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Restricted mean survival time: Does
covariate adjustment improve
precision in randomized clinical trials?

Theodore Karrison1 and Masha Kocherginsky2

Abstract
Background: Restricted mean survival time is a measure of average survival time up to a specified time point. There
has been an increased interest in using restricted mean survival time to compare treatment arms in randomized clinical
trials because such comparisons do not rely on proportional hazards or other assumptions about the nature of the rela-
tionship between survival curves.
Methods: This article addresses the question of whether covariate adjustment in randomized clinical trials that com-
pare restricted mean survival times improves precision of the estimated treatment effect (difference in restricted mean
survival times between treatment arms). Although precision generally increases in linear models when prognostic cov-
ariates are added, this is not necessarily the case in non-linear models. For example, in logistic and Cox regression, the
standard error of the estimated treatment effect does not decrease when prognostic covariates are added, although the
situation is complicated in those settings because the estimand changes as well. Because estimation of restricted mean
survival time in the manner described in this article is also based on a model that is non-linear in the covariates, we
investigate whether the comparison of restricted mean survival times with adjustment for covariates leads to a reduc-
tion in the standard error of the estimated treatment effect relative to the unadjusted estimator or whether covariate
adjustment provides no improvement in precision. Chen and Tsiatis suggest that precision will increase if covariates are
chosen judiciously. We present results of simulation studies that compare unadjusted versus adjusted comparisons of
restricted mean survival time between treatment arms in randomized clinical trials.
Results: We find that for comparison of restricted means in a randomized clinical trial, adjusting for covariates that are
associated with survival increases precision and therefore statistical power, relative to the unadjusted estimator.
Omitting important covariates results in less precision but estimates remain unbiased.
Conclusion: When comparing restricted means in a randomized clinical trial, adjusting for prognostic covariates can
improve precision and increase power.

Keywords
Restricted mean, covariate adjustment, efficiency, power

Introduction

The log-rank test and the Cox1 proportional hazards
regression model are two of the most popular proce-
dures for comparing survival times in different treat-
ment arms of a randomized clinical trial (RCT). The
log-rank test is known to be most powerful under pro-
portional hazards alternatives, and proportional
hazards are usually assumed when fitting the Cox
regression model, although the model can be extended
to accommodate non-proportional hazards as described
in Cox’s original manuscript and by others.2 A variety
of parametric models are also available for analyzing
survival data,3 and these models can be applied under

proportional hazards, accelerated failure time, and
other frameworks.4 All of these methods allow for cen-
soring, that is, observations in which the event of
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interest has not yet occurred, a common feature of sur-
vival data from RCTs.

Were it not for censoring, mean survival times could
be compared in different groups using standard meth-
ods, such as two-sample t-tests or ordinary least-
squares multiple regression if covariate effects or
adjustment are of interest. Methods for least squares
regression with censored data have been proposed,5 but
are rarely used because of computational issues and,
until relatively recently, the lack of available software.6

In addition to evaluating covariate effects on outcome,
covariates are often included in an analysis for two
other purposes: (1) to adjust the treatment effect for
imbalances in prognostic factors between the treatment
arms, although in an RCT this would be adjustment
for random imbalances only and (2) to improve the
precision of the estimated treatment effect by account-
ing for other sources of variation.

As censoring generally precludes estimation of the
mean survival time, Irwin7 proposed, as an alternative,
to estimate the expectation of life limited (restricted) to
a suitably chosen time t�. Since survival time is a posi-
tive random variable, the mean m could be obtained by
integrating under the survival curve

m=
Ð‘
0

S tð Þdt ð1Þ

where S(t) is the survival function for the random vari-
able T.0. Although one might consider substituting
the Kaplan and Meier8 estimate of the survival func-
tion into equation (1) to estimate m, when censoring is
heavy, S(t) is often ill-determined, or even undefined,
beyond a certain range. Instead, the restricted mean
survival time (RMST) is given by

mt� =
Ðt�
0

S tð Þdt ð2Þ

Thus, mt� is simply the area under the survival curve
up to the point of restriction t�. mt� can also be viewed
as the mean of a new random variable taking the value
T if T\t� and t� if T � t�, that is

mt� =E min T , t�ð Þ½ �

Kaplan and Meier discussed estimation of the
restricted mean by substituting the product-limit esti-
mator into equation (2), and Meier9 established its
asymptotic normality.

