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Abstract: Bacillus thuringiensis, commonly referred to as Bt, is an object of the lasting interest of
microbiologists due to its highly effective insecticidal properties, which make Bt a prominent source
of biologicals. To categorize the exuberance of Bt strains discovered, serotyping assays are utilized in
which flagellin serves as a primary seroreactive molecule. Despite its convenience, this approach is
not indicative of Bt strains’ phenotypes, neither it reflects actual phylogenetic relationships within
the species. In this respect, comparative genomic and proteomic techniques appear more informative,
but their use in Bt strain classification remains limited. In the present work, we used a bottom-up
proteomic approach based on fluorescent two-dimensional difference gel electrophoresis (2D-DIGE)
coupled with liquid chromatography/tandem mass spectrometry(LC-MS/MS) protein identification
to assess which stage of Bt culture, vegetative or spore, would be more informative for strain
characterization. To this end, the proteomic differences for the israelensis-attributed strains were
assessed to compare sporulating cultures of the virulent derivative to the avirulent one as well as
to the vegetative stage virulent bacteria. Using the same approach, virulent spores of the israelensis
strain were also compared to the spores of strains belonging to two other major Bt serovars, namely
darmstadiensis and thuringiensis. The identified proteins were analyzed regarding the presence of the
respective genes in the 104 Bt genome assemblies available at open access with serovar attributions
specified. Of 21 proteins identified, 15 were found to be encoded in all the present assemblies at
67% identity threshold, including several virulence factors. Notable, individual phylogenies of these
core genes conferred neither the serotyping nor the flagellin-based phylogeny but corroborated the
reconstruction based on phylogenomics approaches in terms of tree topology similarity. In its turn,
the distribution of accessory protein genes was not confined to the existing serovars. The obtained
results indicate that neither gene presence nor the core gene sequence may serve as distinctive
bases for the serovar attribution, undermining the notion that the serotyping system reflects strains’
phenotypic or genetic similarity. We also provide a set of loci, which fit in with the phylogenomics
data plausibly and thus may serve for draft phylogeny estimation of the novel strains.

Keywords: Bacillus thuringiensis; Bt; virulence factors; proteomics; 2D-DIGE; mass spectrometry;
phylogeny; pangenome; phylogenomics; serotyping; flagellin

1. Introduction

Bacillus thuringiensis (Bt) is a soil-dwelling spore-forming bacterium belonging to the
so-called Bacillus cereus sensu lato group of Bacillus species. Unlike its closest relatives, Bt
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is mostly known as a pathogen of numerous insect species and other invertebrate hosts.
Due to its specificity and pesticidal properties, Bt has been widely used as a source for
biologicals production since the 1920s [1]. Extensive use of Bt-derived pesticides resulted
in the isolation of numerous strains different in their phenotypes and host range. In order
to categorize them, several approaches have been proposed [2,3], of which a serotyping-
based classification remains a predominant one [4,5]. By definition, this approach implies
cell agglutination induction by antibodies recognizing variable epitopes of flagellin, a
structural protein of flagellar filament, with strains aggregated into serovars depending
on their shared affinity to the specific antibody type. By the end of the 20th century,
approximately 50,000 Bt strains had been isolated and contained worldwide [6], comprising
representatives of 80 different serovars [5]. By 2017, the number of serovars had increased
up to 86 [7].

Notwithstanding its widespread use, the serotyping classification was frequently
claimed to be irreflective of the strains’ genetic, phenotypic, or evolutionary common-
ality [8]. In this regard, the use of comparative genomic and/or proteomic techniques
provides a more reliable way of grouping Bt strains for practical purposes. To a certain
extent, the proteomic approach was incorporated in the classical Bt strain nomenclature
since the shape of crystaloferous inclusions is used as a diagnostic feature [4]. The use of
crystal morphology may be further reinforced by molecular analysis of the endotoxin genes
repertoire as well as by the involvement of numerous other virulence genes contributing
to strains’ pathogenicity [9]. Although most of these determinants are detectable at the
genomic level, proteomic assays may provide essential evidence for their distribution.
To date, both genomic and proteomic techniques are utilized in Bt studies, although the
number of comparative proteomics papers [10,11] is considerably smaller than that of
works on comparative genomics [12–15]. Ideally, the genomic and proteomic approaches
should be used in parallel in order to detect virulence factors that are either missing in
the proteome screening [16] or misannotated in the genomic data [17]. This combined ap-
proach is especially relevant when concerning the identification of Cry toxins, which tend
to fall out of the scope in both proteomic [11,16] and genomic [18] studies. However, the
phylogenetic outreach of virulence profiles should be interpreted with caution, provided
that the high rate of horizontal gene transfer among the Bc group members often leads to
an intermingling of virulent phenotypes both between Bt strains [19,20] and Bt and other
Bacillus species [21,22].

Although proteomics assays have been carried out on Bt to define the toxicity agents
of particular strains, none of them addresses the correlation of particular proteins with
the serovar attribution. In this work, we pried whether proteins detectable using common
proteomics techniques in spores or vegetative cells can be used as discriminating markers
for serological groups of Bt. To this end, we analyzed the proteomes of three Bt strains
belonging to different serovars as well as the proteome of one non-virulent descendant of
serovar israelensis using fluorescent two-dimensional difference protein gel electrophoresis
(2D-DIGE, [23]) with “bottom-up” protein identification by HPLC coupled with tandem
mass spectrometry [24,25]. When analyzing 2D-DIGE gels, we primarily focused on
differentially produced major proteins to test the applicability and efficacy of the “bottom-
up” proteomics approach for discerning between Bt serotype groups. The identification of
such major protein markers could provide insights into easy serotype delineation free from
limitations of the agglutination-base method. For the proteins annotated, the respective
gene identifiers were used to detect gene presence across the Bt pangenome. Further check
of core genes’ individual phylogeny was undertaken in order to elucidate whether these
genes reflect strain phylogeny and serological classification.

2. Results
2.1. Virulence Factors Are Enriched in the Proteomes of Bt var. israelensis Virulent Sporulating
Cultures Compared to the Avirulent and Vegetative Ones

Being large and widely used for dipteran pest control, serovar israelensis was selected
to assess the differences in the proteomic profiles between the vegetative cells and sporu-
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lating culture. Apart from the virulent strain 800/3 previously reported to harbor cry4 and
cry11 genes and active against the insects of Diptera order [26,27], spores of an avirulent
descendant strain, 800/3-15, were analyzed in order to assess the differences in the viru-
lence factors production (Figure 1a). To ensure that the cultures were sampled at the proper
time points, absorption profiles of the growing cultures were analyzed (Figure 1b). The
curvature of the graph corresponded with the time the culture was sampled in all three
cases, which stood for the stationary condition in the vegetative culture and cessation of
sporulation in the sporulating cultures.

