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Abstract: The basic helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) proteins are a class of transcriptional
regulators, commonly occurring in living organisms and highly conserved among vertebrates and
invertebrates. These proteins exhibit a relatively well-conserved domain structure: the bHLH domain
located at the N-terminus, followed by PAS-A and PAS-B domains. In contrast, their C-terminal
fragments present significant variability in their primary structure and are unique for individual
proteins. C-termini were shown to be responsible for the specific modulation of protein action. In this
review, we present the current state of knowledge, based on NMR and X-ray analysis, concerning the
structural properties of bHLH–PAS proteins. It is worth noting that all determined structures comprise
only selected domains (bHLH and/or PAS). At the same time, substantial parts of proteins, comprising
their long C-termini, have not been structurally characterized to date. Interestingly, these regions
appear to be intrinsically disordered (IDRs) and are still a challenge to research. We aim to emphasize
the significance of IDRs for the flexibility and function of bHLH–PAS proteins. Finally, we propose
modern NMR methods for the structural characterization of the IDRs of bHLH–PAS proteins.
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1. Introduction to bHLH–PAS Proteins

The basic helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) proteins are a class of transcriptional
regulators that commonly occur in living organisms. They play an important role in the regulation of
a variety of developmental and physiological events [1]. The maintenance of cellular and systemic
oxygen homeostasis is performed by hypoxia-inducible factor 1α (HIF1-α) [2]. In the hypoxia condition,
HIF1-α is translocated to the nucleus [3] where it regulates transcription activity related to angiogenesis,
cell proliferation/survival, glucose metabolism, and iron metabolism. The incorrect control of the listed
processes is fundamental in many diseases, including cancer, strokes, and heart disease [2]. Some
bHLH–PAS family members act as receptors for different high and low molecular ligands [1]. The only
known small ligand-activated bHLH–PAS protein, aryl hydrocarbon receptor (AHR), is involved in
toxin metabolism and binds highly toxic ligands, such as TCDD [4]. The ligated AHR migrates to
the nucleus and mediates a wide range of biological responses to poisons. This mediation comprises
a wasting syndrome, hepatotoxicity, teratogenesis, and tumor promotion [4]. Overexpression and
constitutive activation of the AHR have been observed in various types of tumors [5]. Importantly,
the AHR has been described as a critical modulator of host–environment interactions, especially for
immune and inflammatory responses [6].
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Another interesting example of a bHLH–PAS family member is the single-minded protein (SIM),
which plays a significant role during central nerve cord [7] and genital imaginal disc development [8].
As shown, SIM gene mutations contribute to certain dysmorphic features of brain development and
also the mental retardation in Down syndrome [9]. Interestingly, SIM overexpression is also associated
with breast and prostate cancer [10], which indicates connections between their apparently unrelated
signaling pathways.

Members of the bHLH–PAS family were shown to be targets for disease therapy. AHR, highly
expressed in multiple organs and tissues, may influence tumorigenesis both by direct effect on the
cancer cells and by modulation of the immune system. For this reason, the development of selective
AHR modulators active against multiple tumors is a desirable direction of research [11]. Also, targeting
of the HIF1-α pathway as a novel cancer therapy is a current project [12]. As AHR was shown to
modulate the immune response in the respiratory tract, this protein can be potentially used also as a
therapeutic object for the treatment of various inflammatory lung diseases [13,14]. Another member of
the family, expressed mainly in the brain, neuronal PAS domain-containing protein 4 (NPAS4) has
been proposed as a novel therapeutic target for depression and neurodegenerative diseases [15] and as
a component of new stroke therapies [16]. Additionally, NPAS4, whose expression was also detected
in the pancreas, was proposed to be a therapeutic target for diabetes [17] and as a treatment during
pancreas transplantation [18].