Why consider RMST? In addition to its simple inter-
pretation as the mean ‘‘up to’’ time t�, an important
advantage is that comparison of RMSTs between two
groups requires no assumptions about the relationship
between the two survival curves. Royston and
Parmar,10 in consideration of violations of the propor-
tional hazards assumption, concluded that ‘‘the hazard
ratio cannot be recommended as a general measure of

the treatment effect in a randomized controlled trial.
[...] Restricted mean survival time may provide a practi-
cal way forward and deserves greater attention.’’ Uno
et al.11 considered various alternatives to the hazard
ratio, including RMST, for quantifying the difference
between two survival curves and concluded that the dif-
ference or ratio of RMSTs provides a good summary
measure. Trinquart et al.12 conducted a meta-analysis
of 54 randomized oncology trials in which they com-
puted both the hazard ratio and the difference in
RMSTs and remarked that ‘‘Our analysis also high-
lights how the difference in RMST provides a clinically
meaningful summary of evidence. It allows for quanti-
fying the absolute survival difference and grading the
magnitude of clinical benefit.’’ Chappell and Zhu13

point out that, like means, RMSTs have the useful
property of being additive, and Uno et al.14 discuss the
advantages of comparing RMSTs in non-inferiority
studies with low event rates.

However, one should not lose sight of the fact that
the restricted mean is just that—a restricted mean: it
ignores everything beyond the point of restriction and
cuts off the distribution at t�: If the true survival curves
remain separated beyond the point of restriction, the
difference in restricted means will increase with t�.
Consequently, estimated differences can appear some-
what small and alternative effect measures, such as the
ratio of RMSTs and expressing RMST as the percent-
age of potential life-years achieved,15 can be helpful in
the assessment of clinical benefit.

Karrison15 and Royston and Parmar10 provided
sample size formulae for designing a clinical trial based
on RMST and made recommendations for choosing
the point of restriction t�. Karrison15 also compared the
power of RMST with the log-rank test (asymptotically
equivalent to the scores test from the Cox regression
model) and the generalized Wilcoxon test under pro-
portional hazards and non-proportional hazards alter-
natives. He found that RMST can provide increased
power for early difference alternatives without sacrifi-
cing too much power relative to the log-rank test when
proportional hazards hold. For late difference alterna-
tives, however, the comparison of RMSTs entailed a
loss in power relative to the log-rank test.

Covariate adjustment in linear and
non-linear models

In linear models, adjusting for covariates that are asso-
ciated with outcome increases the precision of the treat-
ment effect estimator. In the classic analysis of
covariance (ANCOVA) model, for example, this is
achieved through a reduction in the residual variance.
In non-randomized studies, adjustment for covariates
is almost always necessary in order to reduce confound-
ing, whereas, as mentioned above, in RCTs it serves
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the dual purpose of adjusting for random imbalances
in prognostic factors between treatment arms, as well
as of potentially improving precision.

A gain in precision, however, cannot be taken for
granted in non-linear models. Robinson and Jewell16

showed that in logistic regression, adjustment for covari-
ates leads to a loss in precision (or at best no gain).
Similarly, Ford et al.17 demonstrated that in the Cox
regression model, adjustment for prognostic covariates
does not improve the precision of the estimated treat-
ment effect. Further complicating the decision of
whether to adjust for covariates is that omitting influen-
tial covariates in both logistic and Cox regression pro-
duces a treatment effect estimate that is ‘‘biased’’ toward
the null. If the model is misspecified, tests of the null
hypothesis are valid, but if the alternative hypothesis is
true, the ‘‘bias’’ toward the null results in diminished
power. Therefore, it is still beneficial to adjust for prog-
nostic covariates.18,19 Schoenfeld and Borenstein20 pro-
vide an algorithm for calculating the power for logistic
and proportional hazards models that incorporate cov-
ariates. As in Hauck et al.,19 we have placed the term
‘‘bias’’ above in quotation marks because in the case of
logistic and Cox regression, the estimand changes as
covariates are added, and the unadjusted and adjusted
models actually estimate different measures of treatment
effect. Heuristically, Hauck et al. describe this as moving
from a ‘‘population-averaged’’ interpretation for unad-
justed estimates toward a more ‘‘subject-specific’’ effect
in covariate-adjusted models, where covariates can be
thought of as representing the subject effect.

As the model for estimating RMST as developed
here is also non-linear in the covariates, we address the
following questions in this article. How does compari-
son of restricted means between treatments in an RCT
fare in regard to covariate adjustment: is it necessary to
adjust for covariates to obtain an unbiased estimate of
the treatment effect, and does adjustment for covariates
improve precision and/or statistical power?