Figure 1. Proteomic signatures associated with different stages of the lifecycle in two strains belonging to serovar israelensis.
(a) Microscope images of strain 800/3 vegetative culture (V), strain 800/3 virulent sporulating (S) culture, and strain
800/3-15 avirulent sporulating (A) culture All photos were taken at ×1000 magnitude in transmitted light. Scale bars are
given as black rectangles and denote 20 µm. Parasporal inclusions in the strain 800/3 spores were stained with Coomassie
Blue. (b) Growth curves of strain 800/3 and 800/3-15 cultures grown on T3 medium and strain 800/3 vegetative cultures
grown on LB solution medium. The purple arrow marks the time of the vegetative culture’s protein extraction, the black
arrow—spore cultures (c) 2D-DIGE image corresponding to the overlapping Cy2, Cy3, and Cy5 fluorochrome channels
of serovar israelensis proteomes. Red light channel indicates– proteins from strain 800/3, blue—strain 800/3 vegetative
cells proteins, and green—strain 800/3-15 spore proteins. (d) The COG term distribution among the proteins detected with
ESI-MS. COG annotation was assigned to the reference sequences by sequence homology using eggNOG mapper.
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The proteomes of all three samples were visualized with the 2D-DIGE technique
(Figure 1c). Further mass spectrometry of 32 most prominent protein spots and manual
analysis of the obtained results revealed a total of 19 non-redundant proteins detected
(Table S1). Of these, 13 entries were found in the proteome of strain 800/3 vegetative
culture, while eight and seven proteins were found in virulent and avirulent sporulating
cultures, respectively. A greater number of proteins found for the vegetative cells ordained
a higher diversity of functional groups according to the Clusters of Orthologous Groups
(COG) ontology (Figure 1d). Most of this abundance is dispersed among the household
proteins. These included five cell metabolism enzymes, three protein folding and turnover
mediators, and two translation elongation factors (for full protein names, see Table S1). Of
the rest three proteins, two entries were assigned to the ‘Function unknown’ COG term and
constituted a hypothetical protein and camelysin (CalY) M73 metalloprotease, and one was
identified as NprB neutral protease (assigned to the ‘Amino acid transport and metabolism’
category by eggNOG based on sequence homology). Only two of these proteins, CalY and
NprB, represent conventional Bt virulence factors.

Surprisingly, no three-domain Cry proteins were found in any sporulating cultures,
except for the two spots from the avirulent strain, which were discarded due to discrepant
motility features (data not shown). However, two ETX/MTX2-like proteins were found
in both 800/3, and 800/3-15 spores, of which one was annotated as Cry15Aa, and the
other one demonstrated high identity to the Cry60-like proteins from the NCBI Protein
database. Five spots associated exclusively with the virulent spores were also found to
contain a Cyt1-like protein. Moreover, the contents of two spots were annotated as an M6
metalloprotease highly similar to InhA1, and the contents of five spots were annotated as
camelysin CalY, the former having been attributed to the ‘Defense mechanisms’ COG term.
Additionally, an NprB protease was found exclusively in the virulent spores. Based on these
data, we assumed that, notwithstanding a higher functional diversity of vegetative culture
proteome, sporulating cells are more representative regarding the virulence determinants;
therefore, we used proteomes of sporulating cells to compare different Bt serovars.

2.2. Spores of Serovars Israelenses, Darmstatdiensis, and Thuringiensis Demonstrate Distinct
Patterns of Protein Presence

We next selected two other crystalliferous strains, 109/25 and 800/15, to portray their
spore proteome profile and compare it to that of strain 800/3’s. The choice of the strains
was motivated by their belonging to the serovars broadly used for biologicals production,
with strain 109/25 attributed to serovar darmstatdiensis and strain 800/15 representing
serovar thuringiensis, respectively. Upon sporulation, both strains produce toxic crystals of
conservative shape (Figure 2a,b), which demonstrate toxicity either to Coleoptera (strain
109/25) [28] or to Lepidoptera species (strain 800/15) [29]. As in the previous case, the
sporulating status of the bacterial cultures was proved by both phase-contrast microscopy
(Figure 2a) and growth curve reconstruction (Figure 2b).

By using the same proteomic protocol as applied to the israelensis cultures solely, we
detected a total of 10 non-redundant proteins distributed between 30 fluorescent spots
(Figure 2c, Table S2). Because most of the DIGE spots belonging to the strain 800/3 spores
reproduced between the replicates, the identification results for this strain were transferred
from the previous assay (see Figure 1 and Table S1). Of the proteins detected, five were
found in strain 800/15, and only three proteins were detected in spores of strain 109/25.
Such modest numbers correspond to the results previously obtained for serovar israelensis
spore proteomes and are consistent with the general notion that spores are metabolically
inactive and thus have a lower proteome abundance. Despite all the strains form crystal
inclusions (Figures 1a and 2a), three-domain Cry toxins were not detected in either of the
strains again, and no ETX/MTX-like or Cyt-like toxins were found in spores of serovars
darmstatdiensis and thuringiensis. The few identified proteins, however, represented bona
fide virulence factors, such as CalY and InhA1 found in all three strains and NprB found in
strains 800/3 and 109/25. The only notable exceptions were two proteins from strain 800/15
spores annotated as ATP synthase subunit beta and bifunctional metallophosphatase/5′-
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nucleotidase, respectively, which mapped to the cell metabolism-associated COG terms
(Figure 2d).

Figure 2. Proteomic signatures of Bt strains 109/25 (serovar darmstatdiensis), 800/3 (serovar israelensis), and 800/15 (serovar
thuringiensis) (a) Microscope images of strain 109/25, strain 800/3, and strain 800/15 sporulating cultures All photos were
taken at ×1000 magnitude in transmitted light. Scale bars are given as black rectangles and denote 20 µm. Parasporal
inclusions were stained with Coomassie Blue. (b) Growth curves of strains’ 109/25, 800/15, and 800/3 cultures grown on
T3 medium. The growth curve for strain 800/3 sporulating culture is the same as in Figure 1d. The black arrow marks
the time of the spore culture’s protein extraction (c) 2D-DIGE image corresponding to the overlapping Cy2, Cy3, and Cy5
fluorochrome channels of Bt serovars spore proteomes. Red light channel indicates- proteins from strain 800/3, blue—strain
109/25 proteins, and green—800/15 proteins. (d) The COG term distribution among the proteins detected with ESI-MS.
COG annotation was assigned to the reference sequences by sequence homology using eggNOG mapper.

Although very few proteins were identified in the spore proteomes, their connection
to the strains’ virulent properties appeared more convincing than in vegetative cultures.
Moreover, the presence of both shared and strain-specific genes allowed us to further
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compare the virulence factors repertoires and assign them to the serotyping positions of
the strains.

2.3. The Distribution of Genes Corresponding to Products Identified with Proteomics Assay among
Bt Genomes Does Not Support Strains’ Serovar Attribution

We then went on to visualize the difference between strains and stages of the
bacteria life cycle using the principal component analysis (PCA) followed by k-means
clusterization. Before conducting the analysis, the data were binarized according to
the presence/absence of proteins within the proteomes (Table S3). The elbow method
revealed that just two clusters were optimal to be used (Figure S1). Most of the samples
(including virulent/avirulent derivates of the israelensis serovar as well as thuringien-
sis and darmstadiensis serovars) at the spore-forming stage grouped together, whilst
vegetative bacterial cells formed a solitary cluster (Figure 3a). Using dots distribution
at 2D-DIGE gel instead of only identified proteins increased PCA plot resolution and
resulted in three clusters (Figure S2a,b) with sporulating cultures of virulent and aviru-
lent israelensis strains clustered together separately from thuringiensis and darmstadiensis
cluster. Unfortunately, the distribution of the dots at 2D-DIGE gels is difficult to use as a
reliable method for strains’ serotyping (Figure 3b).

