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N6-methyladenosine (m6A) is the most common form of eukaryotic mRNA

modification, and it has been shown to exhibit broad regulatory activity

in yeast, plants, and mammals. The specific role of m6A methylation as a

regulator of spermatogenesis, however, has yet to be established. In this

experiment, through a series of preliminary studies and methylated RNA

immunoprecipitation sequencing, the m6A map of cattle-yak testicular tissue

was established as a means of exploring how m6A modification a�ects

cattle-yak male infertility. Cattle-yak testis tissues used in this study were

found to contain sertoli cells and spermatogonia. Relative to sexually mature

yak samples, those isolated from cattle-yak testis exhibited slightly reduced

levels of overall methylation, although these levels were significantly higher

than those in samples from pre-sexually mature yaks. Annotation analyses

revealed that di�erentially methylated peaks were most concentrated in

exonic regions, with progressively lower levels of concentration in the

3’-untranslated region (UTR) and 5’-UTR regions. To further explore the

role of such m6A modification, enrichment analyses were performed on

di�erentially methylated and di�erentially expressed genes in these samples.

For the cattle-yaks vs. 18-months-old yaks group comparisons, di�erentially

methylated genes were found to be associated with spermatogenesis-related

GO terms related to the cytoskeleton and actin-binding, as well as with

KEGG terms related to the regulation of the actin cytoskeleton and the MAPK

signaling pathway. Similarly, enrichment analyses performed for the cattle-yaks

vs. 5-years-old yaks comparison revealed di�erentially methylated genes to

be associated with GO terms related to protein ubiquitination, ubiquitin ligase

complexes, ubiquitin-dependent protein catabolism, and endocytotic activity,

as well as with KEGG terms related to apoptosis and the Fanconi anemia

pathway. Overall, enrichment analyses for the cattle-yaks vs. 18-months-old

yaks comparison were primarily associated with spermatogenesis, whereas

those for the cattle-yaks vs. 5-years-old yaks comparison were primarily

associated with apoptosis.
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Introduction

The yak (Bos grunniens) is a highly recognizable symbol

of the Qinghai-Tibet Plateau (QTP) and nearby high-altitude

regions where it is endemic (1, 2), primarily residing at altitudes

of 2,500–6,000m (3). Yaks are well-suited to surviving in the

harsh climate of the QTP, and can readily tolerate environmental

stressors including hypoxia, cold, and local diseases (3), serving

as the primary form of livestock for humans living in this area

(4). Highlanders use yaks both as pack animals and as a source

of meat, milk, fuel, and fur (5). They are also central components

of efforts to conserve agrobiodiversity, promote socio-economic

development, and maintain rangeland ecosystems in these

plateau regions (6). Relative to other cattle species, however, yaks

exhibit lower rates of growth, reduced production performance

(7), lower levels of fertility, and late sexual maturity (8). In most

cases, yaks present with short-lived, relatively inconspicuous

estrus behaviors beginning at 3–4 years of age, producing just

once every 2 years or twice every 3 years (9).

Interspecific hybridization can play a central role in the

adaptation and evolution of particular species in nature, with

heterosis often resulting from the hybridization of genetically

distinct animals (10). In an effort to improve yak production

performance, researchers and breeders have sought to combine

the excellent productivity of other cattle species with the

QTP-adapted traits of yaks, such as cold tolerance, through

interspecific hybridization (11). The resultant cattle-yaks, which

are a hybrid of yaks and conventional cattle (Bos taurus), possess

the high productivity of cattle and the adaptability of yaks

to high-altitude conditions (12). Cattle-yaks exhibit excellent

heterosis with respect to growth speed, disease resistance,

drought tolerance, meat quality, and adaptability to the plateau

environment (13, 14). Meat from these cattle-yak hybrids, which

are larger than yaks, contains higher levels of protein and lower

fat content as compared to yak meat, thus fulfilling a need

for the production of healthier high-quality foods fit for public

consumption (15). However, this heterosis cannot be effectively

leveraged owing to the fact that F1 male cattle-yaks exhibit an

inability to produce sperm, resulting in sterility (16). Despite

the normal development of external cattle-yak reproductive

organs, spermatogenesis in these hybrids is blocked after the

primary spermatocyte stage, with only a relatively small number

of autosomes from a few spermatocytes being evident in the

meiotic synaptonemal complex (SC) in these animals (17).