Methodology

Let t0
1, t0

2, . . . , t0
n denote the true survival times from a

sample of size n. The observed survival time for the ith
individual is ti =min(t0

i , ci) where ci is the ith individu-
al’s censoring time. Let Di be the indicator variable tak-
ing the value 1 if ti corresponds to an event and the
value 0 if ti is a censored observation. Let gi denote
treatment group (gi = 1, 2) and zi a vector of covariates,
so that the data consist of (ti,Di, gi, zi) i= 1, 2, . . . , n.
Karrison21 incorporated covariates into the analysis of
RMST by fitting a piecewise exponential model

lg tjzð Þ= lgk exp b0zð Þ, te lk�1, lkð �, g = 1, 2

where lg(tjz) is the hazard rate at time t for an individ-
ual in treatment group g with covariate vector z, and

the time axis is divided into intervals
(0, l1�, (l1, l2�, . . . , (lK�1, t

��. The key features of this
model are that (1) covariates are assumed to have pro-
portional hazards effects, whereas (2) the different
underlying piecewise constant hazard functions in the
two treatment arms avoids the proportional hazards
assumption with respect to the treatment effect. The
fact that the b coefficients are assumed to be the same
for both treatment groups makes the model analogous
to the standard ANCOVA model in this regard.
Zucker22 avoided the arbitrary specification of intervals
and developed asymptotic theory for estimating RMST
under the stratified Cox model

lg tjzð Þ= l0g tð Þ exp b0zð Þ ð3Þ

where the baseline hazard function for group g, l0g(t),
is left completely unspecified. We will use Zucker’s
model (3) in what follows.

Zucker used the Breslow estimator for the cumula-
tive underlying hazard function in group g

L̂0g tð Þ=
P

T ið Þ � t

Png

j= 1

Ygj T ið Þ
� �

exp(b̂
0

zgj)

" #�1

Here, T(i) are the ordered event times in group g,
Ygj(T(i)) is an indicator of whether the jth individual
from group g is in the risk set at time T(i), zgj is the cov-
ariate vector for the jth individual from group g, and
ng is the number of subjects in group g. This leads to
the following estimate of the group-specific survival
function at a given value of the covariate vector z

Ŝg tjzð Þ=exp �eb̂
0
zL̂0g tð Þ

� �
ð4Þ

The survival estimates in equation (4) can be inte-
grated to provide estimates of RMST and the difference
in RMST between treatment groups at a given value of
z. Due to the non-linearity of the model, group differ-
ences in RMST will vary for different values of z, unlike
standard ANCOVA in the linear case. Karrison21 there-
fore proposed averaging over the marginal covariate
distributions across both treatment arms

Ŝg � tð Þ= 1
n1 + n2

P2
g = 1

Png

j= 1

Ŝg tjzgj

� �
to obtain an overall adjusted treatment difference

d̂= m̂t�1 � m̂t�2 =
Ðt�
0

Ŝ1 � tð Þdt �
Ðt�
0

Ŝ2 � tð Þdt

Chen and Tsiatis23 showed that d̂ can, in fact, be
interpreted as an estimate of the average causal treat-
ment effect

d=
Ðt�
0

EZ S1(tjz)½ �dt �
Ðt�
0

EZ S2(tjz)½ �dt ð5Þ
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The large sample variance of d̂ can be obtained by
the delta method and is derived in the cited papers.
Of note, Karrison and Zucker conditioned on the
covariates, whereas Chen and Tsiatis treated the cov-
ariates as random, which gives rise to an additional
variance component. We have included this addi-
tional component in our calculations. Chen and
Tsiatis also considered a more general model in
which both the baseline hazard and the regression
coefficients for the covariates are allowed to vary by
treatment; however, our preference is for the more
parsimonious model (3).

Simulation study

We conducted a simulation study to evaluate the per-
formance of unadjusted and adjusted RMST compari-
sons in randomized, two-arm clinical trials. In all
simulations, data were generated from a Weibull model
with a pre-specified treatment effect parametrized by u

in the case of a proportional hazards treatment effect
and one or more covariates. For non-proportional
hazards treatment effects, different scale and shape
parameters were specified for each treatment arm.
Unadjusted models and models adjusting for the cov-
ariates were fitted in each data set. RMST estimates
from these simulations were then used to investigate
the effect of covariate adjustment and model misspecifi-
cation on bias, coverage rates, power and efficiency
(relative to the unadjusted estimator). Results from fit-
ting Cox regression models were also generated.
Simulation scenarios are summarized in Supplementary
Table S1.