Figure 3. The distribution of genes related to proteins identified during the proteomic assay among analyzed samples
and publicly available Bt genomes. (a) A k-means algorithm clustering results based on binarized proteomic data. ‘A’
and ‘I’ denote avirulent and virulent spores belonging to israelensis serovar, respectively; ‘T’ and ’D’ stand for thuringiensis
and darmstadiensis serovars; ‘V’ signifies vegetative cells of strain 800/3. (b) The presence/absence of proteins and the
corresponding genes among proteomes and genome assemblies with regard to their serovar’s attribution. Red color
denotes a gene’s presence in a genome. Blue color indicates the presence of a protein in a proteome; yellow color is used
if the protein/gene was found both in the proteome and genome belonging to identical serovars. Red and yellow colors’
intensity is proportional to the number of genomes in which it was detected. (c) The presence/absence of genes encoding
proteomically-derived proteins among 104 Bt assemblies (15 core genes are not shown).
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As it can be inferred from the resulting data, the discriminating status of proteins
specific to particular serovars (or, at least, strains) remained uncertain due to the limited
resolution of the proteomic approach chosen. A plausible way to test this association is
to evaluate the presence of the respective genes in the available genome sequences. No
genome assemblies have been produced for the used strains so far; however, representative
genomes for each serovar as well as other major serovars are available at the NCBI Assembly
database and thus can be used to test this hypothesis on a larger scale. To this end, the
distribution of genes encoding proteome-inferred products among the quality-filtered
104 genome assemblies was dissected (Table S4). We first narrowed down the analyzed
set of genomes to 3 serovars assayed by proteomics techniques and averaged the genes’
occurrence for assemblies belonging to the same serovars. As a result, 17 of 21 genes
were pinpointed in all genome assemblies, 3 genes (WP_000985643.1, WP_000156601.1,
A0A369CP21) were present in one israelensis-assigned genome out of 3, and the remaining
gene (P0A382) was absent in any assembly.

Thenceforth, gene distribution was analyzed for all 104 assemblies. Of the genes
analyzed, 15 were considered core domestic genes as their orthologs were found in every
assembly (Figure S3, Tables S6 and S7). The remaining genes showed sporadic occurrence
within the genomes. Notably, the dissimilarities corresponding to what was mentioned
above were noticed for WP_000265588.1 and WP_000265545 (Figure 3c) co-occurrence for
several serovars such as aizawai, andalousiensis, canadensis, coreanensis, and galleriae. The
results obtained indicate that the usage of proteomically-inferred products in terms of their
presence/absence in genomes does not corroborate the strains’ serovar attribution and
cannot be used as a method for unambiguous serotyping independently of the mass-spec
resolution. This observation stressed the need to reconstruct the Bt strains’ phylogeny
based on either the well-known single-reference markers or phylogenomic inferences.

2.4. Pangenome-Wise Phylogeny Does Not Also Correlate with Serotyping Classification
2.4.1. Pangenome Reconstruction

We performed a pangenome construction as a starting point for a phylogenomic study.
We used a two-step Roary-based approach with the first run of Roary with 150 genomes
downloaded from the NCBI assembly database with serovar attributions specified. After
filtering the assemblies that did not pass the 50% threshold of common genes (for more
details, consult Section 4.5.3), 104 genomes were kept for further examination. The resulting
pangenome contained 57854 genes in total; 1965 of them were defined as core genes and
377 as soft core (Figure S4a–c).

2.4.2. Pangenome-Derived Phylogeny

The phylogeny based on the pangenome could be constructed in two principal ways.
First, we used the data on the presence/absence of accessory genes and cluster genomes
with similar patterns. Howbeit, such an approach lacks the strength to reveal phylogenetic
relationships and could only be considered a quick insight into the data. Thus, we addition-
ally applied an ML-based (maximum likelihood) algorithm based on multiple sequence
alignment of core genes.

The tree built on the presence/absence data was generated by Roary internal script
with the FastTree utility. Subsequently, single nucleotide polymorphisms (SNPs) from the
concatenated core genes’ alignment were retrieved to reduce the running time and memory
usage during phylogenetic inference. The final pre-filtered alignment was 279 kb long,
with a mean identity of 73.2%. The trees were characterized by high mean support values
(91 and 86, respectively). It is noteworthy that the trees exhibited a noticeable topological
similarity (90%). Importantly, we observed a marked discrepancy between serovar attribu-
tion and a pattern of clade formation within both trees. Genomes belonging to serovars
aizawai, galleriae, and tolworthi split sufficiently in the presence/absence tree, whilst the
core SNPs-based tree was characterized by a remarkable divergence for representatives
of serovars darmstadiensis and indiana (Figure S5a,b). Therefore, we proceeded with tree
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construction emanated from flagellin sequences, which is considered the main antigen
used for serotyping [4], to test whether it would dovetail with serotyping.

2.5. Flagellin-Based Phylogeny Is Remarkably Distinct from the Pangenome-Based Inference

Phylogenetic trees can be constructed based on amino acid or nucleotide sequences.
The latter diverges faster than the former; therefore, we have used nucleotide sequences for
tree building to separate flagellin sequences from close Bt strains. An additional rationale
for the nucleotide sequence use was obtained by comparing the gyrB nucleotide- and amino
acid-derived trees to the original Roary clusters (Figure S5c–e, Table S8). We then utilized
28 orthologous flagellin clusters produced by Roary as a basis (Tables S9 and S10). To verify
that we have found all flagellin genes, we conducted an independent HMM-based (Hidden
Markov Chain) search with hag-based hmm-models. The consistency between HMMER-
and Roary-detected flagellin hits was examined. These two approaches displayed a striking
resemblance (Table S11). Then, the flagellin ML-tree was build using the sequences related
to the largest Roary cluster.

Thereafter, we focused on comparing the topologies of pangenome- and flagellin-
originated phylogenies. Remarkably, the phylogenies demonstrated a huge dissimilitude
revealed both by a tanglegram tree representation (Figure 4) and quartet distance calcula-
tion (46%). Although some serovars were more closely grouped in the flagellin-based tree
compared to the core SNPs-derived tree (e.g., andalousiensis, coreanensis, indiana), others,
conversely, broke into separate clusters, such as kurstaki and galleriae. Thereupon, none
of the approaches used is consistent with serovars’ attribution. Given that, we decided
to explore a broader landscape of ANI(Average Nucleotide Identity)-based clusterization
indifferent to trees’ topology. After applying PCA on the ANI matrix, two distinct serovar
groups were obtained (Figure S6a,b, Table S12). While such an approach mainly tended
to preserve all the representatives of a particular serovar in one cluster, notable exclu-
sions were observed. For instance, assemblies with some serotype attributions, namely,
andalousiensis, canadensis, coreanensis, fell into different clusters (Table S12).