In spite of performing a high diversity of functions, the bHLH–PAS proteins family exhibits
a relatively well-conserved domain structure in the N-terminal part of their sequence (Figure 1).
The bHLH region contains approximately 60 amino acid (aa) residues and can be divided into two
functionally distinctive parts: the basic region responsible for DNA binding (approximately 15 aa),
and the neighboring C-terminal HLH region, which takes part in protein dimerization [19]. The PAS
domain is located in the central part of the protein and usually comprises about 300 aa residues [1]. It is
divided into two structurally conserved regions named PAS-A and PAS-B, which are often connected to
a single PAS-associated C-terminal (PAC) motif [20]. The PAS-A and PAS-B regions are separated by a
poorly conserved link [1]. The PAS-A region is critical for selecting a dimerization partner and ensuring
the specificity of target gene activation [21]. The PAS-B region is usually responsible for sensing diverse
exogenous and endogenous signals, and is accompanied by energetic and conformational changes that
regulate protein activity [21]. Contrary to conserved domains, the C-termini of bHLH–PAS proteins
present significant variability [21] and contain variable transcription activation/repression domains
(TAD/RPD) (Figure 1) [22,23]. An example is the mammalian SIM existing in two isoforms: SIM1
and SIM2. Both isoforms present a high amino acid identity in their N-termini (90% identity in the
bHLH and PAS regions) and extreme diversity in their C-termini [24]. While SIM1 activates the
expression of target genes, SIM2 acts as an inhibitor. Interestingly, the opposite transcriptional effect
disappears after the deletion of both SIM1 and SIM2 C-termini, resulting in proteins with a similar
activity [25,26]. Moffet and Pelletier [26] demonstrated that a distinct SIM2 C-terminal sequence
comprises two repression domains with a high proline/serine and proline/alanine content, respectively.
It is a feature of “repressor motifs”, which can also be found in a large number of other transcriptional
repressors [25,26]. Due to the highly variable amino acid sequence and the lack of predefined domains,
C-termini are believed to be responsible for the specific modulation of the functioning of bHLH–PAS
proteins and the recognition of partner proteins necessary for their unique action [21].
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Figure 1. Schematic representation of the bHLH–PAS protein domain structure. The N-terminal part 
of bHLH–PAS proteins is characterized by the presence of defined domains: bHLH (blue), PAS-A and 
PAS-B (green). The C-terminal part presents significant diversity and contains variable 
transactivation/repression domains (TAD/RPD). The C-termini of selected proteins (HIF1-α, 
AHR/ARNT, SIM1, and SIM2) are presented. Yellow boxes indicate TADs while the red box indicates 
RPD. Based on [26–29]. 

Generally, bHLH–PAS proteins can be divided into two classes. While the expression of class I 
proteins is specifically regulated by diverse physiological states and/or environmental signals [30], 
class II proteins are expressed continuously and serve as heterodimerization partners for class I 
members. Only the dimer of the two bHLH–PAS proteins acts as a functional transcription factor 
complex, regulating the expression of genes under its control [22]. Mammalian bHLH–PAS 
transcription factors are listed in Table 1. 

Table 1. Mammalian class I and class II bHLH–PAS proteins [1,21,30–32]. 

Class I Class II Type of Signal 
hypoxia-inducible factors (HIF; 
HIF1-α, HIF2-α, and HIF3-α) 

aryl hydrocarbon receptor nuclear translocator 
(ARNT), also known as HIF1-β and ARNT2 

regulated by hypoxia 

aryl hydrocarbon receptor (AHR);  
aryl hydrocarbon receptor 

repressor (AHRR) 

regulated by 
xenobiotics 

single-minded proteins (SIM1 
and SIM2) 

developmentally 
regulated 

neuronal PAS domain proteins 
(NPAS) 

developmentally 
regulated 

circadian locomotor output cycles 
protein kaput (CLOCK) 

Circadian rhythm proteins (BMAL1 and 
BMAL2, also known as ARNTL and ARNTL2) 

circadian rhythms 

2. bHLH–PAS Protein Conservation between Organisms 

bHLH–PAS proteins are highly conserved among different organisms, including vertebrates 
and invertebrates [33]. Most mammalian representatives possess orthologs in insect species. An 
example is the Drosophila melanogaster TANGO (TGO) protein, which is a homologue of the 
mammalian class II protein, ARNT [34]. TGO is known as the general dimerization partner for Similar 
(SIMA), Trachealess (TRH), Single-minded (SIM) protein, Spineless (SS), and Dysfusion (DYS), 
performing functions equivalent to mammalian ones.  

In 2017, the Nobel Prize in Physiology or Medicine was awarded to J. C. Hall, M. Rosbash, and 
M. W. Young for their discoveries of molecular mechanisms controlling the circadian rhythm in D. 
melanogaster. As shown, the two bHLH–PAS transcription factors CLOCK and CYCLE play a key role 
as transcriptional activators for period (per) and timeless (tim) genes [35,36]. Thanks to the conservation 

Figure 1. Schematic representation of the bHLH–PAS protein domain structure. The N-terminal
part of bHLH–PAS proteins is characterized by the presence of defined domains: bHLH (blue),
PAS-A and PAS-B (green). The C-terminal part presents significant diversity and contains variable
transactivation/repression domains (TAD/RPD). The C-termini of selected proteins (HIF1-α, AHR/ARNT,
SIM1, and SIM2) are presented. Yellow boxes indicate TADs while the red box indicates RPD. Based
on [26–29].

