTL variants involved mostly EUR, the DAF distributions were biased as shown in S8 Fig;

this was also reflected in the DAF distributions of the eQTLs. Regardless of the intrinsic distor-

tions due to confinement, the DAF distributions of eQTLs showed distinctive features com-

pared to the DAF distributions of analyzed variants, as shown in Fig 6. For EAS and EUR, the

DAF distributions of the trans-eQTLs showed clear bumps near one, indicating almost fixed

functional variants. For all populations, the DAF distributions of the cis-eQTLs showed

slightly higher densities for the DAFs of common variants, indicating cis-regulating variants

under selective pressure, which was also coincident with the slight negative correlations

between groups with decreasing ΔDAF and the proportions of cis-eQTLs in Fig 4. In compari-

son with the unusual distribution of all DAFs in gene regions, as shown in Fig 6 and S8 Fig, the

DAF distributions of eQTLs likely indicate the existence of selection pressure on functional

variants other than those underlying the eQTLs of the lymphoblastoid cell lines.

In the current study, the eQTL analyses were based on RNA sequencing of lymphoblastoid

cell lines. The population-specific variants might show different results depending on the tis-

sue examined due to tissue specificity [44]. Recent epigenome analyses have demonstrated that

population differences are not confined to the genome [45], identifying regions wherein
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methylation patterns differed between populations in epidermis samples. It is questionable

whether the differences arose from genetic differences, environment, or inherited methylation

patterns. Further studies could elucidate the exact mechanisms underlying complex traits and

their population differences in consideration of tissue specificity and various omics data.

Differential demographic changes in populations affect the allele frequency distributions,

which also can influence the population differentiation estimates [46]. The influence of the

most recent demography is the largest, and the recent expansions have been observed for

most human populations [4, 47]. Therefore, the demographic influence could be similar in all

studied populations. In addition, population structures exist even in populations in regions

that are within close geographical proximity, which can influence any population-based as-

sociations [48, 49]. The current study employed the regional populations, including only in-

dividuals who had been residing in the region so as to minimize the effects of migration or

population structure. The method of detecting selection pressures based on individuals rather

than populations did not identify the RNF135 region as the region under strong selection pres-

sures, although the method is free from the false positives due to the population structure [48].

Removing these effects of demographic changes and population structure could be a solution,

as provided previously [50].

Beyond genome-wide genotyping [1] and whole-genome sequencing [2], the functionality

of genetic regions or variants has received attention for better understanding the genetic archi-

tecture of complex traits [19]. However, the contribution of rare variants to the manifestation

of complex traits [51–53] makes the identification of rare functional variants and understand-

ing of their underlying mechanisms challenging. Rare variants in one population may occa-

sionally be common in another, and genetic differences between populations may provide

valuable insights into the influence of rare functional variants. Furthermore, the elucidation of

population differences is essential for realizing the promise of precision medicine, which is

aimed at providing customized prevention and treatment to each individual [54].

To establish evidence of the functional roles of population differentiation, genome-wide

FST estimations, ΔDAFs and eQTL analyses of all variants in the gene regions were conducted

in the current study. The suggested FST statistic was useful for examining regions under popula-

tion differentiation, and the eQTL analyses of highly differentiated regions indicated the impor-

tance of regulatory manipulations in population differentiation. To examine the relationship

between functionality and population differentiation, ΔDAFs of whole variants in gene regions

were grouped depending on their ΔDAFs. The analyses of ΔDAF groups showed complicated

patterns of recent human adaptation through gene regulation, including strong adaptation

common to EAS and EUR as well as mild or more recent adaptation in AFR. The current study

provides the first actual evidence of intricate recent human adaptations. Additional articulated

studies would be helpful to identify and understand recent human adaptation.
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