2.6. Single-Loci and Genome-Wise Phylogenetic Trees Are Consistent with Each Other and
Serotyping Classification at Different Degree

Considering the results with gene absence/presence, core SNPs, and flagellin trees,
we suggested verifying whether any of the single loci- or full genome-derived trees would
finely reflect the immunological serovars’ classification. First, we scrutinized genomic
data in a holistic manner using two categories of methods. The first one employed ANI,
which was determined by calculating Mash distance. The second method implied that the
whole-genome alignment was made with the minimap tool, followed by counting double
the number of matches normalized by the sum of genome lengths. The results of both
approaches were represented as matrixes, which were used for the hierarchical clustering
procedure (Table S13, Figure S7a,b). Unquestionably, the obtained dendrograms are not
distinctive phylogenies; notwithstanding, the samples’ grouping patterns could be infor-
mative and helpful in assessing ML-trees’ quality. The dendrograms were characterized
by a strong topological resemblance between themselves and phylogenomic trees as well
(Table S14, Figure 5a).

To assess whether any phylogeny of the core genes-encoding proteins identified
with the proteomic approach describes the serotyping categorization more accurately
than the flagellin’s one, we built phylogenetic trees for each of their loci. We also built a
tree for concatenated genes gyrA and gyrB, which are known to be good phylogenetic
markers for the Bacillus genus [30]. For each of the 15 genes found in all studied
assemblies, nucleotide sequences were retrieved according to Roary-generated clusters
(Table S10). After aligning and evaluating optimal evolutionary models, ML-trees were
constructed (Table S8, Figure S5g–u). Trees obtained demonstrated immense diversity in
quality, ranging in mean supporting values and the number of unique CD-HIT clusters,
while all of them exhibited similar mean inter-sequence identity (94–99%, Table S8).
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We then conducted a topology-comparing survey to identify single loci phylogenetic
markers finely concordant with the phylogenomic approach. A representation of data as
a heatmap allowed us to reveal distinctive patterns (Figure 5a). While most trees were
remarkably concordant (75% mean similarity, Table S14), the flagellin-derived tree vastly
differed from other trees (44% on average). We also calculated the average similarity score
between every loci-evolved tree and 4 references (trees based on binary presence/absence
of accessory genes, core SNPs, mash distance, and full genomes’ pairwise identity, respec-
tively, Figure 5b), which clarified details. Of all the cases, widely adopted usage of the
gyrase sequences for Bt strains delineation was also the most appropriate variant reflecting
phylogenetic relationships (with a score of 91%). Notably, we revealed other markers
with pretty similar representative properties, namely, mmsA (90.03%), guaB (90%), and
sucC (85%).

Figure 4. A tanglegram visualizing the differences in the topology of the core SNPs-derived tree and flagellin-based tree.
Colored lines connect the subtrees with identical topology in both trees. Trees with supporting values and the lengths of
nodes specified are available as Figure S5b,f.
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Figure 5. Topological comparison between trees and their relevance to serological classification. Most of the trees’ names
refer to the respective gene identifiers; bin denotes presence/absence tree; core - core SNPs tree; mash and minimap -
hierarchical clustering-obtained dendrograms based on mash and minimap2 output, respectively; flagellin - flagellin
paralogs-emanated tree; gyr -the tree for the concatenated genes gyrA and gyrB. (a) Shown is a matrix depicting topological
similarity (1-quartet distance) between phylogenomic and single loci-based trees. The intensity of the color is proportional
to the identity. (b) Mean topological similarity for single-loci trees with reference phylogenomic trees. The blue dashed line
represents the median value, and the same is in the next plot. (c) Plotted are the sums of the subtrees’ length pertaining to
specific serovars. The blue dashed line represents the median value, and the same is in the next plot. Exp stands for the
expected value (provided serovars’ representatives form monophyletic clades). (d) A k-means algorithm clustering results
based on the number of leaves in subtrees comprising all representatives of the serovar. The solitary blue cluster comprises
only the expected value.

To draw parallels between serotyping classification and the phylogenies, for each
serotype, we counted the number of leaves in the minimal subtree containing all serotype
representatives and simply summed up the lengths of these subtrees (Figure 5c). All
phylogenies exceeded the expected sum by more than ten times (Table S15). Peculiarly,
not the flagellin, but nprB displayed the lowest score (582), which still was quite similar to
flagellin ones (609). As simple summation ignores the dissimilarities for specific serovars,
we applied PCA to consider each serotype separately (Figure 5d), and it was characterized
by three clusters optimally (Figure S8). The results generally corroborated the summation
method except for the core SNPs-derived tree and the yjlD-based tree being closer to
the expected value. Interestingly, the phylogenies used fell into two separate clusters:
one included core SNP, inhA, gyr, dnaK, groEL, another comprised of presence/absence,
flagellin, calY, and other core genes. Nevertheless, all of the points corresponding to
different phylogenies did not fall into one cluster with the expected case.

Finally, we decided to test whether 3-D cry toxins’ distribution reflects the discernment
between serovars. As a result, we found that different toxin sets are non-homogenously
distributed among representative of a specific serovar (e.g., for serovar kurstaki; aizawai,
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alesti, etc., Table S16), and we also observed that lack of Cry toxins’ genes is quite common
for multiple strains (aizawai, darmstadiensis, morrisoni, etc., Table S16).

3. Discussion

In total, the proteomic protocol resulted in the identification of 21 non-redundant
proteins dispersed across 45 distinct DIGE spots. The distribution of the identified proteins
between the spore and vegetative culture proteomes is consistent with the principal notions
on the metabolic differences between the respective stages of Bacillus lifecycle. Most of the
proteins detected in the vegetative cells’ culture are involved in constitutive cell metabolism.
Unlike this, two metabolic enzymes were detected in spore proteomes, but their roles in
the sporulating cultures have not been revealed so far.

A major drawback of the technique used lies in the absence of any identified three-
domain Cry proteins. All three strains have been previously demonstrated to possess Cry-
encoding genes [26,27]. A plausible explanation for this lack comes from low solubilization
of Cry toxins in traditional protein extraction buffers [11], which may require additional
rounds of protein solubilization [10]. However, Cyt1-like toxins have been detected in
strain 800/3′ proteome, and ETX/MTX2-like Cry toxins were found in both virulent and
avirulent spores of serovar israelensis. The presence of non-three-domain Cry toxins in
avirulent strain’s 800/3-15 proteome is somewhat peculiar given that it does not produce
crystalline inclusions. It is possible that the avirulent strain is, in fact, capable of crystal toxin
production but is impaired in crystal assembly. The production of parasporal inclusions
is known to be a complex process involving the activity of different auxiliary proteins,
such as proteases [31,32] and molecular chaperones [10,33,34], thus leaving room for
speculations on the real reasons underlying the loss of toxicity in 800/3-15. Taken together,
the implemented approach appears ineffective for large scale proteome assays. It should
be noted that some other gel-driven proteomic assays with a similar experimental layout
revealed a larger number of non-redundant proteins [11,35–37], including Cry toxins [38,39].
However, other studies exploiting multi-probe fluorescent DIGE have stated the numbers
of identified proteins similar to what was obtained in the current study [40–43]. The
applied methodology itself could explain relatively small resultant figures; mainly low
sensitivity and the incompleteness of the underlying databases contribute to limitations of
gel-based proteomics.