Generally, bHLH–PAS proteins can be divided into two classes. While the expression of class I
proteins is specifically regulated by diverse physiological states and/or environmental signals [30], class
II proteins are expressed continuously and serve as heterodimerization partners for class I members.
Only the dimer of the two bHLH–PAS proteins acts as a functional transcription factor complex,
regulating the expression of genes under its control [22]. Mammalian bHLH–PAS transcription factors
are listed in Table 1.

Table 1. Mammalian class I and class II bHLH–PAS proteins [1,21,30–32].

Class I Class II Type of Signal

hypoxia-inducible factors (HIF; HIF1-α,
HIF2-α, and HIF3-α)

aryl hydrocarbon receptor nuclear
translocator (ARNT), also known

as HIF1-β and ARNT2

regulated by hypoxia

aryl hydrocarbon receptor (AHR); aryl
hydrocarbon receptor repressor (AHRR) regulated by xenobiotics

single-minded proteins (SIM1 and SIM2) developmentally regulated

neuronal PAS domain proteins (NPAS) developmentally regulated

circadian locomotor output cycles protein
kaput (CLOCK)

Circadian rhythm proteins
(BMAL1 and BMAL2, also known

as ARNTL and ARNTL2)
circadian rhythms

2. bHLH–PAS Protein Conservation between Organisms

bHLH–PAS proteins are highly conserved among different organisms, including vertebrates and
invertebrates [33]. Most mammalian representatives possess orthologs in insect species. An example is
the Drosophila melanogaster TANGO (TGO) protein, which is a homologue of the mammalian class II
protein, ARNT [34]. TGO is known as the general dimerization partner for Similar (SIMA), Trachealess
(TRH), Single-minded (SIM) protein, Spineless (SS), and Dysfusion (DYS), performing functions
equivalent to mammalian ones.

In 2017, the Nobel Prize in Physiology or Medicine was awarded to J. C. Hall, M. Rosbash,
and M. W. Young for their discoveries of molecular mechanisms controlling the circadian rhythm in
D. melanogaster. As shown, the two bHLH–PAS transcription factors CLOCK and CYCLE play a key role
as transcriptional activators for period (per) and timeless (tim) genes [35,36]. Thanks to the conservation
of circadian bHLH–PAS proteins between D. melanogaster and mammals [35], the explanation of the
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fly daily rhythm enabled the understanding of a similar, though much more complicated, process
in mammals, controlled by two orthologous to CLOCK/CYCLE heterodimers: CLOCK/BMAL1 and
NPAS-2/BMAL1 [22].

In spite of significant similarities, some exceptions between vertebrates and invertebrates can be
noticed. The bHLH–PAS transcription factor, Methoprene-tolerant protein (MET), occurs exclusively
in insects and to date has no known ortholog in nonarthropod organisms. MET has been recently
confirmed as the juvenile hormone (JH) receptor playing a significant role during insect development
and maturation [37]. Interestingly, in a few species of insects, like D. melanogaster and Bombyx mori,
there exist the MET paralogs named germ-cell expressed (GCE) and MET2, respectively [38]. MET and
GCE participate in modulating JH signaling during D. melanogaster development, but their functions
are not fully redundant and the proteins exhibit tissue-specific distribution [39]. In turn, the MET2
protein function in B. mori is not yet defined [40].

3. Structure of bHLH–PAS Proteins

To date, our knowledge regarding the tertiary structure of bHLH–PAS proteins is limited.
All determined structures comprise single isolated domains (PAS-A or PAS-B) or adjacent domains
connected with flexible aa chains. C-termini, however, comprising an extensive part of proteins, have not
yet been structurally characterized. These regions are not homologous to any described domains
and seem to be very disordered. Consequently, it can be seen to be a huge challenge for scientists to
determine their structure and combine it with specific protein functions. All bHLH–PAS structures
deposited in the Protein Data Bank (PDB) are listed in Table 2 (Nuclear Resonance Magnetism (NMR)
structures) and Table 3 (X-ray structures). Most of the listed assemblies correspond to heterodimers.