Prior research efforts have leveraged multifunctional strategies

including transcriptomic, proteomic, genetic, physiological,

and endocrinological approaches in an effort to clarify the

mechanistic basis for male hybrid sterility (12). However, the

mechanisms that ultimately drive male cattle-yak infertility have

yet to be firmly established.

Spermatogenesis is a complex process wherein diploid

spermatogonial stem cells (SSCs) undergo differentiation to

produce haploid spermatozoa through tightly regulated mitotic,

meiotic, and spermatogenic processes that are controlled at

the transcriptional, post-transcriptional, and translational levels

(18). Epigenetic regulation can also shape the development

of the male reproductive system, with both developmental

and environmental factors influencing the establishment

of epigenetic marks that, in turn, govern both the early

stages of embryonic development and gametogenic processes

(19). Several studies have shown that impaired epigenetic

dysregulation can disrupt human spermatogenesis, contributing

to male infertility and associated spermatogenesis disorders

(20). Over 100 different chemical RNA modifications have

been detected to date, including the N1-methyladenosine

(mlA), m6A, and 5-methylcytosine (m5C) modifications (21).

In eukaryotic cells, m6A is the most common form of RNA

modification (22), controlling all stages of the RNA metabolism

process including the folding, maturation, stabilization, and

translation of modified mRNAs (23). Notably, m6A RNA

modification has been shown to be crucial for male germ

line development, particularly in the context of mammalian

spermatogenesis (24, 25).

Analyses of testes tissue samples from a range of

species have highlighted relationships between the process

of spermatogenesis and RNA m6A modification (26–28).

Male mice in which the ALKBH5 gene has been knocked

out exhibit increased m6A levels and impaired fertility as

compared to wild-type (WT) littermates, suggesting a role for

this m6A demethylase in this physiological setting (29, 30).

Notably, METTL3-deficient murine embryonic stem cells

do not undergo normal differentiation, and the mutation of

METTL3 is associated with embryonic lethality in mice (29).

Two FTO mutations have been linked to reductions in semen

quality, and the dysfunction of the FTO protein has been tied to

decreased male fertility (31). Single-cell sequencing data from

human testis samples have revealed the expression of RNA

m6A regulatory genes in almost all testis cell types, including

both somatic and spermatogenic cells (32). Consistently,

knocking down FTO, ALKBH5, METTL3,METTL14, YTHDF2,

or YTHDC2 impairs normal gametogenesis and fertility

(33). These prior results thus strongly suggest that altered

RNA m6A modification may play a causative role in the

regulatory processes underlying the molecular pathogenesis of

male infertility.

The present study was developed with the goal of

studying the mechanisms underlying m6A modification and

associated regulatory processes in samples of testis tissue from

sterile male cattle-yaks. To that end, a MeRIP-seq approach

was used to establish whole transcriptomic m6A profiles

for samples of testis tissue from normal sexually matured

sterile male cattle-yaks. Using this approach, differentially

methylated peaks were identified by comparing 5-years-

old cattle-yaks (T group) with pre-sexually mature 18-

months-old yaks (Y group) and post-sexually mature 5-

years-old cattle-yaks (M group) that have been published
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previously (34), thus offering insight into the regulatory

importance of m6A methylation in the context of cattle-

yak sterility.

Materials and methods

Ethics statement

All animal-related procedures were consistent with

guidelines established by the China Council on Animal Care

and the Ministry of Agriculture of the People’s Republic of

China. The Animal Care and Use Committee of the Lanzhou

Institute of Husbandry and Pharmaceutical Sciences Chinese

Academy of Agricultural Sciences approved all yak handling

procedures for this study (Permit No: SYXK-2014-0002).

