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A B S T R A C T   

As health and safety issues emanating from human activities on terrestrial environment is 
becoming ever challenging, the production of Ordinary Portland Cement is identified as a key 
contributor. This technology threatens environmental quality by emitting significant quantity of 
carbon dioxide (CO2) that threatens Net Zero delivery. Consequently, the development of cement 
alternatives with substantial CO2 reduction/sequestration during production has become 
imperative. Geopolymers obtained from industrial residues are poised as promising alternatives in 
managing environmental systems but selection of appropriate method of activation has limited 
their wider industrial applications. This article discusses four key activation methods and their 
combinations used in four main feedstocks to advise on their energy requirements, product 
compressive strength and environmental/industrial applications. Reviewing and characterising 
302 published literatures with focus on most relevant and recent advances in the field, this review 
found that hybrid techniques combining mechanical activation method produces geopolymers 
with the highest compressive strength and thus the best method. Geopolymer made by mechano- 
chemical activation method of slag achieved the highest compressive strength while geopolymer 
produced by microwave assisted activation of clay and ultrasonic activation of fly ash cum slag 
are most economical in curing energy demand. Hybrid activation is the current development in 
the field and integration of this method with mechanical activation is poised as the future geo-
polymer activation technology as it demonstrates greatest efficiency potential.   

1. Introduction 

Production of Ordinary Portland Cement (OPC) used in Civil Engineering construction generates significant carbon dioxide (CO2) 
emissions during the process of calcination of limestone and other raw materials. The effect of CO2 on environment is reported in Refs. 
[1–13]. To reduce the quantity of CO2 emitted during production of construction materials globally, research on environmentally 
friendly construction material has evolved and is advancing. A common cementitious material identified as a potential OPC 
replacement is geopolymers [14–19]. Geopolymers were first discovered in the 1970’s by Davidovits who created the amorphous 
three-dimensional alumina-silicate binder materials [20–26] and named them geopolymers [27]. They are ceramic and thus inorganic 
in nature. They form alumino-silicate compound that is covalently bonded in non-crystalline (amorphous) structure [28]. Its raw 
materials are basically waste byproducts of various industrial operations such as fly ash and blast furnace slag. As an alternative to 

* Corresponding author. 
E-mail addresses: P4151192@tees.ac.uk, o.kehinde@tees.ac.uk (O. Kehinde), D.J.Hughes@tees.ac.uk (D.J. Hughes), E.Amalu@tees.ac.uk 

(E.H. Amalu).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e29771 
Received 2 February 2024; Received in revised form 23 March 2024; Accepted 15 April 2024   

mailto:P4151192@tees.ac.uk
mailto:o.kehinde@tees.ac.uk
mailto:D.J.Hughes@tees.ac.uk
mailto:E.Amalu@tees.ac.uk
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e29771
https://doi.org/10.1016/j.heliyon.2024.e29771
https://doi.org/10.1016/j.heliyon.2024.e29771
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e29771

2

Table 1 
Vital review papers in the field of geopolymer, feedstock and activation method.  

S/ 
N 

Author Paper title Focus Scope 

1 Mackenzie, K. J. D., & Welter, 
M. (2014). 

Geopolymer (aluminosilicate) 
composites: Synthesis, properties, and 
applications.  

* Synthesis, properties, and application of 
geopolymer matrix  

* Reviews the characteristics of fibre- 
reinforced geopolymer composites. 

Discussed only one 
activation method 

2 Singh, B., Ishwarya, G., Gupta, 
M., & Bhattacharyya, S. K. 
(2015). 

Geopolymer concrete: A review of some 
recent developments. Construction and 
Building Materials  

* Alkaline activation method  
* Mechanical/chemical behaviour of 

material 

Limited to fly ash 
Limited to one activation 
method 

3 Duxson, P., Fernández- 
Jiménez, A., Provis, J. L., 
Lukey, G. C., Palomo, A., & 
van Deventer, J. S. J. (2007) 

Geopolymer technology: the current 
state of the art 

showed that the raw materials and 
processing conditions are critical in 
determining the setting behavior, 
workability and chemical/physical 
properties of geopolymer production 

* Limited to one activation 
method 

4 Ramesh, G. (2021). Geopolymer Concrete: A Review. This paper help understand Geopolymer 
Concrete. 
It gave a quick review of the Geopolymer 
Concrete. 

Focused on one activation 
method. 

5 Zhang, M., Guo, H., El-Korchi, 
T., Zhang, G., & Tao, M. 
(2013) 

Experimental feasibility study of 
geopolymer as the next-generation soil 
stabilizer 

illustrated that metakaolin based 
geopolymer can be an effective soil stabilizer 
for clayey soils  

* Focused on one activation 
method  

* Limited to one feedstock 
material 

6 Palomo, A., Grutzeck, M. W., 
& Blanco, M. T. (1999) 

Alkali-activated fly ashes: A cement for 
the future 

mechanism of activation of a fly ash was 
highly alkaline solutions  

* Focused on one activation 
method  

* Limited to one feedstock 
material 

7 Davidovits, J. (2013). Geopolymer Cement a review. Reviewed various feedstock material  * Focused on one activation 
method 

8 Habert, G., D’Espinose De 
Lacaillerie, J. B., & Roussel, N. 
(2011). 

An environmental evaluation of 
geopolymer based concrete production: 
Reviewing current research trends  

* Life Cycle Assessment methodology.  
* Suggested the use of industrial waste that 

is not recyclable within other industries 
and secondly on the production of 
geopolymer concrete using a mix of blast 
furnace slag and activated clays.  

* Discussed two only two 
feedstock materials  

* Limited to determining 
only the environmental 
impact of geopolymer 
production 

9 Mehta, A., & Siddique, R. 
(2016). 

An overview of geopolymers derived 
from industrial by-products.  

* Pointed out that most works had been 
carried out on fly ash based geopolymers 
whereas very few works have been 
reported on the potential of other SCM’s  

* Stated that each feedstock material 
required different method of processing, 
different curing regimes as well as 
different mixture design  

* Discussed mostly Alkaline 
fusion activation method.  

* Focused on only curing 
time and compressive 
strength. 