Table 2. bHLH–PAS protein structures deposited in the PDB obtained with NMR.

Form Protein Segment Organism PDB ID

monomers
HIF2-α PAS-B domain Homo sapiens 1P97

ARNT PAS-B domain Homo sapiens 1X0O

dimer HIF-2a:ARNT PAS-B domains Homo sapiens 2A24

Table 3. bHLH–PAS protein structures deposited in the PDB obtained with X-ray diffraction.

Form Protein Segment Organism PDB ID

monomers

AHR PAS-A Mus musculus 4M4X

ARNT PAS-B Homo sapiens 2B02

HIF1-α PAS-B Homo sapiens 4H6J

dimers

ARNT Homodimer PAS-B Homo sapiens 4EQ1

HIF2-α:ARNT PAS-B Homo sapiens 3F1P

HIF2-α:ARNT with
artificial ligand PAS-B Homo sapiens 3F1O

HIF2-α:ARNT PAS-B Homo sapiens 6D0C

ARNT/HIF transcription
factor/coactivator complex PAS-B Homo sapiens,

Mus musculus 4PKY

ARNT transcription
factor/coactivator complex PAS-B domain Homo sapiens,

Mus musculus 4LPZ

HIF2-α:ARNT bHLH; PAS-A; PAS-B Mus musculus 4ZP4



Int. J. Mol. Sci. 2019, 20, 3653 5 of 16

Table 3. Cont.

Form Protein Segment Organism PDB ID

HIF2-α:ARNT with HRE DNA bHLH; PAS-A; PAS-B Mus musculus 4ZPK

HIF1-α:ARNT with HRE DNA bHLH; PAS-A; PAS-B Mus musculus 4ZPR

AHR:ARNT bHLH; PAS-A Homo sapiens 5NJ8

AHR:ARNT bound to the
dioxin response
element (DRE)

bHLH; PAS-A Homo sapiens,
Mus musculus 5V0L

AHRR:ARNT bHLH; PAS-A; PAS-B Homo sapiens,
Bos taurus 5Y7Y

NPAS1:ARNT bHLH; PAS-A; PAS-B Mus musculus 5SY5

NPAS3:ARNT in complex
with HRE DNA bHLH; PAS-A; PAS-B Mus musculus 5SY7

CLOCK-BMAL1 bHLH Homo sapiens 4H10

CLOCK:BMAL1 bHLH; PAS-A; PAS-B Mus musculus 4F3L

The first step in determining the structure of bHLH–PAS proteins was the isolation and
characterization of PAS-B domains from HIF2-α (Figure 2A) [41] and ARNT (Figure 2B) [42]. Both
structures were obtained using the NMR technique and presented a fold characteristic for the PAS
domain: a five-stranded antiparallel β-sheet flanked by several α-helices [42]. The next step was the
crystallization of the isolated PAS-A domain of AHR (Figure 2C) and the PAS-B domains of ARNT (not
shown) and HIF1-α (not shown). Interestingly, the tertiary architecture of all structurally characterized
PAS domains is very conserved (Figure 2), despite the fact that their primary sequence is highly
divergent (sequence identity lower than 20%) [43].
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PAS proteins; however, the structure of the multidomain bHLH–PAS protein was still missing. 

Figure 2. Representation of the PAS fold: a five-stranded antiparallel β-sheet is flanked by several
α-helices. (A) HIF2-α PAS-B obtained with NMR (PDB 1P97), (B) ARNT PAS-B obtained with NMR
(PDB 1X0O), (C) AHR PAS-A domain obtained with X-ray (PDB 4M4X).

Further experiments led to the cocrystallization of PAS-B domains from the HIF2-α/ARNT
heterodimer, which revealed that these two domains form an interaction interface via theirβ-sheets in an
antiparallel form (Figure 3A) [42]. Another measurement covering bHLH domains of BMAL1/CLOCK
bound to the DNA defined domain structure and binding properties specifying interactions taking
place (Figure 3B) [44]. A typical bHLH domain comprises two long α helices connected by a short
loop. The first helix includes the basic domain and interacts with the major groove of the DNA [45].
All presented structures allowed an insight into the organization of bHLH–PAS proteins; however,
the structure of the multidomain bHLH–PAS protein was still missing.
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(magenta) and CLOCK bHLH (grey) domains with E-box DNA (blue) (1H10, [44]). 