True survival times (T0
i ) were drawn with underlying

survival function S(t)= exp(� atg), where a is the
Weibull scale parameter and g is the shape parameter.
We simulated RCTs with uniform accrual over 5 years
followed by two additional years of follow-up; thus,
censoring times were distributed uniformly,
ci;Unif (2, 7). The observed survival time was taken as
Ti =min(T 0

i , ci), with the censoring indicator denoting
whether the event was observed (Di = 1) or censored
(Di = 0). We investigated effects of covariate adjust-
ment for two types of covariates: predictive covariates
Zj, where bj 6¼ 0 in the true model, and unrelated cov-
ariates Xj. Data were generated so that the effect of Zj

on survival satisfied the proportional hazards assump-
tion in all simulations, whereas the effect of treatment
(ITRT ) satisfied the proportional hazards assumption in
Scenarios 1, 4, and 5, and was non-proportional
hazards in Scenarios 2 and 3. Restriction point was set
at t�= 5 in all simulations. Of note, even though t� was
5 years, to maintain efficiency for the estimation of
covariate effects in adjusted models, deaths and censor-
ings occurring after 5 years were included ‘‘as is’’ (i.e.
were not censored at 5 years).

In Scenarios 1–4, we investigated the effect of cov-
ariate adjustment when the true model has only one or
two prognostic covariates. In Scenario 5, we examined
the effect of covariate adjustment when the true data
generating mechanism involves multiple correlated
prognostic covariates with varying degrees of correla-
tion and magnitude of the effect on survival. R = 3000
replications were performed for each scenario. Figure 1
shows the true survival curves for each of the five sce-
narios, with the covariate(s) set to their expected or
representative value(s).

Scenario 1

Survival times were generated under a proportional
hazards treatment effect with a single prognostic cov-
ariate Z1 and a single non-prognostic covariate X1. For
t�= 5 years, the true difference in restricted means
(average causal treatment effect from equation (5)) in
the non-null case is d= :90 years. Simulation results
are presented in Table 1 under the null hypothesis of
no treatment effect, that is, when u= 0. Table 2 pre-
sents simulation results when the treatment effect is
u= ln (2). The total sample sizes were N = 100, 130,
and 150 (n = 50, 65, and 75 per arm). Results are pre-
sented for four sets of models: unadjusted, adjusted for
the prognostic covariate Z1, adjusted for the unrelated
covariate X1, and adjusted for both Z1 and X1.

We found that in all models, the estimates of the
treatment effect are essentially unbiased. The average
model-based standard errors (ASE = mean over R
replications of the estimated standard error of d̂) are
close to the empirical standard errors (ESE = standard
deviation of d̂ across R replications). Rejection rates
under the null hypothesis and coverage rates under the
alternative are close to the nominal 5% and 95% levels,
respectively. In Table 2, adjustment for Z1 or both Z1

and X1 leads to a 17%–20% improvement in efficiency
relative to the unadjusted estimator, while adjustment
for only the non-prognostic covariate X1 leads to no
increase in efficiency. Correspondingly, adjustment for
Z1 (or both Z1 and X1) increases power, whereas adjust-
ment for the unrelated covariate X1 results in no change
in power compared to the unadjusted estimate. Of note,
this is in contrast to Cox regression analysis
(Supplementary Table S2), where the unadjusted esti-
mates of the log hazard ratio, as well as estimates from
models that adjust for X1 alone, are ‘‘biased’’ toward
zero, and the standard error of the treatment effect esti-
mate does not decrease when adjusting for prognostic
covariate Z1. (As discussed above, ‘‘bias’’ and coverage
rates here are with respect to the parameter u in the
model incorporating Z1.) However, the ‘‘bias’’ is
removed and power is increased when the correct model
is fitted. Moreover, power from fitting the Cox regres-
sion model was similar to the power obtained for the
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restricted means analysis for all estimators—both unad-
justed and adjusted.

Scenario 2

Here, we generate survival times in each treatment
group from Weibull distributions with different scale
and shape parameters, thus allowing the treatment

effect to be non-proportional hazards. Setting
a1 = 0:18, g1 = 1:50, a2 = 0:20, g2 = 0:75, and b1 =
ln(2) produces survival curves that separate early but
converge at 5 years (decreasing hazard ratio), with a
true d= 0:96: Simulation results in Table 3 show that
both unadjusted and adjusted estimates of d are
unbiased, with coverage rates close to their nominal
95% levels. Adjustment for the prognostic covariate Z1

Figure 1. True survival curves at expected values of the covariates (for Scenario 4, the binary covariate Z2 is set to 0).