For 21 non-redundant proteins, only 6 corresponding coding sequences were found
to vary in terms of presence/absence among all the genomes surveyed. Not exclusively
the obvious hits pertaining to domestic genes, such as identifiers relating to chaperones,
elongation factors, and enzymes of primary metabolism, were considered core loci. How-
ever, several orthologs of virulence determinants (calY, inhA1, nprB) were observed in all
the genomes as well. The ubiquity of genes encoding for CalY and InhA1 was somewhat
unexpected, given that the respective names explicitly appear in a small fraction of genome
annotations [9]. This circumstance underpins the urge for proper annotation of the de-
posited genomes, as well as for the thorough pangenome-wise assessment of virulence
determinants’ distribution among the Bt strains. InhA1 was demonstrated to play diverse
functions in the Bt pathogenesis, including host’s humoral immune response alleviation [44]
and the enhancement of the pore formation in the intestine cells [45], and CalY is involved
in extracellular matrix digestion [46] and, apparently, Cry toxin activation [31,32]. Among
the proteins identified, another closely associated with virulence was neutral protease B
(NprB), which also appeared to be encoded in all the genomes analyzed. This peptidase car-
ries out processing PapR, which acts in the PlcR-PapR quorum sensing system regulating
the expression of virulence-associated genes in Bc complex species [47,48]. Alternatively,
an Npr599 protein B. anthracis was shown to cleave the murine exoproteome components,
thus serving as a bona fide virulence factor [49]. Moreover, the NprB production itself is
promoted by the PlcR transcription regulator at the pre-spore-forming stage [50]. Together
with InhA1, NprB (sometimes designated as NprA or Npr599) constitutes 60 to 80% of the
virulent Bacillus secretome, which was considered a differentiative marker for assessing
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pathogenic activity [35,49,51]. It has also been demonstrated to undergo positive selection
in pathogenic Bacillus cereus group species [52]. The ubiquity of the respective genes is
noteworthy considering the problem of Bt pathogenicity mechanisms but contributes little
to serovar delineation. In fact, of all the virulence factors spotted, only the ETX/MTX-2
like Cry toxins differ in their presence among strains considering their structural diversity.
Taking into account that the proportion of unique proteins constitute at best half of the
total spots selected (21/45) and that most of these spots comprised duplicate proteins,
we propose that either the proteome-driven approach lacks in sensitivity to capture the
full repertoire of virulence factors, or that the selected strains did not differ in this regard
despite their attribution to different serovars.

Indeed, the serotyping technique, notwithstanding its wide use, suffers from several
drawbacks. First, serotyping is obviously inapplicable for the characterization of non-
motile and autoagglutinating isolates [53]; it also may lead to spurious false positives when
assessing acrystalliferous strains genetically close to other Bacillus species [54]. Then, test-
ing the agglutination with all the antisera is both expensive and cumbersome, thus being a
privilege of few laboratories possessing all the antisera varieties [8]. To obviate these diffi-
culties, several genetically oriented approaches have been put into practice, such as M13
fingerprinting [55], repetitive extragenic palindromic polymerase chain reaction (Rep-PCR)
fingerprinting [53], multilocus enzyme electrophoresis (MLEE), and random amplified
polymorphic DNA (RAPD) profiling [56]. The robustness of these methods is undermined
by the fact that the serovar attribution does not actually reflect any genetic similarity or
evolutionary relations between strains [8]. In the past two decades, phylogeny reconstruc-
tion assays based on the single reference loci sequences have been undertaken to justify the
existing systematics. Because the 16S rDNA sequence often fails to discriminate strains of
Bacillus cereus species group other than B. anthracis [57–60], several protein-encoding loci
have been proposed to serve as phylogenetic markers. Since flagellin is a primary antigen
used for Bt serotyping, the most genuine approach suggests using hag locus encoding for
flagellin as a reference one. Despite this, flagellin-derived phylogenies did not corroborate
the monophyletic status of the distinguished serotypes [8,61]. Moreover, hag loci are prone
to duplicate within the genomes, and the resulting paralogs impede proper phylogeny
inference [61]. Another example is gyrB gene encoding for gyrase beta subunit, which
was shown to delineate Bc species at a level of accuracy compared to that of DNA-DNA
hybridization [30,62], and the aroE gene encoding for shikimate dehydrogenase [62] demon-
strates similar yet slightly lower discriminative properties. In spite of the controversies
around the applicability of flagellin encoding-sequences, serotype determination based
on the respective phylogeny reconstruction is still used in the Bt studies [63–65]. In the
aforementioned studies, the location of surveyed microorganisms on the phylogenetic
trees is considered an argument for asserting the group. Moreover, occasionally even the
16S rDNA sequence is treated as proof for attributing serovar identity [66]. In the present
work, we attempted to go further than single loci-restricted phylogeny and undertook
pangenome-wise analysis accordingly.

The pangenomes of different Bacillus species as well as the Bc species complex have
frequently been subjected to reconstruction attempts and have been evaluated to be mostly
open, e.g., having its accessory component larger than the core one [67–69]. Speaking of Bt
solely, its pangenome has previously been shown to be open as well [67,70], with a consis-
tent increase in size with each strain added [70]. The pangenome-derived data, such as the
core alignments and the distribution of accessory genome components, as well as the usage
of genome-wise comparative analysis, could come up with comprehensive phylogenomic
relationships capable of delimiting individual genomovars considering sporadic alterations
in genomic architecture. The so-called Feature Frequency Profiles (FFP) method implicating
SNPs’ acquisition across the Bacullis genome thoroughly outstripped single loci-emanated
phylogenies in terms of precision and efficiency, preserving the monophyletic status of
B. thuringiensis, B. anthracis, and B. cereus [71]. Yet another recent study utilized SNP-based
phylogeny to dissect close evolutionary interconnection in Bti strains [15]. Aside from
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Bt, the application of SNPs for phylogeny reconstruction exhibited fine genomic clarifi-
cation in other bacterial species, including Escherichia [72], Burkholderia [73], and Bacillus
cytotoxicus [74]. Another frequently applied technique suggests calculating whole-genome
metrics, Average Nucleotide Identity (ANI) [75]. ANI-based approach assisted in the
determination of new Bacillus isolates from the gallinaceous feces [76], enabled to disclose
different clades within Bacillus cytotoxicus. An approach similar to ANI, namely genome
BLAST distance phylogeny, has also been applied to derive the full-genome phylogeny of
the Bc species complex [60]. Importantly, tracing average nucleotide identity uncovered
that B. thuringiensis, in fact, diverges and comprises two separate genomovars, namely,
B. thuringiensis gv. thuringiensis and B. thuringiensis gv. cytolyticus [13]. In the current study,
the mean ANI value (95.8%) lies above the conventional threshold for genomospecies,
which is originally defined as 95% [75]. The minimum value observed (92.6%) slightly ex-
ceeded the empirically evaluated threshold for Bacillus genomovars (92.5%, [77]). However,
based on PCA results, two separates clusters were obtained with mean ANI values of 97.2
and 95.5, respectively, indicating that the analyzed assemblies referred to diverse genomo-
species. Since for some serovars, their representatives split between these clusters, it could
indicate either erroneous serotyping or the inconsistency between genomic evolutionary
relationships and serovars’ attribution.