A turning point was the year 2012, when the first heterodimer comprising the bHLH–PAS-
A/PAS-B domains (CLOCK-BMAL1) was crystallized [47] and its structure was resolved (Figure 4A). 
In 2015, the architecture of two other heterodimers, HIF1-α-ARNT (not shown) and HIF2-α-ARNT 
(Figure 4B), were obtained [48]. All determined structures present the position of the defined domains 
in relation to each other in the functional heterodimers. In general, the individual PAS domains are 
not involved in equal interactions, and the obtained structures are highly asymmetric. Importantly, 
two groups of heterodimers (based on BMAL-1 or ARNT proteins as a dimerization partner) present 
separate types of quaternary architecture. All domains in the BMAL-1 group are close spatially to 
each other (Figure 4A), while ARNT domains do not create intramolecular interactions and can wrap 
up around a partner protein (Figure 4B) [22,48]. 

 
Figure 4. Representatives of the two groups of the bHLH–PAS heterodimers. (A) Overall structure of 
the CLOCK-BMAL1 heterodimer (4f3l, [47]), (B) overall structure of the HIF2-α–ARNT heterodimer 
(4zp4, [48]). 

To date, all available structural information concerns mammalian bHLH–PAS proteins. There is 
almost no information about the structure of proteins derived from other organisms, including 
invertebrate D. melanogaster. It would be interesting to verify evolutionary conservation of the entire 

Figure 3. (A) HIF2-α PAS-B (green) and ARNT PAS-B (blue) heterodimer (3F1P, [46]). Amino acids
creating a salt bridge are marked (HIF2-α E247, ARNT R362, ARNT R379). (B) BMAL1 bHLH (magenta)
and CLOCK bHLH (grey) domains with E-box DNA (blue) (1H10, [44]).

A turning point was the year 2012, when the first heterodimer comprising the bHLH–PAS-A/PAS-B
domains (CLOCK-BMAL1) was crystallized [47] and its structure was resolved (Figure 4A). In 2015,
the architecture of two other heterodimers, HIF1-α-ARNT (not shown) and HIF2-α-ARNT (Figure 4B),
were obtained [48]. All determined structures present the position of the defined domains in relation
to each other in the functional heterodimers. In general, the individual PAS domains are not involved
in equal interactions, and the obtained structures are highly asymmetric. Importantly, two groups
of heterodimers (based on BMAL-1 or ARNT proteins as a dimerization partner) present separate
types of quaternary architecture. All domains in the BMAL-1 group are close spatially to each other
(Figure 4A), while ARNT domains do not create intramolecular interactions and can wrap up around a
partner protein (Figure 4B) [22,48].
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Figure 4. Representatives of the two groups of the bHLH–PAS heterodimers. (A) Overall structure of
the CLOCK-BMAL1 heterodimer (4f3l, [47]), (B) overall structure of the HIF2-α–ARNT heterodimer
(4zp4, [48]).

To date, all available structural information concerns mammalian bHLH–PAS proteins. There is
almost no information about the structure of proteins derived from other organisms, including
invertebrate D. melanogaster. It would be interesting to verify evolutionary conservation of the entire
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bHLH–PAS fold in different organisms. The majority of reported protein structures include defined
N-terminal domains, while the structural information about C-terminal regions is still missing and
limited to short peptides bound to interacting proteins [22]. An example is a short motif featuring a
conserved sequence LIXXL found in D. melanogaster MET and GCE, which represents a novel nuclear
receptor (NR) box. The Docking models of the MET/GCE NR box associating peptides to the orphan
nuclear receptor (FTZ-F1) ligand-binding domain (LBD) revealed their α-helical structure, necessary
for hydrophobic interaction [49].