10 M. I. Abdul Aleem, P. D. A. 
(2012) 

Geopolymer Concrete: A Review. reviewed the constituents of geopolymer 
concrete, its strength and potential 
applications.  

* Focused on one activation 
method  

* Limited to one feedstock 
material 

11 Djobo, J. N. Y., Elimbi, A., 
Tchakouté, H. K., & Kumar, S. 
(2016). 

Mechanical activation of volcanic ash 
for geopolymer synthesis: effect on 
reaction kinetics, gel characteristics, 
physical and mechanical properties. 

Mechanical Activation  * Focused on one activation 
method  

* Limited to one feedstock 
material 

12 Bao, S., Qin, L., Zhang, Y., Luo, 
Y., & Huang, X. (2021) 

A combined calcination method for 
activating mixed shale residue and red 
mud for preparation of geopolymer 

Higher reactivity and compress strength 
were obtained for combined calcination. 

Limited to one feedstock 
material 

13 Antunes Boca Santa, R. A., 
Bernardin, A. M., Riella, H. G., 
& Kuhnen, N. C. (2013) 

Geopolymer synthetized from bottom 
coal ash and calcined paper sludge 

The compressive strength results were about 
10–25 MPa  

* Limited to paper sludge 
and bottom ash  

* Compressive strength 
were limited to one 
activation method 

14 Allahverdi, A., & Mahinroosta, 
M. (2013). 

Mechanical activation of chemically 
activated high phosphorous slag 
content cement.  

* Feedstock were first chemically activated 
before the mechanically activated.  

* Mechanical activation greatly affects the 
compressive strength development 

Limited to slags. 

15 Balczár, I., Korim, T., Kovács, 
A., & Makó, É. (2016 

Mechanochemical and thermal 
activation of kaolin for manufacturing 
geopolymer mortars – Comparative 
study.  

* Mechanochemical activation of kaolinite 
can be a new and valuable method to 
manufacture geopolymer binders  

* Optimisation of the grinding process is a 
key issue to produce geopolymer mortars 
with adequate.  

* Limited to one feed stock 
material.  

* Focused one activation 
method 

(continued on next page) 
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OPC, geopolymers deployment supports environmentally friendly construction practices in which it 
enables more than 25 % cost reduction and 79 % decrease in CO2 emission [29]. Research on geopolymers based on metakaolin, fly 

ash, and various minerals has delivered product which has its compressive strength increased to about 65 MPa [30,31]. Research in 
this field may have dated back to the 1950s when Victor Glukhovsky discovered alkali-activated materials by mixing materials from 
volcanic ash and rock with alkali-activating solutions. However, in the late 1970s, Davidovits created an alkali-activated material 
using naturally occurring materials rich in silicon and aluminum which include kaolin and which is bounded in a solution of alkaline 
liquid [32]. 

Alkali activated materials (AAMs) and geopolymers are binding systems created when an alkali source reacts with aluminosilicates 
rich feedstocks [25,27,33–36]. Alkali sources which are mostly utilized include sodium-hydroxides or potassium-hydroxides [37,38]. 
Akali-activation impacts the product’s final characteristics and compressive strength based on PH and available alkali ions [39]. Life 
Cycle Assessment (LCA) is the best technique to analyze environmental impact of geopolymer cements [40,41], whilst the worst part of 
geopolymer carbon footprint is the alkali activators [16,42–50]. Pozzolanic materials such as ground granulated blast-furnace slag 
(GGBS), metakaolin (MK), pulverized fly ash (PFA), and their combinations are the basic feedstock geopolymeric binders [51]. Their 
properties are found significantly influenced by the Al–Si source and activator [20,52–54]. These aluminosilicate-rich materials are 
extensively used in evolving research in the field [55,56]. However, their limited availability limits their wider acceptability and 
deployment – demonstrated by the report [56] on challenges of fly ash global supply chain. About 40 % of coal-fired power companies 
in the United States have shut down in the past five years, while all power plants will be retired in the United Kingdom and the 
Netherlands by 2026–2030 [57]. Nonetheless, the global demand for GGBS as a supplementary cementitious material for OPC and 
concrete producers is substantial [56]. Therefore, it is crucial for researchers to find effective novel geopolymeric binders. 

Critical 16 review papers in the field of geopolymer, feedstock and activation method are identified. These are presented in Table 1. 
The Table outlines paper title, focus and scope. Analysis of the focus and scope reveals that feedstock activation methods in geopolymer 
synthetization has not been extensively covered in literature. Findings show that activation method is specific on geopolymer feedstock 
because effective material activation significantly depends on the activation method and the binder used. This is due to the material 
chemistry, chemical structure, and microstructure as well as the binder properties [58–60]. As geopolymers which are activated 
optimally have demonstrated better shear strength and durability in comparison with conventional binder and concrete whilst leaving 
trivial environmental imprint [61–68], research into critical methods of geopolymer feedstock activation has become attractive. 
Literature to date focuses on either feedstock or activation mechanism. No publication to date comprehensively compared and con-
trasted feedstock activation mechanisms for geopolymer cements. Current research is carried out to augment this knowledge gap. This 
study reviews methods of activation of geopolymer feedstocks to advise on their suitability for industrial applications. The review 
discusses the physical and mechanical properties of each feedstock and matches them with the appropriate activation methods. It 
outlines activation process energy requirement for each feedstock and curing temperature and duration to report on the improvement 
achieved in the compressive strength of feedstock product. This research demonstrates commonality of feedstocks among the acti-
vation methods to advise on technology penetration in the industry whilst presenting the limitations of the methods. 

2. Method and structure of review process 

For replicability and reproducibility, a systematic review method is implemented. This involves deployment of organized search 
strategies. Six academic paper search engines comprising ScienceDirect, Google scholar, Research gate, Springer, Google and Scopus 
are used for paper exploration. Key papers searched include journal article, conference paper, book, PhD thesis and dissertation. 
Keywords which informed the search include geopolymers, feedstocks activation, cement alternative, Ordinary Portland Cement 
(OPC), industrial residue, environmental issues from OPC, industry decarbonization methods, environmental impact of OPC. Selection 
criteria are: (i) Paper publication date must be from 1979, (ii) Paper has at least one keyword of current manuscript in abstract, (iii) 
Paper focus has strong alignment with current review paper focus. Search results produced 280+ journal articles, 11 conference 
papers, 7 textbooks, 2 PhD theses and dissertation. Analysis techniques employed include Venn diagram, Bar chart, and Quantitative 
analysis. Fig. 1 presented the schematic of the literature review process. The distribution of paper types over the publication range is 
presented in Fig. 2. The figure shows that 84.26 % of the papers are within 14 years of publication. 