Tissue sample isolation

Samples of testicular tissue were harvested following

castration from three normal 5-years-old cattle-yaks in Xiahe

County, Gannan Tibetan Autonomous Prefecture (N34◦51 ’,

E102◦26 ’). Prior to tissue sample collection, iodophor was used

to disinfect the samples. After sample isolation, a surgical needle

was used to suture the wound site, with penicillin/streptomycin

then being administered to protect against infection. The

white testicular membrane was removed, and tissues were

rinsed using 1 × PBS. Samples were then minced into 5

cm3 segments and transferred to a cryotube, after which

they were snap-frozen using liquid nitrogen. A subsample of

these testicular tissue isolates was also immobilized in Bouin’s

Fluid (SolarBio, Beijing, China). Samples were transferred to

Lanzhou Institute of Husbandry and Pharmaceutical Sciences,

Chinese Academy of Agricultural Sciences for subsequent use

immediately after collection.

Hematoxylin and eosin staining

After fixation, testicular tissue samples were dehydrated

using 75% ethanol, paraffin-embedded, and cut into 6mm

sections that were then stained with an improved H&E staining

kit (SolarBio, Beijing, China) based on provided direction.

Sections were then sealed using neutral gum and imaged with a

Pannoramic 250 digital section scanner (Drnjier, Jinan, China).

RNA isolation and CDNA preparation

TRIzol (Invitrogen, CA, USA) was used to extract RNA

from tissue samples, after which the purity (OD260/280 ratio)

and concentration of RNA in these samples was measured with

a NanoDrop 2,000 instrument (ThermoFisher Scientific, MA,

United States). RNA at a concentration of 500–5,000 ng/mL

with an OD260/280 ratio of 1.9–2.1 was selected and diluted to

500 ng/mL. Then, cDNAwas prepared using a Transcriptor First

Strand cDNA Synthesis Kit (Takara Bio Inc., Dalian, China),

after which it was stored at−80◦C for subsequent use.

qPCR

Analyses of cattle-yak testis m6A status were performed

using appropriate primers (Supplementary Table S1), a

LightCycler R© 96 Instrument (Roche, Beijing, China), and

reaction conditions (Supplementary material) reported

previously (34). Analyzed RNA methylation-associated genes

detected via qPCR included METTL3, METTL14, WTAP,

FTO, ALKBH5, YTHDF1/2/3, YTHDC1/2, RBM15, VIRMA,

and ZC3H13. Relative gene expression levels were assessed

via the 2−11CT method (35), with GAPDH serving as a

normalization control. Analyses were repeated in triplicate, and

differences in gene expression were compared via analyses of

variance (ANOVAs).

m6A content analyses

An EpiQuik RNA Methylation Quantification Kit

(Epigentek, P-9005, NY, United States) was used to detect

mRNA m6A levels in cattle-yak testis samples based on

provided directions.

MeRIP-seq and RNA-seq analyses

Sequencing libraries (Supplementary material) were

prepared with the Illumina TrueSeq Stranded mRNA

platform as in prior reports (34). The Illumina HiSeq

X10 System at OE Biotech Co., Ltd. (Shanghai, China)

was used to perform paired-end sequencing. All data

were submitted to the Gene Expression Omnibus

(GEO) database (Accession number: GSE205649).

RNA-seq data were subjected to quality control and

statistical analyses (Supplementary material) as in prior

reports (34).

Statistical analysis

SPSS v 21.0 was used for all statistical analyses (36). Data

were compared via one-way ANOVAs, with P < 0.05 or P <

0.01 as the threshold of significance (37).
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Results

Histopathological analyses of cattle-yak
testicular tissue samples

Initially, histopathological examination of cattle-yak

testicular tissue samples was performed under a light

microscope (10x, Figure 1A). Visually, the seminiferous

tubules were loosely arranged with air bubbles between

them. When examined under further magnification (40×,

Figures 1B,C) germ cells in these testis tissues were found to

primarily be arranged in a spermatogonia monolayer attached

to the seminiferous tubule basement membrane with only

limited numbers of visible spermatocytes.

qPCR and global m6A quantification
analyses

Next, overall methylation levels were compared between

testicular tissue samples collected from 5-years-old cattle-yaks,

18-months-old yaks (pre-sexually mature yaks), and 5-years-old

yaks (post-sexuallymature yaks).While the levels of methylation

in 5-year-old yaks were higher than in 5-years-old cattle-yaks,

these differences were not significant. However, methylation

levels were significantly higher in testicular samples from

both 5-years-old yaks and cattle-yaks in comparison to

18-months-old yaks (Figure 2A). The mRNA level expression

of several methylation-related genes was also assessed in these

FIGURE 1

Cattle-yak testicular tissue sections. (A) 10× magnification; (B,C) 40× magnification.