Table 1. Scenario 1: null hypothesis case RMST (d= 0, Z1prognostic,X1not prognostic).

N Model Bias (d̂) ESE ASE Rej rate (%)

100 Unadj RMST .0094 .3397 .3475 4.5
Adj RMST

Z1 .0110 .3170 .3212 5.0
X1 .0109 .3390 .3420 4.7
Z1, X1 .0122 .3205 .3213 5.4

130 Unadj RMST .0028 .3126 .3048 5.7
Adj RMST

Z1 .0002 .2928 .2826 5.6
X1 .0025 .3125 .3011 5.9
Z1, X1 .0000 .2954 .2827 5.8

150 Unadj RMST –.0071 .2822 .2830 5.1
Adj RMST

Z1 –.0071 .2610 .2629 4.6
X1 –.0057 .2805 .2801 5.1
Z1, X1 –.0058 .2617 .2630 4.8

ESE: empirical standard error; ASE: average model-based standard error; Unadj: unadjusted; Adj: adjusted; Rej rate: rejection rate; RMST: restricted

mean survival time.

Average censoring rate = 30.5%.
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(or both Z1 and X1) leads to an efficiency increase of
15%–21% relative to the unadjusted estimator, as well
as increased power, whereas adjustment for X1 alone
provides no improvement in either. Supplementary
Table S3 shows simulation results from fitting Cox pro-
portional hazards models in this setting. In Cox mod-
els, adjusting for Z1 does not reduce standard errors
but does increase power. We also found that the power
from the Cox regression analysis, whether unadjusted
or adjusted, is lower than the corresponding power for
the comparison of restricted means.

Scenario 3

In this scenario, the treatment effect is again non-
proportional hazards, such that the survival curves are
similar over the first year and then separate (increasing
hazard ratio), with a true d= :50 years. Sample sizes
were increased to N = 150, N = 200, and N = 250
(75, 100, and 125 per arm). The simulations in Table 4
again show that all estimates are unbiased, and when
comparing restricted means between groups, both effi-
ciency and power are increased if the model includes

Table 3. Scenario 2: non-proportional hazards treatment effect (early difference) RMST (d= :9628, Z1 prognostic,
X1 not prognostic).

N Model Bias (d̂) ESE ASE Coverage
rate (%)

Power (%) Eff

100 Unadj RMST –.0006 .3466 .3434 94.6 78.5 –
Adj RMST

Z1 –.0038 .3196 .3154 94.2 84.9 1.18
X1 –.0097 .3459 .3404 94.4 78.6 1.00
Z1, X1 –.0050 .3226 .3156 94.1 84.6 1.15

130 Unadj RMST –.0044 .2991 .3018 94.9 88.3 –
Adj RMST

Z1 –.0070 .2767 .2777 94.8 93.3 1.17
X1 –.0113 .2966 .2997 95.0 88.5 1.02
Z1, X1 –.0071 .2781 .2779 94.5 93.4 1.16

150 Unadj RMST .0031 .2785 .2802 95.5 92.9 –
Adj RMST

Z1 –.0049 .2532 .2588 95.5 96.3 1.21
X1 –.0027 .2770 .2785 95.6 93.1 1.01
Z1, X1 –.0051 .2538 .2588 95.5 96.3 1.20

ESE: empirical standard error; ASE: average model-based standard error; Unadj: unadjusted; Adj: adjusted; Eff: efficiency; RMST: restricted mean

survival time.

Average censoring rate = 23.9%.

Table 2. Scenario 1: proportional hazards treatment effect, RMST (d= :8994, Z1prognostic, X1 not prognostic).

N Model Bias (d̂) ESE ASE Coverage
rate (%)

Power (%) Eff

100 Unadj RMST –.0028 .3259 .3221 94.7 78.5 –
Adj RMST

Z1 –.0126 .2970 .2974 95.0 84.8 1.20
X1 –.0138 .3246 .3203 94.5 78.2 1.01
Z1, X1 –.0123 .2992 .2976 94.9 84.1 1.19

130 Unadj RMST .0059 .2840 .2819 94.3 88.4 –
Adj RMST

Z1 –.0046 .2605 .2604 95.0 92.5 1.19
X1 –.0035 .2819 .2806 94.3 88.2 1.01
Z1, X1 –.0049 .2614 .2604 94.7 92.5 1.18

150 Unadj RMST .0057 .2702 .2627 94.0 91.9 –
Adj RMST

Z1 –.0004 .2482 .2429 94.3 95.2 1.19
X1 –.0014 .2696 .2617 94.3 91.9 1.00
Z1, X1 .0006 .2496 .2429 94.2 95.0 1.17

ESE: empirical standard error; ASE: average model-based standard error; Unadj: unadjusted; Adj: adjusted; Eff: efficiency; RMST: restricted mean

survival time.