4. Unique Properties of the C-Terminal Domains of bHLH–PAS Proteins as IDRs

While the N-terminal part of bHLH–PAS proteins is responsible for interactions with DNA,
ligands/cofactors binding, and heterodimerization, their C-termini are usually responsible for the
regulation of the protein and the activity of created complexes [50]. The variability of the amino
acid sequence of C-terminal fragments, their transactivation role, and the lack of homology to
any described domains prompted us to ask the question about the structural character of these
regions and the relationship of their character with the performed function. For a long time, it was
believed that spontaneous folding into a well-defined and stable tertiary structure is required for the
protein action [51]. However, it is actually known that more than 20–30% of eukaryotic proteins do
not have a stable tertiary structure in physiological conditions, but at the same time still perform
important biological functions. Such proteins are referred to as intrinsically disordered proteins (IDPs).
Simultaneously, over 70% of proteins involved in signal transduction cascades have long intrinsically
disordered regions (IDRs). Importantly, the lack of a defined structure is critical for the functionality of
IDPs and IDRs [52]. Additionally, the conformational plasticity and elongated shape make them a
frequent target of different kinds of post-translational modifications (phosphorylation, acetylation,
methylation, and others) that regulate protein activity [53]. IDPs were identified as elements of cellular
signaling which control mechanisms and protein interaction networks [54]. IDPs were also shown
to take part in disease-related signaling transduction; for example, intrinsically disordered amyloid
β-peptides are involved in Alzheimer’s disease [55]. Therefore, IDPs can be seen to be targets for drug
design strategies.

4.1. In Silico Analyses of Selected bHLH–PAS Proteins

To estimate the occurrence of putative IDRs in bHLH–PAS proteins, we performed in silico analyses
of the composition, hydropathy, and sequence complexity of amino acid sequences corresponding
to selected proteins. We used the previously described human SIM1 and SIM2, as well as their
D. melanogaster ortholog, SIM (Figure 5A), representing the class I of the family. To obtain a wider
spectrum, we studied other human class I members, AHR, HIF1-α, and CLOCK (Figure 5B), which are
engaged in different signal transduction pathways. As mentioned previously, class I proteins dimerize
with class II proteins to form a functional complex and are crucial for heterodimer specificity. As each
bHLH–PAS class II transcription factor is able to interact with different class I members, we found it to
be extremely interesting to perform in silico analysis of the structure of class II members. We chose
human ARNT, human BMAL1 (Figure 5C), and, additionally, D. melanogaster MET (Figure 5C) as a
unique protein with an unknown mammalian homolog. MET can be classified as a class II bHLH–PAS
family member based on its ability to not only create heterodimers with its paralog GCE, but also
homodimers [56].
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Figure 5. Prediction of intrinsically disordered regions. The top panel presents the domain structure of
the analyzed bHLH–PAS proteins. Pink indicates the bHLH domain, whereas blue represents PAS
domains. The length of the proteins is marked. The bottom panel presents a prediction of intrinsically
disordered regions based on the amino acid sequence of proteins. All calculations were performed
using PONDR-VLS2 software [57]. A score over 0.5 indicates disorder. (A) The class I proteins:
D. melanogaster SIM (red line) and its H. sapiens orthologs SIM1 (dashed red line) and SIM2 (dashed
grey line). (B) The class I proteins: H. sapiens AHR (violet line), HIF1-α (green line), and CLOCK
(violet dashed line). (C) The class II proteins: H. sapiens ortholog ARNT (blue line), BMAL-1 (blue
dashed line), and D. melanogaster Met (black line).

We performed in silico analysis using the predictors of intrinsically disordered regions:
PONDR-VSL2 [57], PONDR-FIT [58], IUPred [59], and IsUnstruct [60]. Since the results of all
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the employed predictors were compatible, for the purpose of simplicity, we decided to show only one
representative result (PONDR-VSL2) for each protein (Figure 5). All the results (Figure 5) substantiate
our hypothesis and indicate the intrinsic character of the long C-termini. It is worth noting that
for proteins representing class I (see Figure 5A,B), short ordered fragments in their C-termini are
visible. Such fragments are able to act as TAD/RPD or so-called molecular recognition elements
(MoREs) [61,62]. The presence of MoREs makes the interactions between partner proteins highly
specific and reversible [52]. The presented results revealed some subtle differences in the regions that
comprise preserved domains. The structure predicted for class I proteins (Figure 5A,B) is undeniably
more ordered, while class II proteins show a marked structure relaxation in their middle part (Figure 5C),
which is C-terminally linked to the PAS-A domain responsible for specificity of gene activation by
bHLH–PAS proteins [63]. Such a difference explains the ability of class II proteins to serve as an
interaction partner for different proteins [22]. The ability of IDRs (and IDPs) to interact with several
partners is an undeniable advantage in molecular recognition processes [64]. Importantly, the resulting
induced folding may differ depending on the binding partner. For example, a disordered region of p53
protein, a known cell cycle regulator and a tumor suppressor [65], folds into alpha helix or beta strand,
depending on the partner protein [66].