FIGURE 2

Analyses of m6A levels in yak and cattle-yak testicular tissues. (A) Overall levels of testis tissue methylation. Y: 18-months-old yak, T: cattle-yak,

M: 5-years-old yak, **P < 0.01, *P < 0.05. (B) Methylation-related enzyme expression in the indicated yak groups. Di�erent lowercase letters

correspond to significant di�erences among groups (P < 0.05), whereas identical letters indicate a lack of any significant di�erences (P > 0.05).
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samples (Figure 2B), revealing that the majority of these genes

were downregulated in cattle-yak testicular samples relative to

those in samples from both 5-years-old and 18-months-old yaks.

Specifically, testicular METTL14, YTHDF1, YTHDF2, RBM15,

ZC3H13, and VIRMA expression was significantly reduced

in cattle-yaks relative to both analyzed yak samples, whereas

testicular WTAP, FTO, ALKBH5, YTHDC1, and YTHDC2

mRNA levels were significantly lower in cattle-yaks relative to 5-

years-old yaks, although they did not differ significantly relative

to 18-months-old yaks. Moreover, METTL3 and YTHDF3

expression was significantly increased in cattle-yaks relative to

18-months-old yaks, whereas they did not differ significantly

from levels in 5-years-old yaks. The observed alterations

in methylation-associated enzyme expression may underlie

profound differences in them6Amethylation status of cattle-yak

testicular tissues.

Sequencing data quality control and
reference genome comparisons

Next, the MeRIP-seq analysis of 6 samples was conducted

(Supplementary Table S2), yielding 43.31 Gb of clean data.

Each sample yielded 6.31–8.15 Gb of data, with Q30 base

distributions of 94.83%-96.30%, with an average GC content

of 56.70%. These reads were successfully aligned to a reference

genome (LU_Bosgru_v3.0: http://ftp://ftp.ensembl.org/pub/

release-99/fasta/bos_grunniens/dna/Bos_grunniens.LU_

Bosgru_v3.0.dna_sm.toplevel.Fa.gz, with alignment rates of

76.01%-89.07% (Supplementary Table S3).

Methylation peak detection and
annotation

Next, the whole transcriptome m6A profile for cattle-yak

testicular tissues were obtained by high-throughput sequencing.

A total of 16,186 peaks (Supplementary Table S4) were detected,

and the widths of most peaks was distributed between 1

bp and 1,000 bp (n = 8,059), for details of the numbers

of methylation peaks in each width range (see Table 1). For

TABLE 1 The numbers of methylation peaks in each width range.

Peaks width (bp) TES (number)

1–1,000 8,059

1,001–5,000 4,122

5,001–10,000 1,672

10,001–50,000 1,981

50,001–100,000 247

>100,000 105

further details regarding methylation peak width distributions,

see Supplementary Figure S1A. As the predicted methylation

sites varied among samples, they were next separated into five

reliability-based subcategories: Non-reliable, Low, Moderate,

High, and Very High (Supplementary Figure S1B). CHIPseeker-

based annotation results revealed 1–18 m6A peaks per

gene, with 54% of genes exhibiting only a single peak

(Supplementary Table S5), while the SYNE2 gene encoded on

chromosome 11 exhibited the highest number of peaks (18

m6A peaks).