The dendrograms based on clustering genome-similarity matrices (both mash- and
minimap2-derived) as well as phylogenetic trees (binary presence/absence, and core
SNPs) displayed substantial topological similitude. It indicates that all the methods could
provide elaborated genome-wise phylogeny, and single loci-derived trees more or less
accurately reflected them except for the flagellin-based tree, which topology demonstrated
the immense difference. Noteworthy, none of the phylogenies reconstructed agreed with
serotypes. Thus, flagellin-derived phylogeny not only failed to discriminate serotypes but
also did not reflect the genomic structure of Bt strains. Our results are in agreement with
previous findings that the phylogenetic position of bacterial genomes did not illustrate an
evident correlation between phenotypic traits [78].

Though single loci phylogenies built failed to discriminate serotypes, but at PCA plot,
they fell into two categories, closer to either the core SNP tree or presence/absence tree.
This observation might indicate that even within virulence factors, there are two groups of
genes, which evolve more like core genes or as an accessory part of the genome.

The distribution of 3D cry toxins also failed to discern between serovars as both the
absence of toxins and diverse combinations within one serotype were observed. These two
instances could be explained by the location of genes encoding these toxins. As most of
Bt toxins’ genes are characterized by plasmid location [79], it is no wonder that relatively
often, Bt strains could lose these plasmids and become acrystalliferrous afterward [80].
Furthermore, extrachromosomal elements tend to participate in recombination events,
both homologous and non-homologous, which can form new plasmids with different
combinations of toxins even within one strain [81,82].

Taken together, the use of more than one locus, as in the case of multilocus sequence
typing (MLST) [20,78] or phylogenomic approach [71,83], shows that the distribution of
phenotypic features among the strains of Bc species, including the Bt serological groups,
does not confine to any of the established phenotypic classifications. In the present work,
none of the phylogenetic inferences virtually supported the serotyping-based division,
which further urges the re-evaluation of the established classification and adherence to
the large-scale phylogenetic approaches. A possible alternative could be based on phy-
logenomics’ principles implementing the tracking genome dynamics in an evolutionary
context. In this instance, an appropriate method is grouping Bt genomovars based on the
location of syntenic blocks among the genome.
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4. Materials and Methods
4.1. Bacterial Strains and Growing Conditions

Virulent strains of B. thuringiensis 800/3 (serovar israelensis), 109/25 (serovar darmsta-
diensis), and 800/15 (serovar thuringiensis), as well as avirulent strain 800/3-15 (serovar
israelensis), were used in the study. To obtain a vegetative culture, the strains were grown
on Luria-Bertani (LB) agar Petri plates for 15–18 h. To obtain the culture that had completed
sporulation (till microscopic analysis detected only spores and protein crystals), the strains
were incubated on T3 [84] agar Petri plates for 5 days at 30 ◦C.

CLARIOstar Plus (BMG LABTECH, Germany) was used to plot the growth curves.
96-well plates were filled with 200 µL of T3 and LB liquid medium inoculated with bacteria
strains (four replicates for each strain on each medium). Equivalent volumes of sterile
media were used as blank samples. Measurement of optical density was carried out for
5 days with periodic shaking of the plate and maintaining the temperature of + =30 ◦C.
Resulting data were averaged over four replicates per each strain and visualized using
ggplot2 package [85] v3.3.2 for R programming language (ref.) v3.6.3 with the error bars
denoting standard error of the mean.

Microscopy assays were performed using a phase-contrast microscope (1000×magnifi-
cation) on 1–5 days of their growth on T3 agar plates to register the beginning of sporulation
and the presence of crystal inclusions. For evident crystal determination, Coomassie Blue
staining was used [86]. Slides with fixed bacterium were immersed in the dye (0.133%
Coomassie Blue stain in 50% acetic acid) for 2 min and rinsed with distilled water.

4.2. Protein Extraction, Two-Dimensional Fluorescent Difference Gel Electrophoresis, and Protein
Mass-Spectrometry

For protein extraction, bacteria were centrifuged, washed, and resuspended in a lysis
buffer (7M Urea, 2M Thiourea, 4% CHAPS, 25 mM Tris pH 8.2) in approximate 10 volumes
of lysis buffer to 1 volume of cells. Cell homogenization was conducted by sonication with
QSonica Q125 sonicator (Newtown, Connecticut, USA) at 30% amplitude for ten seconds.
The sonication step was repeated five times, with test tube contents having been shaken
gently and the sonicator rod sterilized between the rounds. Protein concentrations were
measured by the absorbance at 280 nm NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies), Bradford assay, and PAAG-electrophoresis [87].

Prior to two-dimensional electrophoresis, samples were conjugated with Cy2, Cy3, or
Cy5 dyes (Lumiprobe, Hunt Valley, MD, USA) in a proportion of 400 pM of a dye to 50 µg
of total protein. Samples were conjugated on ice for 40 min; then, the reaction was stopped
by the addition of 10 µM L-lysin for 15 min. The samples, conjugated with different dyes,
were mixed together and with dithiothreitol (up to 100 mM) before electrophoresis. Due to
the presence of highly abundant proteins, two replicates with different protein amounts
were analyzed—approximate 75 and 150 µg of total protein were loaded into each IPG-strip
(7 cm, pH 3–10; BioRad, Berkley, CA, USA) by overnight passive rehydration at room
temperature. Each gel contained samples of total lysates of three strains of bacteria. No
less than two technical replicates were done for each biological replicate and for each
protein concentration with Cy-dyes swap. Isoelectric focusing (IEF) was performed using
the Protean IEF Cell (BioRad) according to manufacturer recommendation (10 000 V/h,
end voltage 4000 V, maximal current 50 mA per IPG-strip, rapid voltage ramp, 20 ◦C).
Then IPG-strips were consequently incubated in two equilibration buffers (6 M urea, 2%
SDS, 20% glycerin, 0.375 M tris, pH 8.8) for 15 min with either 2% dithiothreitol and
2.5% iodoacetamide. After equilibration discontinuous electrophoresis in 14% PAAG was
performed (BioRad; Laemmli, 1970). Different Cy-dyes were visualized using the Typhoon
FLA 9500 laser scanner (GE Healthcare, Chicago, IL, USA). After the Cy-dyes visualization,
the gels were stained with Coomassie G-250. The protein spots of interest were excised
from stained gels in no less than two technical replicates and identified following the
“bottom-up” approach described earlier [24,25].
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The selected gel fragments were cut to pieces with 1 mm2 approximate size, destained
with 50% acetonitrile in 25 mM Tris (pH 8.2), dehydrated with 100% acetonitrile, and
rehydrated with proteomics grade bovine trypsin solution (20 ng/µL, 25 mM Tris, pH 8.2,
Sigma) on ice for 60 min. Excessive trypsin solution was removed, and the gel was covered
with 30 µL of 25 mM Tris (pH 8.2). Tryptic digestion was performed at 37 ◦C overnight.
Tryptic peptides were eluted with 50% acetonitrile/0.1% formic acid and analyzed using
HPLC coupled with tandem mass spectrometry (Agilent 1260 coupled with ESI-Q-ToF
Agilent 6538, Agilent Technologies, Santa Clara, California, CA, USA). The gradient elution
method was 0% B phase to 60% B phase for 45 min and further to 100% B phase for 10 min.
B phase was 90% acetonitrile with 0.1% formic acid, A phase was 5% acetonitrile with 0.1%
formic acid; the flow rate was 20 µL/min; the column was Zorbax B-C18 5 µm grain, 80 Å
pores, 150 × 0.5 mm (Agilent Technologies). The mass spectrometry was performed in
positive ion mode with auto MS/MS collection in precursor mass range 100–3200 Da.

