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Increasing evidence suggests that microorganisms might represent at least highly

interesting cofactors in colorectal cancer (CRC) oncogenesis and progression.

Still, associated mechanisms, specifically in colonocytes and their microenviron-

mental interactions, are still poorly understood. Although, currently, at least

seven viruses are being recognized as human carcinogens, only three of these –
Epstein–Barr virus (EBV), human papillomavirus (HPV) and John Cunningham

virus (JCV) – have been described, with varying levels of evidence, in CRC. In

addition, cytomegalovirus (CMV) has been associated with CRC in some publi-

cations, albeit not being a fully acknowledged oncovirus. Moreover, recent

microbiome studies set increasing grounds for new hypotheses on bacteriophages

as interesting additional modulators in CRC carcinogenesis and progression. The

present Review summarizes how particular groups of viruses, including bacterio-

phages, affect cells and the cellular and microbial microenvironment, thereby

putatively contributing to foster CRC. This could be achieved, for example, by

promoting several processes – such as DNA damage, chromosomal instability,

or molecular aspects of cell proliferation, CRC progression and metastasis – not

necessarily by direct infection of epithelial cells only, but also by interaction with

the microenvironment of infected cells. In this context, there are striking common

features of EBV, CMV, HPV and JCV that are able to promote oncogenesis, in

terms of establishing latent infections and affecting p53-/pRb-driven, epithelial–
mesenchymal transition (EMT)-/EGFR-associated and especially Wnt/b-
catenin-driven pathways. We speculate that, at least in part, such viral impacts

on particular pathways might be reflected in lasting (e.g. mutational or further

genomic) fingerprints of viruses in cells. Also, the complex interplay between sev-

eral species within the intestinal microbiome, involving a direct or indirect impact

on colorectal and microenvironmental cells but also between, for example,

phages and bacterial and viral pathogens, and further novel species certainly

might, in part, explain ongoing difficulties to establish unequivocal monocausal

links between specific viral infections and CRC.
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1. Introduction

Colorectal cancer (CRC) represents the second most

common type of cancer worldwide and is responsible

for about half a million deaths per year [1]. The risk

of developing CRC increases sharply with the age of

50, although a trend towards younger people with spo-

radic CRC is rising as well, and about half of the

CRC patients who undergo surgery will experience

recurrence, which limits life expectancy of these

patients to only 5 years in average [2]. CRC develops

slowly, and symptoms such as intestinal cramps or

bleeding are observed only when the tumour has

grown to a considerable size [3]; thus, an early detec-

tion, and the clear definition of causes and risk factors

of developing CRC, is paramount.

Every person has an approximately 4% lifetime risk

of developing CRC, but some factors can increase this

likelihood [3,4]. Specifically, for example, the incidence

of CRC has been increasing in countries that adopted

the ‘Western-type’ diet, suggesting an association

between nutritional lifestyle and the incidence of this

type of cancer [5]. Chronic inflammation of the intes-

tine is a risk factor for the development of CRC:

Crohn’s disease (CD) and ulcerative colitis (UC),

together known as inflammatory bowel diseases

(IBDs), increase the risk of CRC to up to 40% [6,7].

The incidence of IBD has escalated in the recent past,

causing, for example, an economic burden of over US

$6 billion in the United States alone [8,9]. Another ele-

ment that has been increasingly reported to boost the

risk of sporadic CRC is infection [10]. Together, these

risk factors indicate that microbial species, potentially

modulated or even inflicted by nutritional and envi-

ronmental components, inflammatory conditions or

specific infections, might at least be cofactors in

CRC carcinogenesis, progression or even metastasis.