Table 1 (continued ) 

S/ 
N 

Author Paper title Focus Scope 

16 Sun, Y., Zhang, P., Hu, J., Liu, 
B., Yang, J., Liang, S., Xiao, K., 
& Hou, H. (2021) 

A review on microwave irradiation to 
the properties of geopolymers: 
Mechanisms and challenges  

* Promising method of activation.  * Focused on one activation 
method  

* Energy consumption 
cannot be accurately 
measured.  

* Poor compressive 
strength  
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3. Geopolymers feedstock materials 

Several geopolymer feedstock materials exist but four main materials are discussed in this research. These are Kaolin, Fly ash, Slag, 
and Mine tailings. The materials comprise silica and alumina phases [69,70] and have been demonstrated as good materials for making 
geopolymers [71,72]. A detailed discussion on them is presented thus. 

3.1. Kaolin 

Kaolin, shown in Fig. 3(a)–is a whitish material [73]. It is a member of group of kaolinitic clays which comprises an even ratio of 

Fig. 2. Number of papers against publication year range.  

Fig. 1. Schematic of the literature review process.  
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clay minerals and have both octahedral and tetrahedral crystal structure [74–76]. Kaolinite, a typical clay mineral and the predom-
inant mineral in kaolin deposits, has low permeability [77–79]. It is relatively pure and useable for commercial purposes [80]. Owing 
to its unique physical and chemical characteristics, kaolinite can be used in a wide range of applications [80]. Metakaolin (MK), shown 
in Fig. 3(b)–is an anhydrous alumino silicate formed by the calcination of kaolin. When activated in alkali solution, it demonstrates 
high reactivity owing to its amorphous state [81–87]. The use of kaolin and MK (calcined kaolin) to produce geopolymer has piqued 
the interest of researchers, globally [75]. In 2012, concrete mix was created through activation of calcined kaolin with an alkali (a 
mixture of 6–10 mol of sodium hydroxide, NaOH and sodium silicate (Na2SiO3). The mixture was baked in an oven at 80 ◦C to generate 
a solidified product which was then pulverized to a fixed particle size powder. Increase in compressive strength resulting from stronger 
bond was observed in the geopolymer properties [88]. Kaolin geopolymers has demonstrated good volume stability in water. It does 
not crack or disintegrate - when solids-to-liquid ratio of the mix is in right proportion in concentrations ranging from 0.16 to. 

0.36. Key properties of geopolymers are resistant to chemical attack and good stability in adverse weather condition - demonstrated 
in their high durability [89]. 

The researchers [90] demonstrated how compressive strength of geopolymers can be regulated through mechanical activation 
[28]. They mechanically activated kaolin by dry ball milling at 250 rpm. The activated kaolin shows possession of crystalline hydrated 
structure. Synthesizing alkaline aluminosilicate gel by mixing alkaline solutions (Na2SiO3 + NaOH), they blended the gel with me-
chanically activated kaolin to produce a higher strength geopolymer. They reported that the strength regulation is occasioned by the 
presences of crystalline hydrated phase induced by the process. Presence of carbonated species in the mixture accounts for deterio-
ration of mechanical properties of geopolymers. 

The authors [91–93] prepared and characterized kaolin. They obtained geopolymer which is more stable and better mechanical 
properties. Geopolymer composites are produced when NaOH and Na2SiO3 are used as activators, water-cooled slag is used as start 
material and kaolin is fired at. 

800 ◦C for 2 h, heated at 5 ◦C per min and resulting substance cured for ninety days. Geopolymers produced in this process show 
improvement in the mechanical properties [94]. Generally, geopolymers produced from kaolin and alkaline activated binder have 
demonstrated improved mechanical properties [95–98] but higher cost of basic ingredients impacts on its cost [99]. 

3.2. Fly ash 

Since 1950s fly ash has been available globally and has been utilized in the construction of highways, worldwide [60,100,101]. Fly 
ash, shown in Fig. 4, is a waste material, a fine glass powder and a residue extracted from fumes produced during combustion of coal in 
electricity generation [100,102–105]. The substance consists of earth elements which are mostly silica, alumina, and iron. In the 
manufacture of Portland cement concrete, fly ash is utilized as a supplementry cementitious material (SCM) [106] because they are 
more eco-friendly than OPC [107]. Moreover, research has demonstrated that the water-reducing ability of fly ash can increase the 
fluidity of freshly laid concrete [108]. Two main categories of fly ash exist. These are low-calcium fly ash (created when anthracite or 
bituminous coal is burned), and high-calcium fly ash (formed when lignite or sub-bituminous coal is burned) [109–111]. However, as a 
source material, low-calcium fly ash is deemed preferrable over high-calcium fly ash. This is because calcium, in excessive concen-
trations, may influence the polymerization reaction and therefore affect the microstructure of the resulting composition [112–115]. 
The concrete industry and the Engineering Plan Approval advised that the use of fly ash as OPC has the potential to reduce CO2 
emission considerably [116]. One most significant advantage of utilizing fly ash for geopolymer synthesis is its abundance in com-
parison with alternate source materials [117,118]. In 2004 and 2005, a high-alkaline solution was used to chemically activate 
low-calcium (ASTM C 618 Class F) fly ash to form a paste which bind loose coarse and fine aggregates, as well as other unreacted 
materials in the mixture to form geopolymer concrete. The produced geopolymer demonstrated better properties which include 
greater compressive strength, more resistant to sulphate attack, low creep properties, and exhibited minimal drying shrinkage - making 
it ideal for construction purposes [119,120]. Low-calcium fly ash from a coal-burning power plant was utilized by Ref. [121] to create 

Fig. 3. (a) Kaolin (b) metakaolin.  
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the binder for manufacturing concrete. Geopolymer produced this way showes an outstanding compressive strength, trivial drying 
shrinkage, improved creep properties, greater resistance to sulphate and acid attack. 