Most peaks were concentrated in the exonic regions of

associated genes, with progressively fewer peaks in the 3’-UTR

and 5’-UTR regions (Figure 3A). To demonstrate representative

patterns of m6Amethylation, two model genes were selected for

depiction. For theVGLL3mRNA, peaks were present in the CDS

and 3’-UTR regions, while in the DONSON mRNA they were

located in the 3’-UTR, CDS, and 5’-UTR regions (Figure 3B). As

m6A modification is generally associated with the 5-RRACH-3

sequence (R = A or G; H = A, C or U) (38), the enrichment

of m6A peaks in the common RRACH sequence was assessed,

revealing comparable enrichment in these cattle-yak samples to

previously reported data (Figure 3C). These results thus offer

further credibility to these m6A peak data, supporting the

regulatory role of a ubiquitous mechanism governing patterns

of RNA methylation.

Detection and annotation of di�erentially
methylated peaks

Differentially methylated peaks (DMPs) were next analyzed

with the MeTDiff software (screening criteria: diff. p ≤

0.05; diff.fc ≥ 1.5), with 5,948 DMPs being identified for

the T vs. Y comparison, of which 3,953 and 2,843 were

upregulated and downregulated, respectively, in cattle-yak

samples (Figure 4A). Similarly, 5,946 DMPs were identified

for the T vs. M comparison, of which 3,103 and 2,843

were respectively upregulated and downregulated in cattle-yak

samples (Figure 4B). DMP width distributions are presented in

Supplementary Figure S1C. Distributions of detected DMPs on

gene functional elements were further annotated, revealing the

majority of these peaks to be concentrated in exonic regions,

followed by the 3’-UTR and 5’-UTR regions (Figure 4C).

Enrichment analyses of di�erentially
methylated peak-associated genes

To gain potential insight into the effects of m6Amethylation

on gene expression and function in the testes of sterile

male cattle-yaks, GO, and KEGG functional enrichment

analyses of genes bearing DMPs were next conducted.
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FIGURE 3

Cattle-yak methylation peak analyses. (A) mRNA methylation peak distributions. (B) IGV plots demonstrating peaks in the VGLL3 and DONSON

genes. (C) The motifs most commonly subjected to m6A modification in cattle-yak testicular samples.

GO analyses of the DMPs identified for the T vs. Y

comparison revealed these genes to be enriched for molecular

functions including cytoskeletal protein binding, tubulin

binding, and ubiquitin-like protein ligase binding, cellular

components including the microtubule organizing center,

cytoskeleton, and Golgi apparatus, and biological processes

including the cell cycle, cytoskeleton organization, and cell

differentiation (Figure 5A). KEGG analyses for the T vs. Y

comparison further indicated that DMP-associated genes were

significantly enriched in the regulation of actin cytoskeleton,

Notch signaling, cell cycle, and TGF-β signaling pathways

(Figure 5B). GO analyses for the T vs. M group comparison

similarly revealed DMPs to be enriched for molecular function

terms including microtubule binding, kinesin binding, and

protein serine/threonine kinase activity, cellular components

including microtubule-organizing centers, actin filaments, and

the ubiquitin ligase complex, and biological processes including

meiotic spindle organization, ubiquitin-dependent protein

catabolic process, and endocytosis (Figure 5C). KEGG analyses

for the T vs. M comparison additionally indicated that these

DMPs were associated with the homologous recombination,

apoptosis, steroid hormone biosynthesis, and Fanconi anemia

pathways (Figure 5B).

RNA-seq-based di�erential gene
enrichment analyses

Next, RNA-seq analyses were used to compare

changes in mRNA expression in cattle-yak testis tissues

(Supplementary Table S6). Relative to testis samples from

18-months-old yaks, cattle-yak samples exhibited 5,895 and

6,577 genes that were respectively up- and downregulated (P <

0.05, log2FC > 0.58). Relative to 5-years-old yak tissue samples,

cattle-yak samples exhibited 5,385 and 6,146 genes that were

up- and down-regulated, respectively (P < 0.05, log2FC >

0.58) (Figure 6C). GO analyses for differentially expressed genes

(DEGs) identified for the T vs. Y group comparison revealed

these genes to be enriched for molecular functions including

actin filament binding, protein serine/threonine kinase activity,

and ATP binding, cell components including the cytoskeleton,

cytoplasm, and centrosome, and biological processes including

spermatogenesis, actin filament organization, and intracellular

signal transduction (Figure 6A). KEGG analyses for the T vs. Y

comparison revealed these DEGs to be primarily enriched in

the cellular senescence, regulation of actin cytoskeleton, and

MAPK signaling pathways (Figure 6D). GO analyses for the T

vs. M comparison revealed associated DEGs to be enriched for
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FIGURE 4

Identification and annotation of di�erentially methylated peaks. (A,B) Volcano plots demonstrating di�erentially methylated peak distributions.