Recently, even a potential new class of microbial spe-

cies ingested by daily Western nutrition, specifically

from bovine milk, serum and dairy products, bovine

meat and milk factors (BMMFs) [11], has been sug-

gested that currently is being taxonomically placed

between bacterial plasmids and single-stranded DNA

(ssDNA) viruses. Such exciting novel discoveries,

which support hypotheses on the ingestion of patho-

gens with particular components of our nutrition, need

to be analysed further to determine their exact poten-

tial causal contribution to CRC. Since data on such

putatively novel species, and their taxonomic classifica-

tion, are still in development, this Review will focus at

summarizing the evidence on already fully character-

ized viral species, particularly those that have been

most frequently found in, and associated with, CRC.

Seven viral taxa are currently recognized as human

carcinogens: Epstein–Barr virus (EBV or human her-

pesvirus type 4), human papillomavirus (HPV), human

Kaposi sarcoma virus (KSHV), hepatitis B virus

(HBV), hepatitis C virus (HCV), human immunodefi-

ciency virus (HIV) and human T-cell lymphotropic

virus genotype 1 (HTLV-1) [12]. Of these, only EBV

and HPV, together with cytomegalovirus (CMV or

human herpesvirus type 5) and John Cunningham

virus (JCV), have been consistently reported to be

prevalent in CRC [13–15]. In these studies, the odds

ratios (OR) between infection and development of

CRC have been reported to range between 0.7 and

58.8 for HPV, 0.9 and 9.0 for JCV, 0.1 and 10.4 for

CMV, and 1.0 and 4.5 for EBV [16–19]. Such a wide

range of relative risk estimations certainly illustrates

how difficult it still is to establish a causal relationship

between infection with these viruses and the develop-

ment of CRC.

Moreover, recent microbiome studies have high-

lighted the importance of bacterial viruses (i.e. viruses

infecting bacteria, better known as bacteriophages, or

phages) in the aetiology of CRC [20]. Several experi-

mental and epidemiological studies have suggested an

association between the presence of certain bacteria

and CRC [21,22]. For instance, although there is a

strong association between infection with Helicobacter

pylori and the risk of gastric cancer carcinogenesis, the

current consensus is that several bacterial species can

contribute to CRC carcinogenesis [23,24]. Most inter-

estingly, due to their capability of selectively killing

specific bacteria, phages most likely can play a decisive

role by contributing to the alteration of the bacteri-

ome, causing an imbalance in the intestine known as

dysbiosis [25].

The present Review will not seek to outline the com-

plete human intestinal microbiome, which would be

too extensive to cover in one Review, but instead sum-

marizes the role of particular viruses that currently

have the highest level of evidence and prevalence in

the carcinogenesis and progression of CRC. Towards

this end, the literature presented herein was collected

through a search in the PubMed/Medline database

combining the medical subject heading (MeSH) terms

‘Colorectal Neoplasms,’ ‘Colorectal Cancer,’ ‘Crohn

Disease,’ ‘Crohn’s Disease,’ ‘Colitis, Ulcerative,’

‘Viruses,’ ‘Virus,’ ‘Viridae’ and ‘Bacteriophages.’ These

were extended by ‘Inoviridae,’ ‘Simian virus 40,’

‘Papillomaviridae,’ ‘Herpesviridae,’ ‘Cytomegalovirus,’

‘Epstein-Barr virus’ and further specific viral entity

names as soon as the literature found indicated an

accumulation of data on these in CRC. Our Review

will discuss the epidemiological evidence linking
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certain viral species to this cancer entity, and the

molecular pathways and mechanisms employed by

these viruses that could help in fostering the

insurgence, progression or even metastasis of colorec-

tal carcinomas. In addition, we will seek to outline

interesting commonalities in the molecular action

between particular viral species that are reflected in the

molecular landscape of CRCs, which might be indirect

evidence that particular infections might have con-

tributed to the disease.