4.2. The Impact of Disordered Regions on Protein Function

The flexibility and disorder detected in individual C-termini can be related to the ability of
individual bHLH–PAS proteins to perform diverse functions. The differences between SIM1 and
SIM2 C-termini, regarding their opposite functions (gene activation/repression), have previously been
described. C-terminal regions of two other studied proteins, AHR (class I member) and ARNT (class II
member), are characterized by the presence of TADs [67], in which functions are mediated by CBP/p300
and RIP140 coactivators. The C-terminal region of ARNT was additionally proposed to be a crucial
activator of the estrogen receptor (ER) [68]. Interestingly, the suppression of AHR activity is also
connected with the C-terminus and is mediated by the binding of the small peptide inhibitor [69].
Another repressor of the AHR signaling pathway, AHRR, is distinguished from AHR by the presence
of three SUMOylation sites in its C-terminus. As shown, SUMOylation is crucial for full suppressive
activity of AHRR [70].

Moreover, the C-terminus of another studied protein, HIF1-α, is characterized by the presence of
TADs, and it also interacts with the CBP/p300 coactivator. The C-terminus is additionally responsible
for protein stability/degradation and contains sequence motifs influencing subcellular localization:
nuclear localization signal (NLS) and nuclear export signal (NES) [71,72].

Another remarkable class I bHLH–PAS protein is CLOCK, comprising a domain with histone
transacetylase (HAT) activity in the C-terminus. This domain is responsible for histones acetylation,
which affects the transcriptional stimulation of clock-controlled genes. Additional acetylation is
performed on the R537 residue of the partner protein, BMAL1. R537 residue is located in the C-terminal
part of BMAL1 and its modification facilitates the cryptochrome (CRY1)-mediated repression of specific
gene transcription [73]. Importantly, CRY1 competes with the CBP/p300 coactivator for BMAL1 TAD
binding, and is not able to bind the C-terminus in the paralog protein, BMAL2. Therefore, C-termini
distinguish the circadian functions of these two BMAL paralogs [74].

4.3. Structural Analysis of bHLH–PAS C-Terminal Fragments

To date, the only structurally characterized C-terminal fragment of the bHLH–PAS protein is
the D. melanogaster MET C-terminus (MET/C) [75]. It was shown by a series of in vitro analyses that
MET/C exhibits a highly disordered character and exists in a solution in extended flexible form with
predispositions for conformational changes. It is interesting to note that some short secondary motifs
in the structure of MET/C have been predicted. Such short ordered fragments can be important during
partner recognition and interactions. It was hypothesized that the intrinsic disorder of the C-terminal
fragment was indispensable for the functionality of MET due to it modulating the protein’s action
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in a context-specific way. It enables cross-talk between JH signaling and other signaling pathways
during D. melanogaster development. Previously, it was shown that Met interacts with FTZ-F1 by its
C-terminus [49], thereby modulating stage-specific responses to the hormones during D. melanogaster
metamorphosis [76].

As all the in vitro analyses results obtained for the MET/C [75] were consistent with the in silico
studies presented above (Figure 5C), we hypothesize that the disorder character of the bHLH–PAS
proteins subfamily C-terminal fragments can be a more common characteristic and also be very
important for their functionality. Previously, the importance of the disordered character of regions
flanking the bHLH domain of bHLH transcription factors was shown [77–79].

4.4. Structural Analysis of IDPs

While C-terminal regions of the bHLH–PAS family are considered as IDRs, it can be challenging
to detect and characterize them. The reason is that IDPs and IDRs do not adopt a single stable structure
and the energetically most favorable conformations can be very distinguished [80,81]. The tiny
conformational changes can promote IDPs/IDRs aggregation [82]. Additionally, it was shown that
IDPs/IDRs can be highly sensitive to proteolysis [83]. Currently, studies focused on the characterization
of IDRs and IDPs are rapidly developing, and techniques enabling the study of proteins in solution are
still improving.