Researchers [122] mixed fly ash with NaOH and Na2SiO3 as activators to produce geopolymers. They reported on the relationship 
among concrete strength, fly ash content and water absorption rate. When compared to normal concrete, geopolymer concretes 
demonstrate superior resistance to 3 % H2SO4 acid attack. In the studies [123,124], the effect of aggregate content, alkaline solution, 
fly ash ratio, Na2SiO3 to NaOH ratio, and curing method on mixtures are investigated. The study reported on the competitiveness of the 
mechanical properties of geopolymers in relation to the OPC concrete. The advantages of geopolymers over OPC concrete, especially in 
seawater environment, are outlined. Low calcium fly ash-based geopolymer concrete was cured at room temperature of 23 ◦C with no 
extra heat. A tiny quantity of additives was mixed with fly ash to speed up the early-stage reaction. The results demonstrate that 
appropriate geopolymer mixes for curing period could be created utilizing low calcium fly ash and additives as a cement substitution 
[125]. The researchers [126] investigated the effect of heat-curing on the transport properties of geopolymer concrete based on 
low-calcium fly ash. They reported on both electrical resistivity and compressive strength of the geopolymer. To improve fly ash 
bonding and thus mechanical properties of geopolymer made from it, a fifty-percentage mix content is recommended [127]. Similarly, 
to prevent premature deterioration of low calcium fly ash based geopolymer concrete creek bed in a high salinity, appropriate 
consideration of binder chemical reactions and prelim durability property testing are considered necessary as reported by Ref. [128]. 
In 2018, researchers [129] explored the mechanical properties and short-term durability characteristics of geopolymer concretes based 
on fly ash and slag. They reported that 100 % fly ash shows greater durability resistance when compared to OPC specimens. Many 
researchers including [130–134] proposed that fly ash activated by alkaline activator based on geopolymer technology has the po-
tential to significantly reduce carbon footprint of OPC concrete. The technology is poised to have huge potential for applications in the 
concrete industry as an alternative binder to Portland cement. 

3.3. Slag (GGBS) 

Ground Granulated Blast-furnace Slag (GGBS) is a byproduct of iron production process from the blast furnaces [135]. It is shown in 
Fig. 5 as a brown substance but can also be whitish in colour. Naturally, it is a cementitious material with good workability used in 
concrete production. Concrete and cementitious production were the first industrial and commercial applications that began 

Fig. 5. Slags.  

Fig. 4. Fly ash (FA).  

O. Kehinde et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e29771

7

around 1859 [136,137]. For many years, GGBS has been used as a geopolymeric component of concrete and in composite cements 
production. GGBS other properties include good pumpability, high compaction qualities, reduced permeability, increased resistant to 
chloride penetration, good protection from sulphate strike, high resistance against alkali silica reaction (ASR), a really low heat of 
hydration and an improved chemical stability [138–148]. Demonstration of these great properties has increased the attractiveness of 
research into the material. The researchers [149] studied the characteristics of concrete made using heated GGBS slag (GGBFS). Their 
results appear to indicate that applications involving high temperatures would be suitable for GGBFS- containing concrete. In an effort 
to lessen environmental issues associated with the production of cement and waste management [150], examined the potential for 
using limestone powder and blast furnace slag (BFS) as cement substitutes in concrete. Their findings demonstrate that LP and GGBS 
replacement levels of 5–10 % yield the highest compressive strength. The investigators [136,151,152], investigated the use of GGBS as 
a pozzolanic partial replacement for cement in concrete. These findings presented indicate that GGBS could be used successfully as 
feedstock geopolymer material. Many researchers [153,154] have reported on the relationship between utilization of GGBS and 
conservation of conventional construction materials that are rapidly depleting. The mechanical performance of concrete, including 
compressive strength, split tensile strength, and flexure, is enhanced with GGBS due to the pozzolanic reaction and micro fill of voids, 
however, an increased dosage decreases the physio-mechanical properties of the concrete [135,155]. As an alternative construction 
material, GGBS can minimize environmental pollution by reducing CO2 emissions during production as well as the rate of consumption 
of natural resources. 

3.4. Mine tailings (MT) 

Mine tailing (MT), shown in Fig. 6, is a feedstock material obtained from mine processing processes. MT is a type of tailing. The 
term "tailings" refers to a byproduct among many mineral processing plants. Tailings are combinations of squashed rock and processing 
fluids from mills, washeries, or extractors that remains after economic metals, minerals, mineral fuels, or coal have been extracted from 
a mine resource [156]. These facilities create two distinct product categories 

that can be classified as either economic or non-economic. Generally referred to as tailings, the non-economic product is made up of 
waste (by-product), trace amounts of valuable minerals or metals, chemicals, organic materials, and process water [157,158]. Mine 
tailings are the residual waste products generated during extraction of mineral ore’s economic fraction [159–161]. Since the early 
ages, billion tons of heavy metals (copper, lead, cobalt, zinc, cadmium, and chromium) have been extracted, and the production of 
mine tailings today is estimated to be between 5.5 and 8 billion tons annually globally [162]. Presence of this amount of tailing makes 
research on its management economically attractive [163,164] and the realization of the potential of utilizing it in the production of 
geopolymeric materials has accelerated the research in the area [165–169]. Researchers [170] investigated the durability and leaching 
behavior of MT-based geopolymer brick specimens. The experimental findings suggest that a key element influencing the leaching 
behavior is its solubility/reaction rate. Other forms of tailing can also be utilized [171–173]. Authors. 