2. Herpesviruses

2.1. EBV

Epstein–Barr virus is one of the most widespread

viruses in humans, with a prevalence of about 90% in

the adult population [26]. EBV is associated with over

200 000 cases of cancer per year, with a prevalence

that has increased in the last two decades [27]. More-

over, EBV is responsible for about one-tenth of all

gastric cancer cases [28,29], but a clear causative asso-

ciation between EBV infection and CRC is still miss-

ing [30]. Some studies failed to identify EBV in CRC

sections [31–33], whereas others identified EBV in

12.8% of 274 cases of colorectal carcinoma [34] and in

5% of 19 colon adenocarcinomas [35]. EBV was

observed by PCR in 19% of 186 CRC sections [36]

and in 60% of 15 CRC tissues, but only in 27% of the

surrounding normal tissues [37]. In our own study

involving whole-genome analyses of CRC primary

tumours and in one matched corresponding metastasis

[38], and in primary CRCs investigated with PCR [39],

we also found EBV sequences in a comparable range

of frequencies.

The infection of B lymphocytes, the main reservoir

of this virus, is well characterized: EBV envelope gly-

coprotein 350 (gp350) binds to the type II complement

receptor (CR2), which is expressed on lymphocytes,

thymocytes, epitheliocytes, dendritic cells and endothe-

lial cells. The binding between gp350 and CR2 initiates

the internalization of EBV, but CR2 is also an activa-

tor of NF-jB and determines the overexpression of

pro-inflammatory interleukin-6 (IL-6) [40,41]. In addi-

tion, the attachment of EBV to the target cell activates

signal transducer and activator of transcription 3

(STAT3), but the process is still not completely under-

stood [42]. Since EBV is transmitted via saliva, it is

expected that the virus should infect epithelial cells to

gain access to the lymph nodes, where the primary tar-

get cells reside. However, the mechanism of infection

of these cells is still poorly defined, although it is much

less efficient than infection of the lymphocytes [43,44].

The removal of the gene encoding EBV surface glyco-

protein BMRF-2, which binds integrins a3, a5, av and

b1, from the viral genome impaired the infection of

epithelial cells but not B lymphocytes, suggesting that

this protein must be involved in the infection of epithe-

lial cells [45]. Interestingly, especially within the intes-

tine and CRC, it has been reported that EBV-derived

molecules can transmit from B lymphocytes, in which

EBV resides as a frequent reservoir, to epithelial cells

via microvesicles [46]. These microvesicles can contain

different EBV-derived molecules, such as LMP1, one

of the major EBV-related oncogenes, or noncoding

RNAs (ncRNAs; EBERs) [47,48]. Therefore, paracrine

mechanisms of triggering oncogenic changes in col-

orectal epithelial/CRC cells can be speculated that are

brought about by intestinal B lymphocyte-derived vesi-

cles, especially since infected resting B lymphocytes in

the gut have been reported that can be reactivated in

certain instances to produce virus, or viral products,

able to contribute to the malignant phenotype during

an intermittent reactivation of cell growth [49,50].

The EBV genome is a linear double-stranded DNA

(dsDNA) molecule of about 170 kb subdivided into

two portions (US and UL), separated by inverted

repeats, and bears over 100 open reading frames

(ORFs) and several micro-RNA (miRNA)-encoding

regions [26,50,51]. The virus initiates a period of

latency, during which its expression is kept at a mini-

mum. Immunological suppression and other environ-

mental stimuli can induce a lytic stage that produces

the viral progeny. The virus replicates differently dur-

ing the lytic and the latent phases [52]. The lytic repli-

cation starts at oriLyt, produces linear concatemers by

rolling circle amplification, and requires the viral repli-

cation machinery encoded by the viral genes BZLF1,

BALF5, BMRF1, BALF2, BBLF4, BSLF1, BBLF2

and BBLF3 [53]. Conversely, the latent replication is

initiated at oriP and proceeds via theta amplification.

It requires the viral protein EBNA1 only and is carried

out synchronously with the S phase by the host’s cellu-

lar replication machinery [54]. Since the virus is almost

always latent, it strongly depends on host cell replica-

tion. Thus, EBV has evolved to modulate the cellular

environment by sustaining the S phase of the cell cycle,

thus maintaining in the infected cell [55].