Protein identification by MS/MS-spectra was performed using Agilent Spectrum
Mill MS Proteomics Workbench Rev B.04.00.127 in the mode ‘Identity’ against the Swiss-
Prot database (taxonomy: “Bacteria [2]”, September 2020, 334639 sequences) and protein
sequences from Identical Protein Groups Database (https://www.ncbi.nlm.nih.gov/ipg/,
accessed on the 3th September 2020), related to the Bacillus species (312044 sequences).
The precursor mass tolerance was set to ±20 ppm. The validation procedure of identified
proteins was performed with a minimum protein score of 15 and a peptide false discovery
rate (FDR) for validated proteins of 1%. The resulting protein lists were manually checked
for duplicates and ambiguously annotated spots. Proteins annotated as closely related
accessions were assigned a common annotation, and proteins demonstrating discrepancies
between the observed and predicted values of molecular weight and isoelectric point were
excluded from the further analysis.

4.3. Protein Functional Annotation

The reference protein sequences were downloaded from NCBI Protein [88] and
Uniprot [89] databases using a custom Python script implementing Biopython v1.73 [90]
functionality. The presence of 3-d Cry toxins was checked with CryProcessor [91]. Func-
tional annotation of the obtained sequences, including the Cluster of Orthologous Genes
(COG) attribution assessment, was carried out with eggNOG standalone tool v2.0.1b-2-
g816e190 [92].

4.4. Flagellin Sequence Search in the Genomic Data

Flagellin gene sequences were annotated in the Bt genomic data using a hidden
Markov model (HMM) approach implemented in HMMER v3.3.1 [93]. 30 hag gene se-
quences obtained by Xu and Côte [60] were first aligned using MAFFT [94] v7.453 in careful
mode (using ‘–localpair’ option and having ‘–maxiterate’ parameter set to 1000), and the
resulting alignment was compressed to HMM using hmmbuild utility. The obtained model
was used for flagellin genes search using hmmsearch utility. For the sake of sanity check,
HMM search results were manually revised by alignment to NCBI Nucleotide database
using BLASTn utility [95]. To exclude sequences unrelated to the flagellin paralogue
family, e.g., flg basal hook protein genes, an additional E-value cutoff equal to 1E-10 was
introduced. The notions underlying the further selection of representative flagellin gene
sequences for phylogeny reconstruction are described in Section 4.6.

4.5. Bt Genomes Acquisition and Pan-Genome Reconstruction
4.5.1. Data Acquisition

The assemblies referring to Bacillus thuringiensis were obtained from the NCBI As-
sembly database (Table S4). Only those with serovars specified remained. We also filtered
out the genomes not comprising full-sized flagellin genes (containing the corresponding
protein product less than 100 amino acids long). Finally, we performed the quality-control
selection based on the number of genes in the pangenome.

https://www.ncbi.nlm.nih.gov/ipg/
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4.5.2. Gene Presence Analysis

Proteomes of bacterial cells with serovars attributed (israelensis, thuringiensis, and
darmstadiensis) at the sporulation stage, as well as different stages of israelensis serovar,
were compared with PCA (Principal Component Analysis). For proteins identified, we
assigned ones or zeroes dependent on their presence/absence in the sample accordingly
(Table S3). The data being sparse, it was transformed into the dissimilarity matrix using
Bray-Curtis distance [96] with vegdist function from the vegan v2.4-2 [97] package for R
programming language. Next, the ‘pcoa’ (Principal Coordinate Analysis) function from
ape v5.4-1 [98] R package was applied. The samples were then clustered with the k-means
algorithm (nstart = 25, iter.max = 1000). The optimal number of clusters was evaluated
with the elbow method [99] by depicting with-in-Sum-of-Squares (WSS). Clustering results
were subsequently visualized via the ‘autoplot’ function from ggfortify v0.4.11 [100].

The presence of proteins in the assemblies was obtained through Diamond v2.0.4 [101]
blastp in sensitive mode (‘–more-sensitive’) with ‘–max-target-seqs’ parameter set to 1.
Because of the urge to determine the identity cutoff for Diamond, the reference sequences
of inhA virulence factors were compared via calculating a Distance matrix using Biopython
with the minimum and maximum similarity of 67% and 84%, respectively (Table S5); the
minimum value (67%) was set as an identity threshold for Diamond. The best hits were
aggregated according to the following scheme with the custom python script. Initially, the
lowest e-value hits were selected. If several hits were found, the most similar to references
were preferred. Eventually, if needed, the longest sequences were retained.

4.5.3. Pangenome Reconstruction

Pangenome analysis was carried out via Roary v3.11.2 [102]. Before creating the
pangenome, we attempted to re-annotate the assemblies with a uniform database, as
recommended in the Roary manual. The FASTA-files from the IPG (Identical Protein
Groups) database for Bacillus thuringiensis, anthracis, and cereus were concatenated and
applied as the source of protein sequences for Prokka v1.14.5 [103]. Nonetheless, default
annotations outperformed Prokka-generated ones in accuracy and completeness, e.g.,
containing fewer hypothetical proteins and erroneously identified CDS; hence, the initial
annotations remained unchanged.

Roary was launched with a 95% identity cutoff for blastp in alignment mode, allowing
to retrieve core genes’ alignments. We also increased the maximum number of clusters
to 100,000 as Bacillus species are characterized by the acquisition of non-essential genes
resulting in genomic variability [15]. Forasmuch as way too many genes in a pangenome
may indicate the inappropriate quality of the underlying data and diminish the analysis’s
predictive accuracy [104], we proposed a simple metric somewhat by analogy with N50.
All genes in each assembly were ranged in ascending order according to their presence
among the samples. We then calculated the number of genes contained in more than half
of the genomes and pitched upon the assemblies for which that sum exceeded 50% of
genes accordingly.

4.6. Phylogeny Reconstruction

Sequences (either protein or nucleotide) in FASTA-format were aligned with MAFFT
v7.471 [94] in localpair mode with 1000 iterations for greater accuracy. Optimal evolu-
tionary models were selected based on the BIC (Bayesian information criterion) values
obtained via modeltest-ng v0.1.6 [105] in maximum likelihood topology mode. After that,
maximum likelihood trees were reconstructed with raxml-ng v1.0.1 in all-in-one mode with
1000 bootstrap replicates. Mean support values for obtained trees were calculated with the
Python script. Trees were visualized via the ggtree [106] v3.11 R package. The underlying
multiple sequence alignments were quality-checked by assessing the mean identity via
two approaches. After running the CD-HIT program v4.8.1 [107] with a 100% clustering
threshold and the word size of 5 letters, the number of unique clusters was calculated.
Besides, the mean blast-like sequence identity was evaluated via a custom Biopython-based
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script. In brief, combinations (regardless of the order) of two elements from the sequence
set were aligned in global pairwise mode, and the percentage of matches was calculated
afterward. Finally, the mean identity score was determined.