[174] investigated the visibility of utilizing iron ore tailing (IOT) as a substitute to fine aggregate in the production of 
ultra-high-performance concrete. The presence of many inert phases in the tailings and the fact that their average particle size was 
substantially bigger than that of cement suggest that they could be used as fine aggregates. Sulphidic tailings from gold mine and 
phosphate mine tailings were used for the production of geopolymers by Refs. [175,176], the findings showed that GGBFS and sul-
phidic mine tailings from gold mining locations can be utilized as a raw material in alkali-activation [177–179]. Phosphate tailings 
could also be recycled to create sustainable geopolymers with good mechanical qualities. The researcher [180] used copper mine 
tailings in concrete production as a partial replacement for cement. The findings indicated that the compressive strength of concrete 
specimens produced with varying ratios of cement replacing mine tailings decreased with increasing replacement percentage, and the 
loss of compressive strength was higher at young ages, which was caused by delayed hydration process. The compressive strength of 
geopolymers made from mine tailings alone is typically lower. However, the addition of other ingredients appeared to have a more 
pronounced impact on the strength development [181]. 

Fig. 6. Mine tailings.  
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4. Feedstock activation methods 

Feedstock activation methods (AMs) are presented in six sub-headings. Sub-section 3.1 is the introduction. The critical methods of 
activation are discussed in sub-sections 3.2 to 3.6. 

4.1. Introduction 

There are two distinct stages of activation in the formation of geopolymer. These are binder and feedstock activations. Binder 
activation is widely described in literature. It is the mixing of feedstock material with alkali activator solution prior to curing to form 
geopolymer. Feedstock activation is a pre-process to the binder activation. The process increases the reactivity of bulk feedstock 
material prior to binding. Thus, feedstock activation is a critical pre-processing step which ensure high strengths and durability of 
geopolymer. As limited extensive and systematic structured reviews exist on feedstock activation methods, this review focuses on the 
method to provide an evaluation of the methods for suitable industrial applications. It also aims to provide information on the rela-
tionship between the methods and the properties of the geopolymers formed - especially their compressive strengths. 

A schematic representation of the development process of geopolymer cement is shown in Fig. 7. The process in simplified into four 
stages which are input material, activation, processing and output. The stage 1 is the input – which involves the collection of the 
feedstock material. The feedstock is passed into the stage 2 – which is the activation stage. Five critical activation methods are 
identified. These are the mechanical, thermal/calcination, Hybrid, micro-wave assisted treatment (MAT) and ultrasonic. The methods 
are discussed in detail in sub-section 3.2 to 3.6. After activation, the activated feedstock is processed further in stage 3 – which is the 
processing stage. This stage involves mixing of feedstock aggregates with alkali solution and allowing the matrix to cure under suitable 
conditions. At the stage 4 - which is the output stage - the geopolymer cement are produced after the matrix have cured. 

About 64 published peer reviewed papers are examined and used for this investigation. Venn diagram representation of the 
composition of the papers are presented in Fig. 8(a). The figure shows that 48 of the 64 papers are on AMs while the other 16 papers are 
on hybrid methods, (HM). The papers on AMs, shown in Fig. 8 (ai), comprises 24 papers on mechanical activation, 19 papers on 
thermal/calcination, 4 papers on ultrasonic activation, and 1 paper on microwave-assisted acid activation (MAT). Similarly, the papers 
on HM, shown in Fig. 8(aii) consist of 8 papers on mechanical and thermal activation, 6 papers on mechanical and chemical activation, 
1 

paper on chemical and thermal/calcination, and 1 paper on mechanical, thermal/calcination and chemical activation. 
Further details on the papers in terms of the AMs – including HM - and the corresponding feedstock materials used are presented in 

Fig. 8(b). Fig. 8(bi) shows the feedstock materials commonly used in each of the AM. This include feedstock that can be used in more 
than 1 a.m. Kaolin, Tailings, and Fly Ash demonstrate increased usage in more than 1 a.m. This is an added advantage in their pro-
cessability. Similarly, Fig. 8(bii) presents the feedstocks used in HM. Kaolin is found to be used by the HM consisting of mechanical, 
chemical and thermal/calcination. This demonstrated its popularity potentially due to its high processability within the HM. 

A detailed systematic structured review of the papers to characterize the AMs and HMs in terms of feedstock used, process energy 
requirement, product compressive strength, product curing temperature, and product curing time are presented in Table 2. Critical 
analyses of the information in the table is presented in Figs. 7–9. Fig. 7 depicts a plot of the compressive strength of the various 
geopolymers against the activation method and feedstock. It is observed that geopolymer made by mechano-chemical activation 
method of slag achieved the highest compressive strength of 55.6 MPa. Furthermore, geopolymer made by mech-thermal activation of 

Fig. 7. The development process of geopolymer cement.  
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Fig. 8. (a)Venn diagram of papers reviewed on geopolymer feedstock activation methods. (i) Activation method (AM); (ii) Hybrid Method (HM) (b): 
Venn diagram of feedstock in various activation methods:(i) Activation method (AM); (ii) Hybrid Method (HM). 

Table 2 
Detailed analysis of feedstock activation methods.  

S/ 
No 

Activation Method Feedstock Process Average Energy Improved Compressive 
Strength (MPa) 

Curing 
Temperature (0C) 

Curing 
Time (Days) 

Ref. 

1 Mechanical GBFS 200–500 rpm for 
30–120 min 

19 to 45  1 to 28 [182]  
Fly Ash (FA) 16 to 45 40 to 100 2 to 28 [183]  
Slag 23 to 25 20 to 80 28 [184,185]  
Kaolin 20.25 to 26.4 70 to 100 3 [186]  
Tailings 19 to 25 20 to 80 28 [187]  
Volcanic Ash 20.5 to 37.9 27 to 80 28 to 90 [188] 

2 Thermal/Calcination Kaolin 650 ◦C to 750 ◦C 20.08 to 28.55 20 to 60 28 [189–194]   
Shale Residue 29.53 to 32.54 20 to 60 28 [195] 

3 Micro-Wave Assisted 
Treatment (MAT) 

Clay 800W and 2.45 GHz – – 1–2min [196] 

4 Ultrasonic FA, GGBFS SiO2/K2O molar ratio 
of 1.25–1.86 

little to no effect 5 to 30 2 [197–200] 

5 Mech-Thermal Kaolin 600–800 ◦C 10 to 55 105 1 to 28 [201–205]  
Tailings 10 to 25 100 2 [206] 

6 Mechano-Chemical Slag 600–800 ◦C 20 to 55.6 20 to 60 28 [207]  
Kaolin 20 to 35 20 to 60 14 [208] 

7 Thermochemical/Alkali 
fusion 

FA, Bentonite, 
Tailings 

550 ◦C for 60–120 min 
at a rate of 1–5 ◦C/min 

28.2 to 40.6 20 to 80 2 to 28 [209–225]  