EBV infection affects several cell signalling pathways

and induces an alteration of the host genome’s methy-

lation profiles, resulting in the abnormal expression of

genes involved in cytokine regulation, cytoskeleton for-

mation, cell proliferation and cell adhesion [56–58].
EBV infection is associated with higher levels of T-cell

factor (TCF) and lymphoid enhancer factor 1 (LEF1)
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transcription factors by an epigenetic mechanism that

remains active even after a complete loss of the viral

genomes [59]. Therefore, EBV infection has the capa-

bility to induce ‘hit-and-run’ mutagenesis in a cell, a

process that, in theory, could contribute to CRC car-

cinogenesis, progression, or even metastasis. Indeed, in

our own recent study [38], we found higher mutational

rates to be present specifically in CRC metastatic

lesions as compared to corresponding primary tumours,

some with evidence of EBV-derived sequences [39],

and it remains to be investigated experimentally

whether EBV infection and/or EBV-derived molecules

gained directly or indirectly from, for example, intesti-

nal B cells are capable of contributing to such

(changes of) patterns observed during CRC carcino-

genesis, progression or metastasis.

The viral protein BZLF1 is a transactivator of EBV

replication, and its expression marks the end of the

latent phase and the induction of lytic replication [60].

BZLF1 interacts with NF-jB and p53, enhancing the

expression of IL-10 [61–64]. EBNA1 directs the repli-

cation machinery to oriP and tethers the viral DNA to

the host’s chromosomes, ensuring the proper replica-

tion and partition of the episomes during mitosis [65].

However, EBNA1 can also be involved in the trans-

forming process towards malignant cells. For example,

it can cause chromosomal instability [66], and the

transfection of mice with expression plasmids for

EBNA1 resulted in a higher rate of lymphomas in the

recipients [67]. EBNA1 can also enhance the expres-

sion of survivin (an apoptotic suppressor) and STAT1,

while repressing TGF-b [68,69]. EBNA1 can bind a

region located on chromosome 11 that contains several

promoters, altering the expression of many genes,

including HDAC3 and MAP3K1 [70]. Nevertheless,

the role of EBNA1 is only as an accessory to transfor-

mation, since its deletion does not alter the establish-

ment of the transformed phenotype [71].

In keratinocytes, it has been shown that EBV

induces molecular alterations of the cells that, again,

last even after losing the virus. In the nucleus, b-
catenin interacts with TEC/LEF1, triggering the tran-

scription of genes involved in proliferation and motil-

ity [72]. LMP1 is known to activate STAT3 together

with the epidermal growth factor receptor (EGFR)

[73,74], inhibit the activity of p53 [75], and upregulate

b-catenin by reducing its proteasomal degradation [76].

Interestingly, all of these molecules have been reported

to be instrumental in CRC progression, and again, it

is tempting to speculate that a virus such as EBV

might be able to leave molecular imprints within also

colorectal (cancer) cells, which either remain after the

virus is lost from the (cancer) cell, or which remain

after the cancer cell has acquired particular EBV-

derived molecules from surrounding microenvironmen-

tal cells such as B lymphocytes (see above). In vivo

models demonstrated that LMP1 stabilizes b-catenin
by inhibiting WTX gene expression, whose encoded

protein is part of the destruction complex [77]. How-

ever, others reported that EBV might modulate the

Wnt signalling pathway in a manner not associated

with LMP1 [78]. In nasopharyngeal carcinomas,

LMP1 levels were positively correlated with higher

expression of the transcription repressors Snail and

Twist, which in turn decreased E-cadherin levels, pro-

moting both oncogenesis and metastasis [79,80]. More-

over, LMP1 activated DNA methyltransferase 1

(DNMT1) expression, repressing E-cadherin and

boosting the nuclear accumulation of b-catenin [81,82].

As a result, the activation of NF-jB triggered by b-
catenin upregulated the expression of survivin [83].