We proposed four types of trees as possible phylogenomic references: binary pres-
ence/absence, core SNPs, mash distance, and full genomes’ pairwise identity. The binary
presence/absence tree of accessory genes was generated by Roary during pangenome
construction. To receive core SNPs, we used SNP-sites v2.5.1 [108] on Roary-derived core
genes’ alignment.

We also reconstructed phylogeny based on well-established markers such as gyrase
subunit beta and flagellin sequences as well. Bacillus thuringiensis is known to possess
several flagellin-coding genes (hag/fla), and no elaborated approach to pick the suitable
gene exists. Hence, we fetched orthologs generated by Roary with a custom Python
script. Concisely, if a genome contained more than one hag/fla gene, the gene pertaining
to the largest cluster was preferred. If the sequence was too short (probably, being a gene
fragment), the gene referred to the following cluster was selected. Finally, we reconstructed
trees based on core genes (found in all the assemblies) encoding proteins identified with
the proteomic assay. The corresponding Roary-generated clusters were used. Most of
them formed a single orthologous group, and if genomes contained paralogs, the longest
sequence was preferred (Table S10).

The mash distance-based matrix was constructed via a custom python script for
parsing Mash v2.2 [109] output launched with a k-mer size of 21 and a sketch size
equal to 100,000. To calculate the pairwise alignment-based metrics, we used minimap2
v2.17 [110] in assembly to assembly mode (-a asm5), disabling secondary alignments (‘—
secondary = no’). Reference was determined in line with the assembly level. Initially,
the most completed assembly in the pair was selected (e.g., the chromosomal level was
preferred over contig). If levels were the same, we assigned as reference the assembly
comprising fewer FASTA-records (contigs, scaffolds, etc.). The identity between genomes
was calculated as:

id =
m ∗ 2

g1 + g2
(1)

where id is identity, m denotes the total length of matches, while g1 and g2 stand for genome
lengths, respectively.

Notwithstanding that secondary alignments were disabled, many overlapped map-
pings still were observed; thus, intervals merging was required to correct the possible
identity percent exceeding 100%. As the minimap2-derived mappings lacked specific
matching positions—only the total number was provided—we could not merely intersect
intervals without losing precise information about matches. We hence decided to calculate
the proportion of each interval in the union:

idu =
id1 ∗ (l1 − li)

lu
+

id2 ∗ (l2 − li)
lu

+

li
lu
∗ (id1 + id2)

2
(2)

where id denotes the BLAST-like identity of the interval (indices 1, 2 refer to the initial
intervals, i means intersection and u defines union), and l stands for the length.

Both mash- and minimap-derived results were gathered and transformed into a matrix
using a custom python script implementing NumPy v1.17.2 [111] and scikit-learn [112]
v0.23.2 Python modules. Matrices obtained were then subtracted from 1 to produce distance
matrices. To obtain trees, a hierarchical clustering procedure was carried out via the ‘hclust’
function from stats v3.6.2 incorporated as a default package for R by using the “complete”
agglomeration method. The resulting dendrograms were converted into a tree of class
“phylo” via ape v5.4-1 package and subsequently saved in Newick format. To depict the
heatmaps, the corresponding matrices were arranged according to clusters’ order. The
optimal number of clusters was selected using the silhouette function from the default R
package cluster v2.1.0. The ANI-based matrix was also used to analyze the clusterization
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patterns between serovars based on their nucleotide identity. The procedure was carried
out via the PCA method as described in Section 4.5.2.

All the reconstructed trees were topologically compared via tqDist v1.0.2 [113]. ‘quar-
tet_dist’ utility. Calculated quartet distances were presented as a matrix that was visualized
with the ggplot2 package. Flagellin- and core SNPs-derived trees dissimilarity was depicted
as a tanglegram using the dendextend v.1.14.0 R package [114]. Before that, dendrograms
were untangled with the ladderize method. So far as ML-trees are not ultrametric, thus
unable to be converted to a dendrogram, the ReadDendrogram function from DECIPHER
v.3.11 [115] was applied.

Finally, we assessed the serovars’ attribution. To this end, we proposed a simple
approach that implies counting the number of leaves in a subtree containing all repre-
sentatives of each non-singleton serovar attributed to the assemblies. For this purpose,
we implemented the ‘get_common_ancestor’ function from the ete3 toolkit [116] v3.1.2
Python module. Next, the sum of the subtrees’ length pertaining to specific serovars was
considered a simplistic integral score. Besides, the respective serovars-related data were
analyzed with the PCA analysis and a concomitant k-means clusterization.

We applied CryProcessor in ‘fd’ mode on translated sequences of the assemblies’ genes
to check the consistency between serovars’ attribution and the spectrum of insecticidal
toxins. After CryProcessor [91] launch, we summarized the results obtained with a custom
Python script (Table S15).

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/5/2244/s1, Table S1: Proteins identified in virulent spores and vegetative cells of strain
800/3 and avirulent spores of strain 800/3-15; Table S2: Proteins identified in virulent spores of
strains 109/25 (serovar darmstatdiensis), 800/15 (serovar thuringiensis), and 800/3 (serovar israelensis);
Table S3: Binarized data of protein presence obtained with proteomics approach. Zero stands for
absence, while one denotes the presence of the protein. For each protein accession, the respective
COG groups are given; Table S4: Properties of assemblies used in the study. The GenBank accession,
assembly type, strain, and serovar attribution are presented; Table S5: A distance matrix representing
the identity between reference inhA sequences; Table S6: Genes encoding proteomically detected
proteins among the assemblies at a 67% threshold for Diamond; Table S7: The list of gene identifiers
found in all analyzed assemblies (core genes); Table S8: Properties of the reconstructed phylogenetic
trees (appropriate evolutionary model, mean identity and supporting values, number of unique
CD-HIT clusters); Table S9: Roary-generated gene presence/absence results among the reconstructed
pangenome; Table S10: Roary-produced clusters for the single-loci (flagellin and core proteins)
phylogeny reconstruction; Table S11: Flagellin paralogs obtained from Roary launch and HMM-
search; Table S12: The results of k-means clusterization of serovars using ANI-based matrix; Table
S13: Similarity matrix between assemblies derived from calculating mash-distance and genome
pairwise comparison with minimap2; Table S14: Topological quartet distance between trees; Table
S15: Lengths of subtrees containing representatives of Bt serovars; Table S16. The list of 3D Cry
toxins revealed with CryProcessor for each assembly, respectfully; Figure S1: The optimal number
of clusters for the k-means clustering of the binarized DIGE data using the elbow method; Figure
S2: The PCA and k-means clustering results obtained by utilizing all the protein spots found
in 2D-DIGE gels; Figure S3: The distribution of gene encoding proteins identified among the Bt
assemblies; Figure S4: Visualization of Roary-obtained pangenome reconstructed on 104 pre-filtered
Bt assemblies; Figure S5: All phylogenomic and single-loci phylogenetic trees based on Bt-genomes;
Figure S6: The results k-means clustering procedure based on ANI matrix; Figure S7: Heatmap
visualization of clusters based on mash-distance and mean genome identity; Figure S8: The optimal
number of clusters for the k-means clusterization of the data based on subtrees’ length containing all
representatives of each serovar using the elbow method. All scripts used in this work are available at
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