Volcanic Ash 13.89 to 19.6 27 2 to 28 [226–228]  
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Kaolin is in the second at 55 MPa while geopolymer made by mechanical activation of GBFS feedstock ranked third at 45 MPa. 
Similarly, the plot of curing temperature against activation method and feedstock presented in Fig. 8 reveals that mech-thermal 
activation of Kaolin requires the highest curing temperature among the activation methods. The temperature is circa 105 ◦C. Poly-
mers produced by activation of fly ash and Kaolin as well as those produced by mech-thermal activation of Tailings have equal curing 
temperature requirements of about 100 ◦C. These have demonstrated to be high energy processes. The figure shows that geopolymers 
made by ultrasonic activation of fly ash and GGBFS demonstrate lowest curing temperature requirement and thus are the best process 
in this regard. Moreover, a plot of curing time against activation method and feedstock is presented in Fig. 9. It is observed that 
geopolymer made from mechanical activation of Kaolin and Volcanic ash requires the highest curing time and thus are not ideal in this 
regard. Geopolymer production by MAT activation of Clay is found the most economical in terms of curing time. Geopolymer pro-
duction by ultrasonic activation of fly ash is identified the second-best process. A more specific discussion of each activation method is 
presented in the following sub-sections. 

4.2. Curing thermal energy 

The curing thermal energy (E), measured in degrees centigrade second (◦C hr) is defined as the quantity of heat over time required 
to cure the produced geopolymer. It is mathematically represented as: 

E=Qt = cΔTt  

E
C
=ΔTt (1)  

Where: Q is the heat required (joules), ΔT is the change in temperature over the curing process, t is the time duration of the curing 

Fig. 9. Plot of compressive strength against activation method and feedstock.  

Fig. 10. Plot of curing temperature against activation method and feedstock.  

Fig. 11. Plot of curing time against activation method and feedstock.  
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process, c is the specific heat capacity of the geopolymer, and E
C is the energy per unite specific heat capacity of the geopolymer. 

Implementing Eq. (1) and rationalizing the values of EC, Fig. 10 presents a plot of the rationalize values against the activation method 
and feedstock. This is a plot of the consumed over time in curing the respective geopolymers. The plot shows that polymers produced 
by MAT activation of clay and ultrasonic activation of fly ash and GGBFS are the best economic process with minimal energy 
requirement. (see Fig. 11). 

4.3. Mechanical activation 

It is one of the most effective activation methods for industrial solid waste because grinding has demonstrated increase in reactivity 
of geopolymeric materials [60,181] (see Fig. 12). This activation method is performed by using a mill grinder consisting of mainly a 
ball mill, vibratory and stir media. A vibratory disc mill and a ball grinning machine used in mechanical activation are shown in 
Fig. 13. 

(a) and Fig. 13 (b), respectively. The researchers [229–231] has reported on the effectiveness of ball mill grinding. Other re-
searchers including [232–238] also reported on potential increase in reactivity when the technique is employed. Other investigators 
[239] reported on increase compaction of geopolymeric when the technique is used. Mechanical activation technique is the key step to 
creating geopolymers [240] due to its significant impact on the specimen strength [241]. With reference to Table 2 [234,242–245], 
show that the geopolymers can achieve an increased compressive strength in the range of 60 %–80 %. Authors [246] demonstrated 
achievement of better compressive strength of 30 %–80 % when the curing time is increased from 70 ◦C for three days to 100 ◦C for one 
day. Most recently [247], stated that more than one activation technique for recycled waste could produce better results. Combining 

Fig. 12. Plot of curing thermal energy consumed against activation method and feedstock.  

Fig. 13. (a) SIEBTECHNIK TEMA T1000 vibratory disc mill (b) An 8000 M Mixer/MILL ball grinning machine.  
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mechanical, thermal and chemical activation is advised more so as [248] demonstrated quicker kinetic reaction of the geopolymer 
formation when performed with kaolin. 

4.4. Calcination activation 

This process involves the heating of waste material in a furnace/oven to an elevated temperature within a specific time range to 
remove moisture, volatile substance, oxidize a portion of the material, or render the solids friable/smaller before chemically activating 
the material. The furnace/oven could be electric or gas or other fuel fired. Fig. 14 shows a Carbolite GERO ELF 11/23 electric fired 
furnace. The temperature used during burning or calcining has an impact on the final product’s pozzolanic reactivity. The calcining 
temperatures causes the release of hydroxyls that increases the reactivity of the substance [249]. Table 2 shows the materials used for 
calcination activation technique are kaolin, coal ash, paper sludge and tailing (red mud). The geopolymer made from the feedstock 
demonstrated increase in compressive strength. This result is achieved owing to production of geopolymeric gel and denser matrices, 
when the calcination temperature is between 700oC to 950oC for one to 2 h and a curing temperature of 80 ◦C with increased time. The 
table also showed that coal ash and paper sludge were mixed in various proportions and the samples achieved good results [250]. It is 
observed that increase in the ratio of SiO2/Na2O increases the compressive strength of the geopolymer while increase in NaOH reduces 
the setting time [251]. However, the effect of the latter can be controlled with increase in curing time because [245,250] utilized 
10–15 ml of NaOH and 7 days curing time to achieve 10–27 MPa compressive strength polymer. This result demonstrates a 5.8–7.8 % 
increase from the 7 days curing compressive strength when cured for 28 days. Calcination activation technique has demonstrated 
potential as a good activation method which increases the reactivity of feedstocks [252],but the process produces 6–8 % CO2 in in-
dustrial scale [253] which makes it a contributor to global warming. This finding necessitated the need to develop a hybrid method 
[254]. 