These Wnt/catenin-related molecular pathways and

EMT/metastasis-related molecular pathways are essen-

tial in CRC carcinogenesis and progression. Con-

versely, it is still debated whether EBV can cause

additional damage to infected cells through mecha-

nisms involving, for instance, ‘hit-and-run’ mutagenesis

or (microvesicular) exchange from microenvironmental

lymphocytes.

Moreover, EBV proteins can certainly play interest-

ing roles in immune and microenvironmental cells and

thus potentially contribute to further interactions

between the immune system, microenvironmental cells

in general, and CRC (primary and metastasizing) car-

cinoma cells. The amino-terminal domain of LMP2A

contains an immune receptor tyrosine-based activation

motif (ITAM) and a proline-rich motif (PY) that inter-

acts with factors of the PI3K signalling pathway and

ubiquitin ligases Nedd4 in B lymphocytes [84,85]. Even

in human foreskin fibroblasts (HFK), LMP2A was

able to upregulate b-catenin and boost its nuclear

translocation by virtue of these motifs [86,87]. LMP2A

inhibits the destruction complex, thus stabilizing b-
catenin and promoting its nuclear localization, subse-

quently upregulating NF-jB targets such as survivin in

gastric carcinomas [88]. EBV subverts immune

response with several strategies to sustain the infection.

For instance, EBNA1 and LMP1 inhibit major histo-

compatibility complex class I (MHC-I)-mediated pre-

sentation to cytotoxic T lymphocytes [89,90], whereas

BILF1 increases the degradation of MHC-I molecules

[91]. In cytotoxic T lymphocytes, LMP2A upregulates

the expression of galectin-1, which induces apoptosis

[92]. BCRF1, a viral homolog of IL-10, reduces the

production of interferon gamma (IFN-c) [93], whereas
BZLF1 inhibits the expression of IFN-I [94].
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Such examples invite speculations as to whether sim-

ilar mechanisms of interaction between colorectal (can-

cer) cells, immune cells and microenvironmental cells

might also be active and contribute to, or modulate,

CRC carcinogenesis or progression, especially since, in

our own recent work, we found that, within EBV-

positive CRC samples, EBV was localized especially in

lymphocytes [39]. Generally, EBV positivity of CRC

samples, and EBV localization in cancer-associated

lymphocytes in addition to a few epithelial (cancer)

cells, has already been reported by others as well

[95,96].

2.2. CMV

Cytomegalovirus is structurally very similar to EBV

and has a similar replication cycle, but infects many

more cell types than EBV, including epithelial cells,

macrophages, dendritic cells, monocytes and fibrob-

lasts [97]. Like EBV, CMV is also widespread in the

population, but it is especially relevant during immune

suppression and pregnancy, in contrast to EBV [98].

CMV is disseminated by asymptomatic hosts via sev-

eral bodily fluids, such as urine, saliva and genital

secretions [99]. The primary disease produced in the

immunocompetent hosts is mononucleosis [100]. It is

believed that the virus might reactivate without clinical

signs, spreading from lymph nodes to other tissues

years after the first infection [101]. In some cases, life-

threatening organ failures might arise [102]. Congenital

CMV can cause severe neurological impairment in

newborns [103], and circumstantial evidence links

infection to atherosclerosis [104]. In the immuno-

compromised host, CMV can cause pneumonia, gas-

troenteritis, retinitis, hepatitis, leucopenias (which

contributes to opportunistic infections), organ failure

and death; it is also a major concern for organ trans-

plantation [101].

Epidemiological evidence connecting CMV infection

to CRC is not as strong as for EBV, but there is both

epidemiological and molecular corroboration of CMV

oncogenic activity in other types of tumours, such as

medulloblastoma, breast and ovarian cancer [105]. A

recent systematic review reported a 2- to 5-time higher

CMV infection rate in gastric cancer patients than

controls [106].