Average censoring rate = 21.6%.
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the prognostic covariate Z1. In Cox regression models
(Supplementary Table S4), standard errors are not
reduced but power increases when Z1 is included in the
model. In this case, Cox regression analysis has higher
power than comparison of restricted means. Our find-
ings about power for RMST estimation relative to Cox
regression under proportional hazards, early and late
treatment difference alternatives mirror the findings
reported in Karrison.15

Scenario 4

We return to considering a proportional hazards treat-
ment effect but with two prognostic covariates and one
non-prognostic covariate. We generated Z1;N(0, 1)
and Z2 independently as a binary covariate taking val-
ues 0 and 1 with probability .5. X1;Unif (0, 2) was gen-
erated independent of Z1 and Z2, and we set

u= ln (1:75), b1 = ln (1:33), and b2 = ln (1:5). With
these parameter values, the true average causal treat-
ment effect at t�= 5 years is d= :70 years. The sample
size was N = 200 (n = 100 per treatment group).
Table 5 shows efficiency and power, along with the
other metrics, for the unadjusted model, as well as
models that adjust for different combinations of covari-
ates (e.g. only Z1, only X1, Z1 and X1, etc.). Compared
to the unadjusted estimator, adjusting for X1 does not
increase efficiency. Adjusting for Z1 increases efficiency
by about 6%, adjusting for Z2 increases efficiency by
about 3%, and adjusting for both prognostic factors
increases efficiency by 8%. Correspondingly, the power
is increased slightly from 82% for the unadjusted esti-
mator to a little over 84% when adjusting for both Z1

and Z2. This simulation suggests that efficiency gains
may be relatively minor when covariates have only
modest prognostic effects. Supplementary Table S5

Table 4. Scenario 3: non-proportional hazards treatment effect (late difference), RMST (d= :4972, Z1prognostic,
X1not prognostic).

N Model Bias (d̂) ESE ASE Coverage rate (%) Power (%) Eff

150 Unadj RMST .0106 .2506 .2502 94.5 52.6 –
Adj RMST

Z1 .0041 .2278 .2313 95.1 58.2 1.21
X1 .0048 .2495 .2497 94.7 51.3 1.01
Z1, X1 .0041 .2288 .2314 95.1 58.3 1.20

200 Unadj RMST .0054 .2128 .2168 95.5 63.7 –
Adj RMST

Z1 .0038 .1963 .2002 95.5 70.3 1.18
X1 .0008 .2125 .2165 95.4 63.1 1.00
Z1, X1 .0033 .1975 .2003 95.3 70.1 1.16

250 Unadj RMST .0033 .1931 .1940 94.5 73.0 –
Adj RMST

Z1 .0005 .1793 .1791 95.1 78.7 1.16
X1 .0005 .1928 .1937 94.5 72.5 1.00
Z1, X1 .0011 .1801 .1791 94.8 78.9 1.15

ESE: empirical standard error; ASE: average model-based standard error; Unadj: unadjusted; Adj: adjusted; Eff: efficiency; RMST: restricted mean

survival time.

Average censoring rate = 19.4%.

Table 5. Scenario 4: proportional hazards treatment effect RMST (d= :7007, Z1,Z2 prognostic,X1 not prognostic).

N Model Bias (d̂) ESE ASE Coverage rate (%) Power (%) Eff

200 Unadj RMST –.0030 .2401 .2431 95.2 81.6 –
Adj RMST
Z1 –.0088 .2334 .2343 95.0 83.4 1.06
X1 –.0072 .2389 .2407 95.1 81.9 1.01
Z1, X1 –.0088 .2338 .2342 95.0 83.4 1.05
Z2 –.0062 .2364 .2374 95.3 82.8 1.03
Z2, X1 –.0062 .2367 .2374 95.1 82.6 1.03
Z1, Z2 –.0076 .2310 .2307 94.9 84.3 1.08
Z1, Z2, X1 –.0075 .2314 .2307 95.0 84.5 1.08

ESE: empirical standard error; ASE: average model-based standard error; Unadj: unadjusted; Adj: adjusted; Eff: efficiency; RMST: restricted mean

survival time.