4.5. Micro-wave assisted treatment (MAT) activation 

Micro-wave assisted treatment has been used for several applications - either to reduce treatment time duration, increase efficiency, 
improve solidification or stabilization [255–258]. MAT has been shown to be an effective technique [259,260] as it has an increased 
efficiency rate, a reduced energy consumption and trivial release of secondary pollutant during treatment [261]. In this technique, the 
grain boundary area is expanded and reconfigured, which promotes both plastic and viscos flow of particles. It supports mass transfer, 
particles compaction and forms the boundary which lowers substance pore holes and volume to generate polycrystalline sintered body 
[262]. It also significantly improves the geopolymerization process with a reduced polymerization time of 15 min as opposed to 28 
days and an optimal compressive strength of 18.8 MPa [258]. 

Microwave-assisted geopolymer preparation is a potential approach for preparing building material and immobilizing heavy 
metals. The incorporation of microwave technology into the geopolymer manufacturing process has significantly increased me-
chanical properties, optimized the microstructure, and enhanced heavy metal embedment [260]. Although the use of microwave 
technology in geopolymers has numerous benefits, it is still in its development phases and faces a number of obstacles before being 
used in manufacturing environments. Notably, only 40 %–70 % of the energy from electricity is converted into microwave energy 
[263,264]. Components of geopolymers have varied dielectric characteristics. Frequent interaction of microwave with molecules may 
result in a local temperature that is substantially greater than the bulk structure. 

Fig. 14. Carbolite GERO ELF 11/23 electric fired furnace Furnace  
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[265]. The phenomenon causes local overheating and erroneous temperature readings, which challenges analysis on how mi-
crowaves affect geopolymers [260]. 

4.6. Ultrasonic activation 

Ultrasonic activation technique uses a frequency of over 20 kHz to 1 GHz to cause a rapid change in pressure through cavitation. 
The cavitation process forms radicals that support the formation of composite [266]. This condition aids geopolymerization [267]. In 
2022 [268], stated that ultrasonic activation technique may not be required to produces geopolymers because the specimen produced 
were not far different from the conventional ones. However, referring to Table 2, this statement may be limited to fly/bottom ash 
materials. 

4.7. Hybrid method 

There have been numerous challenges with the activation process of geopolymers [34,269–274]. Geopolymer production, as have 
been discussed, can be challenging because the process needs special materials handlings at high temperature [275]. To create the best 
activation method, a hybrid approach is proposed by Ref. [247]. Hybrid method combines two or more activation techniques. These 
include mechanical and thermal, alkali fusion, mechanical and chemical (mechanochemical as often referred to as [276–278]), or a 
combination of mechanical, calcination, and alkali fusion. The hybrid method has been performed by many researchers that include 
[131,279–284]. Further discussion will focus on the alkali fusion method. 

5. Emerging feedstock activation techniques base on hybrid method 

Four key emerging technologies of feedstock activation based on hybrid methods are presented. The hybrid method basically 
comprising a combination of two of more activation methods. These are discussed in the sub-headings 4.1 to 4.4. 

5.1. Mechanical and thermal activation 

Mechanical plus thermal activation is a common method of activating feedstock materials. The method affects the mineral 
composition, chemical bond or functional group, microstructure, and thermal characteristics of the feedstock material [285]. This 
method is done by grinding and vibration the feedstock material to reduce it particle size followed by the calcination of the reduced 
particle size. The process makes it possible to improve the physio-mechanical properties of the cured geopolymer by up to 40 % [286] 
which substantially improve and impact the cementitious activity [247,250,287–290]. 

5.2. Mechano-chemical activation 

Mechanochemical activation is achieved by grinding the feedstock material in the presence of an additional chemical additive. 
Alkali-mechanical activation is the most reported in the literature. The process involves grinding feedstock with an alkali in a grinder 
prior to geopolymerisation. The performance of SCMs is greatly enhanced in excess of 44 MPa [281] by the use of mechano-chemical 
activation. In some instances, admixtures are used to alter grinding of feedstock materials and cause changes in the structure of 
cementous minerals [291]. This practice is demonstrated by Refs. [248,281,292]. Common chemical additives include phosphoric acid 
and aluminum silicates. 

5.3. Thermo-chemical activation 

Thermochemical activation is the thermal activation of a material in the presence of a chemical additive. This is commonly 
demonstrated in the literature and the process utilizes NaOH as the 

chemical additive. NaOH usage causes dehydration and/or a decarbonation processes that forms Na-rich crystalline phases [293]. 
The resulting new phases are a form of alkali fusion. Alkali fusion, a result of thermochemical activation, is used to digest materials 
containing silicates and replace sulfonic acid group with a hydroxyl group in a substitute aromatic ring [294,295]. The low reactive 
raw material is an alkali which is thermally activated by mixing the material with an alkali source such as sodium hydroxide - followed 
by calcination at a greater temperature than the melting point of the alkali source [296,297]. The modification of the crystalline phase 
is referred to as an alkali fusion. This method simply changes the aluminosilicate source mineral structure by producing more 
amorphous phases or some Na-rich crystalline phases [293]. Due to its microstructural and mineralogical modifications, alkali fusion 
has a significant impact on the reactivity of geopolymers [181]. 

Alkali fusion uses feedstocks which include fly ash [298,299], volcanic ash [300,301], volcanic scoria [294], granite [302], kaolin 
[303], and phosphate sludge [304]. Table 2 shown a couple of these. The authors [300] produced geopolymer which is synthesized 
from alkali fusion method by adding metakaolin to balance the Na/Al ratio. The resulting product exhibited low setting time of 6.5–15 
min, low shrinkage and increased compressive strength. Researcher [302] reported on the potential of granite waste as geopolymer. 
They employed alkali fusion method, increasing the Na2O content and achieved good compressive strengths ranging from 6 MPa to 40 
MPa. Optimal condition for alkali fusion for mine tailing is found to be 10 wt percent of NaOH at 550oC [293]. Furthermore, the degree 
of geopolymerization reaction for fly ash is 71 % of Al2O3 at a curing temperature of 37oC [298]. However, this technique is mostly 
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suited for recycling and utilization of low reactive aluminosilicate wastes. Although an efficient activation process as the addition of 
alkali more than 20 % into the mix increases the reactivity, it reduces the physio-mechanical properties of the produced geopolymer 
and a 10 % is proposed [293,302,305]. When compared to mechanical activation method using volcanic ash, samples from mechanical 
activation are found superior with compressive strength in the domain of 25, 39 and 33 MPa to alkali fusion in the range 15, 17 and 10 
MPa. Results are found dependent on the inclusion of water structure caused by muscovite which altered the mineralogical compo-
sition of the geopolymer formation [294]. 