(C) Pie charts representing the annotation of DMPs associated with di�erent gene regions.

molecular function terms including ATP binding, actin filament

binding, and protein serine/threonine kinase activity, cellular

component terms including the cytoplasm, centrosome, and

microtubules, and biological process terms including spermatid

development, protein ubiquitination, and DNA replication-

dependent nucleosome assembly (Figure 6B). Similarly, KEGG

analyses for the T vs. M comparison revealed associated DEGs

to primarily be enriched in the apoptosis, regulation of actin

cytoskeleton, and Fanconi anemia pathways (Figure 6E).

Combined analysis of genes di�erentially
expressed and di�erentially methylated
in yak and cattle-yak testis samples

To gain additional insight into the link between m6A

methylation and mRNA expression, we further analyzed

genes that were both differentially methylated (Log2 FC

> 1, P < 0.05) and differentially expressed (log2 FC

> 1, P < 0.05). In total, 1,554 genes for the T vs. Y

comparison were significantly differentially methylated

and expressed, of which 812 exhibited increased m6A

peaks and increased mRNA expression, 371 exhibited

increased m6A peaks and decreased mRNA expression,

113 exhibited reduced m6A peaks and increased mRNA

expression, and 258 exhibited decreased m6A peaks and

decreased mRNA expression (Supplementary Table S7).

Moreover, 1,364 genes for the T vs. M comparison were

differentially expressed and differentially methylated, of

which 541 exhibited increased m6A peaks and increased

mRNA expression, 301 exhibited increased m6A peaks and

decreased mRNA expression, 226 exhibited decreased m6A

peaks and increased mRNA expression, and 296 exhibited

decreased m6A peaks and decreased mRNA expression

(Supplementary Table S8). For further details regarding the link
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FIGURE 5

Enrichment analyses. (A) GO analyses for the T vs. Y group. (B) KEGG analyses for the T vs. Y group. (C) GO analyses for the T vs. M group. (D)

KEGG analyses for the T vs. M group.

between m6A methylation status and mRNA expression levels

(see Figure 7A).

Lastly, qPCR analyses were performed to confirm the

expression of differentially methylated genes in testicular tissue

samples from yaks and cattle-yaks. The detected expression

patterns were consistent with RNA-seq results (Figure 7B), thus

validating these transcriptomic analyses.

Discussion

Distant hybridization is a term used to refer to hybridization

between relatively distantly related species or genera (39),

ultimately promoting the exchange of genes between different

biotypes and thereby contributing to altered genotypic and

phenotypic characteristics in the resultant offspring. Genotypic

changes associated with distant hybridization can arise at the

DNA and chromosomal levels, while at the phenotypic level

heterosis can arise as a result of the integration of the relative

advantages of the parents of a given offspring (40). Distant

hybridization can support the development of new species (41–

43), but male sterility is common among these hybrid offspring

as a consequence of reproductive isolation (44, 45).

Research to date on hybridization-related male sterility has

focused on crosses between chickens and quails, silver-black

foxes and blue foxes, horses and donkeys, Muscovy ducks and

domestic ducks, and yaks and cattle. Wodsedalek et al. (46)

posited that male mule infertility following the hybridization

of donkeys and horses may be attributable to differences in the

numbers of chromosomes in these parental species, contributing

to meiotic block and impaired spermatogenesis. Sun et al.