Average censoring rate = 37.0%.

184 Clinical Trials 15(2)

http://journals.sagepub.com/doi/suppl/10.1177/1740774518759281
http://journals.sagepub.com/doi/suppl/10.1177/1740774518759281


shows that in the case of Cox regression, ‘‘bias’’ is
reduced and power increased when the prognostic cov-
ariates are added, but again the magnitudes of the
gains are modest due to the smaller covariate effects.

Scenario 5

In the last scenario, we consider five correlated prog-
nostic covariates (Z1, . . . , Z5) and five unrelated covari-
ates (X1, . . . ,X5) that are not associated with outcome,
and a treatment effect that satisfies the proportional
hazards assumption. Both sets of covariates were gen-
erated from a multivariate normal distribution with
mean and correlation structure as shown in Table S1.
Z1 is not correlated with Z2, . . . , Z5, but Z2, . . . , Z5 are
correlated with each other, with r ranging from .1 to
.3, and similarly for X1, . . . ,X5. Survival times were
generated from a Weibull distribution with a= :16 and
g = 1:25, and the magnitude of the covariate effects
decreased from Z1 to Z5. The treatment effect was set at
u= ln (1:75). The sample size was N = 200 (n = 100
per treatment group). The true average causal treat-
ment effect at t�= 5 years is d= :60. Figure 2(a)–(c)
are heat maps showing bias, efficiency, and power that
result from models adjusting for various combinations
of covariates. The lower left-hand corner of each map
corresponds to the unadjusted model (‘‘No Z,’’ ‘‘No

X’’). Moving up vertically are models adjusting for
X1,X1 +X2, . . . ,X1 + � � � +X5, whereas moving hori-
zontally to the right adds Z1, Z1 + Z2, . . . ,
Z1 + � � � + Z5. The upper right-hand corner includes
all 10 covariates. All models yield estimates with little
or no bias, while progressively adjusting for the prog-
nostic covariates increases statistical efficiency and
power. Heat maps from fitting Cox regression models
under this scenario are shown in Supplementary
Figures S1A and S1B. We again see that model mis-
specification in the Cox regression analysis leads to
negatively ‘‘biased’’ estimates. Power is noticeably
increased as prognostic covariates are added to the
model because the negative ‘‘bias’’ is gradually
removed.

The covariate effects in Scenario 5 are somewhat
large. For example, b1 = ln (2) implies a hazard ratio
of 4 for Z1 equal to one standard deviation below the
mean compared to one standard deviation above the
mean. As a result, the efficiency for the RMST compar-
ison relative to the unadjusted estimate ranged from
1.34 with the inclusion of Z1 to 2.07 with the inclusion
of all five covariates. We re-ran the simulations for
Scenario 5 with smaller covariate effects, that is, we set
the coefficients to ln(1.5), ln(1.25), ln(1.1), ln(.9), and
ln(.75) for b1 � b5, respectively. Not unexpectedly, the
efficiency gains were more modest, ranging from 1.16

Figure 2. Scenario 5 RMST: (d= :5973,Z1, . . . ,Z5 prognostic,X1, . . . ,X5 not prognostic). Average censoring rate = 27.2%,
(a) Bias; (b) Efficiency; (c) Power
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with the inclusion of Z1 to 1.29 when all five prognostic
covariates were included in the model. The heat map
for efficiency is given in Supplementary Figure S2.

Example

As an example, we analyze data from the DeCIDE
trial,24 an RCT of induction therapy plus chemora-
diotherapy (I+CRT) versus chemoradiotherapy
(CRT) alone in patients with locally advanced squa-
mous cell carcinoma of the head and neck. Patients
with non-metastatic N2 or N3 disease were randomized
to receive either two cycles of induction therapy fol-
lowed by five cycles of chemoradiotherapy or five
cycles of chemoradiotherapy only. A total of 273 evalu-
able patients were enrolled and followed for up to
7 years. The Kaplan–Meier curves for recurrence-free
survival, defined as the time from randomization until
disease recurrence or death from any cause, are shown
in Figure 3. Recurrence-free survival is higher in the
induction therapy plus chemoradiotherapy arm after
1 year, but the difference is not statistically significant
by the log-rank test (p = .16). Estimating RMST at
t� = 5 years gives the following unadjusted RMST
estimates (6standard error (SE)):

Unadjusted

m̂I +CRT = 3:6456:169 years, 3:645=5=73%

m̂CRT = 3:3226:177 years, 3:322=5=66%

d̂= :3236:245 years, m̂I +CRT=m̂CRT =1:10, p= :19

Thus, in the induction therapy plus chemoradiother-
apy arm, RMST restricted to 5 years was estimated
to be 3.64 years, and patients achieved 73% of poten-
tial recurrence-free life years (over a 5-year horizon)
compared to 3.32 years and 66% in the
chemoradiotherapy-only arm. The absolute difference
in restricted means is .32 years (ratio 1.10), but is not
statistically significant (p = .19). The p-value is very
close to the p-value from the log-rank test.