There are a number of bioinformatics tools allowing primary recognition of disordered proteins.
Since IDPs are characterized by the specific aa composition (a low content of hydrophobic and a
high content of charged residues [84]), the Composition Profiler [85] is commonly used to compare
aa distribution between the studied protein and IDPs (DisProt3.4 database)/globular proteins (PDB
S25 database). Additionally, for IDPs and globular proteins distinguishing, the Uversky diagram
plotting mean net charge versus mean hydrophobicity is useful [86]. Disorder predictors (like
PONDR-VSL2 [57], PONDR-FIT [58], IUPred [59], and IsUnstruct [60] used in this work) allow
determining the probability of IDR occurrence utilizing the neural networks, trained on selected sets
of ordered and disordered sequences. Another predictor, DynaMine, provides information about
protein backbone flexibility [87,88]. IDPs, once purified, can be identified by various experimental
methods. First, the underestimated mobility during SDS-PAGE electrophoresis can indicate the
extended and elongated shape of the protein [75]. Hydrodynamic analysis comprising Size Exclusion
Chromatography (SEC) [89] and Analytical Ultracentrifugation (AUC) are commonly used to determine
hydrodynamic properties, like the Stokes radius (RS), the sedimentation coefficients (s), and the frictional
ratios (f/f0) [90]. The Circular Dichroism (CD) is useful for secondary structures content calculation [91].
All listed techniques allow obtaining preliminary insight into protein structure properties.

One technique commonly used to study the overall shape and structural transitions of biological
macromolecules in solution is small-angle X-ray scattering (SAXS) [92]. However, SAXS only provides
limited information about the low-resolution overall shape of the molecule, so it is important to
combine it with complementary high-resolution methods like NMR that present the local structure [93].
NMR offers unique opportunities that are based on analyzing the deviations from an idealized random
coil devoid of any structural propensity [94]. The random coil exhibits characteristic chemical shifts,
which are averages of all the possible conformations that amino acids can adopt in a solution. Therefore,
NMR chemical shift deviations from random coil values can be used to evaluate the local transient
secondary structure of IDPs [80]. The main problem during spectra assignments of IDPs is spectra
overlapping (low chemical shifts dispersion) and a significant proton exchange with bulk water that
reduces 1HN signal intensities, which in turn leads to low signal-to-noise ratios [94]. The exchange with
water can be reduced by conducting measurements in low temperature or low pH [95]. Low-resolution
spectra require the development of a novel NMR technique. Recently, IDP-dedicated methods such as
13C-direct detected experiments, paramagnetic relaxation enhancements (PREs), or residual dipolar
couplings (RDCs) have been described [96].
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5. Conclusions

The available structure characterization of bHLH–PAS proteins is limited to the relatively
well-conserved domains bHLH, PAS-A, and PAS-B. Importantly, all structures deposited in the Protein
Data Bank are obtained for mammalian family members, the majority of them being heterodimers.
On the other hand, the important parts of bHLH–PAS factors, which comprise their long C-termini,
have not yet been structurally characterized. These fragments perform important functions in the
specific modulation of protein action and for the recognition of interacting partners.

Performed in silico analysis revealed that the C-termini of representatives of the class I bHLH–PAS
protein family members (SIM, SIM1, SIM2, AHR, HIF1-α, and Clock), and also class II (ARNT, BMAL1,
and MET), are predicted as intrinsically disordered regions (IDRs) and are not homologous to any
described domains. We discussed the known functions of the presented C-termini proteins according
to their disorder character. Moreover, we proposed NMR techniques for intrinsically disordered
C-termini characterization [94]. We believe that the structural properties of subsequent IDRs predicted
in the sequences of bHLH–PAS transcription factors (mainly C-termini) need to be resolved for a full
understanding of the way of bHLH–PAS family transcription factors function.
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Abbreviations

Aa amino acid
AHR aryl hydrocarbon receptor
AHRR aryl hydrocarbon receptor repressor
ARNT aryl hydrocarbon receptor nuclear translocator
bHLH–PAS helix–loop–helix/Per-ARNT-SIM
CLOCK circadian locomotor output cycles protein kaput
CRY1 cryptochrome
DYS dysfusion protein
ER estrogen receptor
GCE germ cell-expressed protein
HAT histone transacetylase
HIF hypoxia-inducible factors
IDPs intrinsically disordered proteins
IDRs intrinsically disordered regions
JH juvenile hormone
LBD ligand-binding domain
MET methoprene-tolerant protein
MoREs molecular recognition elements
MET/C C-terminus of the MET protein
NES nuclear export signal
NLS nuclear localization signal
NMR Nuclear Resonance Magnetism
NPAS neuronal PAS domain-containing proteins
NR boxes nuclear receptor boxes
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PAC PAS-associated C-terminal motif
PDB Protein Data Bank
PREs paramagnetic relaxation enhancements
RDCs residual dipolar couplings
SAXS Small-angle X-ray Scattering
SIM single-minded proteins
SIMA similar protein
SS spineless protein
TAD or TRD transactivation or repression domain
TGO TANGO protein
TRH trachealess protein
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