(47) and Feng et al. (48), in contrast, found that hybrid

offspring of quails and chickens exhibited the same number

of chromosomes as both parental species (2n = 78), but that
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FIGURE 6

Functional enrichment analyses for DEGs. (A) GO analyses for the T vs. Y group. (B) KEGG analyses for the T vs. Y group. (C) DEG statistics. (D)

GO analyses for the T vs. M group. (E) KEGG analyses for the T vs. M group.

the chromosome morphology in these hybrid offspring differed

significantly from that of either parent. Imbalances in gonadal

enzyme ratios and abnormal hormone offspring in the hybrid

offspring of Muscovy ducks and domestic ducks reportedly

contribute to abnormalities in testicular anatomy and germ

cell division in these animals, with an incomplete blood-testis

barrier also potentially contributing to male sterility in this case

(49). The prophase arrest of germ cell meiosis in the hybrid

offspring of silver-black foxes and blue foxes, together with

lower testosterone concentrations and increased prolactin and

LH concentrations, can adversely impact spermatogenesis (50).

In prior studies, cattle-yak seminiferous tubules were

reported to only harbor Sertoli cells and a limited number

of spermatogonia, whereas they were devoid of spermatocytes

or other identifiable germ cells. Moreover, these hybrid

testis samples exhibited a spermatogenic cell monolayer

that was loosely attached to the basement membrane, with

increased spermatogonia apoptosis and the disruption of

meiotic progression at the mid-pachytene (51). Consistently,

H&E staining of cattle-yak testis samples in the present

study revealed that only Sertoli cells and spermatogonia

were present within the seminiferous tubules, confirming the

accuracy of these sampling strategies. The anterior pituitary of

cattle-yaks was largely devoid of basophilic cells, with severe

segmentation of the nucleus of follicle-stimulating cells and

limited numbers of secretory granules, thereby contributing

to decreased FSH secretion, limiting seminiferous tubule

development (52). Shah et al. (6) employed a STA-PUT approach

to isolate spermatocytes and spermatogonia from cattle-yak

testis, revealing the diameters of these cells to be significantly

reduced relative to those of corresponding cells from yaks

or cattle. Cai et al. (53) conducted an RNA-seq analysis

assessing genes differentially expressed between yak and cattle-

yak testicular tissues, leading to the identification of a link

between NLRP14 and STRA8 upregulation and undifferentiated

spermatogonia accumulation and apoptosis in cattle-yak testes.

In contrast, the downregulation of the SPP1, SPIN2B, and

PIWIL1 genes was linked to impaired spermatogonia genomic
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FIGURE 7

Combined analyses of di�erentially expressed and di�erentially methylated genes. (A) A combined four-quadrant scatterplot highlighting genes

exhibiting significantly altered methylation and expression patterns when comparing the indicated samples, with gray dots corresponding to

genes that did not exhibit any significant di�erences. (B) qPCR-based validation of DEGs identified via RNA-seq analyses. **P < 0.01, *P<0.05.

integrity and cell cycle progression, with several other meiosis-

assocaited genes also exhibiting some level of downregulation

in this context. While many comprehensive analyses of these

cattle-yak hybrids have thus been conducted to date, the specific

mechanisms underlying male sterility in these animals has yet to

be established.

Further qPCR-based quantitative analyses of methylation-

associated enzymes in these animals revealed the majority

to be expressed at lower levels in cattle-yak testes relative

to testes from both 18-month-old and 5-year-old yaks. For

example, METTL14, YTHDF1, and RBM15 expression levels

were significantly reduced in cattle-yak testicular tissues relative

to tissues from 18-month-old and 5-year-old yaks, while

YTHDC2, FTO, and ALKBH5 levels were significantly reduced

in cattle-yak samples relative to those from 5-year-old yaks.

ALKBH5-mediated m6Amodification can influence the stability

and splicing of mRNAs with long 3’-UTRs in spermatocytes

and round spermatids (54). As such, the m6A modification

of ALKBH5 is critical to the meiotic and haploid stages of

the spermatogenic process (55). In mice, the knockout of

ALKBH5 can lead to the impairment of spermatogenesis and

associated male sterility (56). YTHDC2-KO mice, in contrast,

exhibit germ cells that fail to mature beyond the zygotic stage

(57). The dual knockout of both METTL3 and METTL14 can

suppress the translation of critical spermatogenesis-associated

transcripts linked to m6A modification, contributing to further

anaphase spermatogenesis abnormalities (18). Mutations in

FTO are positively correlated with reductions in semen quality

and may be linked to decreased male fertility (31). As such,

enzymes associated with the process of m6A methylation

are likely to be critical to the maintenance of normal male

reproductive function, with decreases in methylation-related
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enzyme expression thus representing one potential cause of male

cattle-yak sterility.