Next, we obtain the RMST estimate adjusting for
five prognostic covariates that were all significantly
associated with recurrence-free survival in univariate
analyses, that is, Karnofsky performance score,
T-stage, N-stage, age, and smoking status.

Adjusted

m̂I +CRT = 3:6016:156 years, 3:601=5=72%

m̂CRT = 3:3526:158 years, 3:352=5=67%

d̂= :2496:223 years, m̂I +CRT=m̂CRT = 1:07, p= :26

Here, despite the increase in precision, adjustment
has reduced the estimated difference in restricted means
and increased the p-value. This is because the induction
therapy plus chemoradiotherapy arm was slightly
favored on these covariates. Of interest, similar conclu-
sions are obtained from fitting a Cox proportional
hazards regression model to these data: unadjusted
b̂= � :2786:200, hazard ratio (I+CRT/
CRT) = .76, p = .16; adjusted b̂= � :2326:204,
hazard ratio = .79, p = .25.

Discussion

Our simulation study suggests that analysis of restricted
means based on the stratified Cox model (3) is similar
to ANCOVA for linear models, in that adjusting for
covariates associated with the outcome provides
increased precision for the treatment effect contrast,
whereas adjustment for non-prognostic covariates pro-
duces no improvement. Our findings suggest that incor-
porating covariates into the model can improve
precision if they are appropriately chosen. A conserva-
tive approach to design clinical trials that compare
RMST could be to power the study based on the
expected precision of the unadjusted estimator, and
then to incorporate covariates into the final analysis to
narrow the confidence interval width and increase
power. However, there can be downsides to this strat-
egy. As shown by Beach and Meier,25 adjustment for
covariates in RCTs affords the analyst the opportunity
to select the model that provides the strongest evidence
for a treatment effect—so-called ‘‘p-value shopping.’’
One solution to this problem is to pre-specify in the

Figure 3. Recurrence-free survival in DeCIDE trial of
induction therapy plus chemoradiotherapy (I+CRT) versus
CRT alone in patients with head-and-neck cancer. Solid: I+CRT
(n1 = 138), Dashed: CRT (n2 = 135).
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protocol the set of covariates that one will include in
the model based on a priori knowledge about which
factors are likely to affect survival, that is, known prog-
nostic factors. Alternatively, Tsiatis et al.26 have devel-
oped a strategy for covariate adjustment that avoids
this pitfall and which could potentially be adapted to
RMST.

A nice feature of the analysis of restricted means,
as suggested by our simulation studies, is that unad-
justed estimates, as well as estimates from models that
include only some of the true prognostic factors, show
little or no bias. This implies that while some effi-
ciency may be lost, the treatment effect estimator is
centered at the same target even when the model is
misspecified and influential covariates are omitted. In
addition, the estimand can be interpreted as the aver-
age causal treatment effect, and its interpretation does
not rely on proportional hazards or other parametric
assumptions.

Finally, we reemphasize that RMST estimates
require careful interpretation. If the survival estimates
are at or near zero toward the end of the follow-up
period, the restricted mean will be close in magnitude to
the overall mean. But this is frequently not the case in
clinical trials where the follow-up time can be relatively
limited, resulting in high censoring rates, and such that
survival estimates remain above 25% or even above the
50th percentile as, for example, in the DeCIDE trial. If
survival rates differ at the end of the follow-up period
and the true curves remain separated, the difference in
restricted means will underestimate—potentially seri-
ously underestimate—the difference in overall means.
Thus, RMST informs us only about the survival experi-
ence up to the limit of observation. What else could it
do? Only parametric assumptions or extrapolation
beyond the observation period would give us estimates
of the overall mean, and few would likely want to rely
on such an approach. Nonetheless, with these caveats
in mind, analysis of RMST can provide informative
results about the effects of treatment on survival in clin-
ical trials and be a useful complement to standard
methods.
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