5.4. Mechanical and calcination and chemical activation 

This is the type of activation technique that combined three methods. These are mechanical, thermal and chemical activations. This 
technique involves mechanically activating the feedstock first. An alkali source in then added in the mix which is calcinated at an 
elevated temperature greater than the melting point of the alkali source. The investigators [301] recorded a rise in strength between 
15 MPa and 41 MPa at 28 days curing – although the geopolymer strength decreased after 60 days of curing. Authors [303] recorded a 
maximum compressive strength of 28.2 MPa with 8 mol of NaOH silicate geopolymer at 27 ◦C within 28 days of curing. 

5.5. Current and future development in the field of geopolymer activation 

The methods of geopolymer activation (previous and current) both revealed in the review papers and projected based on the 
findings from the review are presented in Table 3. In analyzing the current development, it is found that the most relevant activation 
methods are thermochemical, mechanical and thermal activations. Furthermore, recent advances are identified as alkaline fusion, 
planetary & ball milling, and mechanochemistry. 

6. Conclusions 

As environmental issues arising from pollution are becoming uncontrollable, development of methods to reduce them has become 
urgent. Identifying the development of alternatives for OPC is promising but acquisition of knowledge on adequate characterization of 
feedstock activation methods is crucial to increase the technology attractiveness for wide penetration. Several conclusions are drawn 
from the findings of this extensive review. It outlines the critical role of geopolymer materials in the development of alternative cement 
for improved environmental management. 

This review finds that hybrid activation method which integrates mechanical activation is poised as the future geopolymer acti-
vation technology because it demonstrates greatest efficiency potential. This is a key finding of this review that is not reported in the 
literature. Kaolin, an environmental residue, is identified as the most widely used feedstock followed by an industrial residue, fly ash. 
Metakaolin and metal mine tailings are found to be good sources of geopolymer cement with great compressive strength. Penetration 
of kaolin as feedstocks is heightened by the 

realization that it is used by the hybrid method comprising mechanical, chemical and thermal/calcination. This demonstrates its 
popularity owing to its high processability. Fly ash is observed as the second most widely used feedstock after kaolin. The feedstock has 
exhibited properties which position it as eco-friendly supplemental cementitious waste materials rich in silica, alumina and iron. Its 
deployment demonstrates the potential of reducing global warming by about 48 %. 

Geopolymer made by mechano-chemical activation method of slag (GGBS) achieved the highest compressive strength of 55.6 MPa. 
This demonstrates slag’s strength as a good geopolymeric component of concrete, composite cements, and attractive alternative 
construction material - especially when improved mechanical properties are required. Geopolymer made by mech-thermal activation 
of kaolin has an average compressive strength of 55 MPa and sits in the second position. In terms of curing temperature, geopolymers 
made by ultrasonic activation of fly ash and GGBFS used the lowest curing temperature. The process is proposed as the best in terms of 
curing temperature demand. Furthermore, geopolymer production by MAT activation of clay is found the most reasonable in terms of 
curing time. This is followed by geopolymer produced by ultrasonic activation of fly ash. With the finding that geopolymers produced 
by MAT activation of clay and ultrasonic activation of fly ash and GGBFS require the least curing energy, the activation technique is 
proposed the best economic process in term of minimal energy requirement. 

Table 3 
Advances in geopolymer activation methods.  

S/ 
No 

Activation Methods 

Previous Current 

Previous method Single method Hybrid method 

1 Mechanical activation (MA) e.g., as grinding 
and crushing 

Mechanical activation e.g., planetary milling, 
ball milling. 

MA + CA, MA + Alkali fussion, MA + Calcination, 
MA + TA 

2 Chemical Activation (CA) e.g., Alkali Fussion MA + Alkali fussion, MA + TA 
3 Thermal Activation e.g., Heating, Thermal Activation e.g., Calcination. MA + TA 
4 – Microwave assisted Treatment MA + MAT 
5 – Ultrasonic Activation method (UAM) MA + UAM 
6 – – Thermochemical  
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Feedstock activation techniques integrating mechanical activation method are found the most effective techniques because the 
inclusion of the method produces geopolymers with high compressive strength. The impact of the method draws from its ability to 
decrease waste particle size to increase its reactivity. 

This review demonstrates the significant potential feedstock activation poses in expanding current geopolymer feedstock avail-
ability. However, further research is needed to refine and optimize these techniques. 
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[235] J.N.Y. Djobo, A. Elimbi, H.K. Tchakouté, S. Kumar, Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel 
characteristics, physical and mechanical properties, RSC Adv. 6 (45) (2016) 39106–39117. 

[236] S. Kumar, R. Kumar, Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer, Ceram. Int. 37 (2) (2011) 533–541, 
https://doi.org/10.1016/j.ceramint.2010.09.038. 

[237] G. Mucsi, Mechanical activation of power station fly ash by grinding – a review 68 (2) (2016). 
[238] B. Wei, Y. Zhang, S. Bao, Preparation of geopolymers from vanadium tailings by mechanical activation, Construct. Build. Mater. 145 (2017) 236–242, https:// 

doi.org/10.1016/j.conbuildmat.2017.03.234. 
[239] Nikoli, V., Komljenovi, M., Ba, Z., & Petrovi, R. (2014). Lead immobilization by geopolymers based on mechanically activated fl y ash. vol. 40, 8479–8488. 

https://doi.org/10.1016/j.ceramint.2014.01.059. 
[240] Michal Marcin, Klaudia Sandorova, Michal Matasovsky, Branislav Loch, Barbora Roth, Mechanical activation of slag and its influence on mechanical properties 

of geopolymers, Section Mineral Processing 17 (1.1) (2017) 889, https://doi.org/10.5593/sgem2017/11. 
[241] S. Kumar, R. Kumar, T.C. Alex, A. Bandopadhyay, S.P. Mehrotra, Effect of mechanically activated fly ash on the properties of geopolymer cement, in: 

Proceedings of the 4th World Congress on Geopolymer, 2005, pp. 113–116. 
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