Methylation peaks in cattle-yak testis tissues were primarily

concentrated in exonic regions, with lower levels in the 3’-

UTR and 5’-UTR regions. Partial exon methylation peaks were

largely concentrated at sites proximal to stop codons, in line

with prior data from human and murine studies (58–60). Ke

et al. (61) reported that the majority of m6A-modified residues

are located near the final exon in a given transcript, providing

a mechanism for 3’-UTR regulation. As such, overall m6A site

distributions seem to be similar across different mammalian

species. In prior studies, m6A peaks were shown to be enriched

in regions harboring conserved RRACH motifs (58, 59), and

the same was true for many of the m6A-associated sequences

in the present study, in line with data from other studies of

yeast, amphibians, plants, and mammals (26). Overall, these

results provide support for the conservation of m6Amethylation

in mammals.

Functional enrichment analyses were conducted in an effort

to explore the biological roles of DEGs and DMPs identified

when comparing testis samples from cattle-yaks to those from

18-months-old or 5-year-old yaks. GO analyses for the T vs.

Y group comparison revealed genes that were differentially

expressed and differentially methylated to be associated with

spermatogenesis-related GO terms including cytoskeleton and

actin binding, and with the actin cytoskeleton regulation and

MAPK signaling KEGG pathways. Moreover, GO analyses

for the T vs. M group comparison revealed differentially

expressed and differentially methylated genes to be associated

with GO terms including protein ubiquitination, ubiquitin

ligase complexes, ubiquitin-dependent protein catabolism, and

endocytosis, and with the apoptosis and Fanconi anemia KEGG

pathways. Fanconi anemia (FA) is a rare autosomal recessive

genetic disorder in which patients experience progressive

bone marrow failure associated with a range of congenital

abnormalities, reduced fertility, and a higher risk of developing

leukemia and head and neck squamous cell carcinoma (62, 63).

Roughly 50% of women affected by FA are infertile, while

fertility is rare among males diagnosed with FA (64, 65). In

male FA patients, reduced fertility-related clinical symptoms

include major reductions in spermatozoa with concomitant

spermatozoa abnormalities, with Sertoli cell syndrome and

non-obstructive azoospermia often being diagnosed in these

individuals (66).

While methylation-associated enzymes are known to play

a key role in the spermatogenic process and cattle-yak m6A

transcriptional mapping has been conducted, how altered

methylation levels ultimately contribute to cattle-yak male

sterility has yet to be established. Here, analyses of cattle-yak

testicular methylation profiles were performed at the whole-

tissue level. However, the process of spermatogenesis is highly

complex and relies upon synergistic interactions amongmultiple

cell types. As such, further work will be necessary to establish

the cell type-specific effects of RNA methylation in the context

of male cattle-yak infertility. Future advances in single-cell

sequencing technologies have the potential to offer new insight

into the methylation of individual cells within cattle-yak testes,

providing a foundation for future functional research exploring

the link between m6A methylation and male cattle-yak sterility.

Conclusion

In summary, analyses m6A methylation levels in cattle-

yak testis tissues and associated gene enrichment analyses

were performed in this study. The expression of related

methylases in cattle-yak samples was significantly reduced

relative to that in yaks both before and after sexual maturity.

Enrichment analyses of differentially expressed genes and genes

associated with differentially methylated peaks indicated that

the differentially expressed genes identified when comparing

cattle-yaks and pre-sexually mature yaks were mainly associated

with spermatogenesis, including cytoskeleton and actin binding,

and actin cytoskeleton regulation. In contrast, differentially

expressed genes identified when comparing cattle-yaks and

sexually mature yaks were primarily associated with protein

ubiquitination, ubiquitin ligase complexes, ubiquitin-dependent

protein catabolism, and endocytosis, as well as with the

apoptosis and Fanconi anemia KEGG pathways.
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