A previous meta-analysis reported that CMV infec-

tion is associated with an OR of 6.6 of developing

CRC [107]. Conversely, a survey of 65 colorectal ade-

nomas and 65 colorectal adenocarcinomas by immuno-

histochemistry failed to identify CMV in these tissues

[108,109]. However, it has been reported that formalin

processing might hamper the detection of CMV within

tissues; thus, PCR is a more sensitive approach for

prevalence analysis [110]. Accordingly, 11% of 56

formalin-fixed paraffin-embedded CRCs were found to

be positive for CMV DNA by PCR [111]. Nonetheless,

CMV has been recovered in CRC sections. For

instance, an early study identified CMV in 57% of

seven colon tumours [112], another in 78% of nine col-

orectal polyps and in 92% of 12 adenocarcinomas, but

not in the surrounding non-neoplastic colon biopsy

[113]. Quantitative PCR confirmed that CMV DNA

can be more frequently recovered in CRC tissues than

in the normal adjacent tissue [110,114]. Metagenomic

analysis of colon tissues reported the presence of EBV

and CMV in at least one IBC patient [115]. Also, in

our own studies of colorectal primary tumours and

matched metastases [38], we found evidence for CMV

sequences after Blast filtering in one-sixth of the pri-

mary colorectal carcinomas [39]. It has been reported

that CMV infects stem-like mutants of the CRC-

derived HT29 cell line with higher efficiency [116], a

feature that suggests that the interaction between

CMV and intestine-derived host cells is still not com-

pletely understood and might influence viral detection.

Like EBV, CMV also hampers the functions of sev-

eral cellular factors. CMV infection of fibroblasts is

followed by the accumulation of cyclin E, p53, pRb

and b-catenin [117,118]. Despite high p53 expression

levels, p53 activity is impaired by CMV because the

protein is sequestered within nuclear replication foci

[119]. Moreover, the morphological transforming

region II (mtrII) viral protein represses the transacti-

vating activity of p53 [120]. CMV promotes angiogene-

sis and cell proliferation in the context of an improved

wound healing [121,122]. EMT, an important molecu-

lar and cell morphological switch found in the transi-

tion from cancerous to metastatic cells, is also more

frequent during CMV infection [123]. CMV impairs

the proper assembly of the DNA repair machinery,

avoiding initiation of the blockage of replication that

follows DNA damage, thus extending the S phase

[124]. Interestingly, the effect of CMV on the Wnt sig-

nalling pathway is still not completely understood, but

some aspects appear to be opposite to that of EBV

[125]. Infection of human dermal fibroblasts and

human placental trophoblasts with CMV resulted in

decreased levels of b-catenin due to higher rates of

protein degradation in the presence of unchanged tran-

scription rates [126]. Also, CMV stabilized tankyrases

(also known as PARPs) in HFK cells, resulting in

higher axin expression that, in turn, degraded b-
catenin [127]. Still, all of these molecules play essential

roles in CRC carcinogenesis and progression, and the

observation of CMV detection in CRC tissues as
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described above should promote functional studies as

to which exact molecular roles a CMV infection can

play in colorectal (cancer) cells.

As to further microenvironmental interactions,

CMV promotes a pro-inflammatory environment that

can foster DNA damage and oncogenic progression.

The host responds to CMV infection by producing

IFN-c, IL-6 and IL-10 (all of which promote

inflammation), and by an accumulation of cytotoxic

T cells [128]. Markers of inflammation, such as

cyclooxygenase-2 (COX-2), are overexpressed in cells

infected by CMV [129,130]. At the same time, it has

been shown that CMV infection stimulates the produc-

tion of superoxide O2
– (which can cause DNA dam-

age) by macrophages, IL-6 and IL-10 (both of the

latter boosting the expression of STAT3) [131–133].
Again, it needs to be investigated how exactly CMV

might promote CRC carcinogenesis by stimulating

these and further microenvironmental interactions;

nevertheless, clinical and epidemiological observations

on particular inflammatory conditions that pose a sig-

nificantly higher risk for carcinoma development, and

especially of COX-2 inhibitors being protective against

colon carcinogenesis [134], suggest the need to perform

more specific analyses to link CMV infection with

CRC.

3. Papillomaviruses

The epidemiological evidence connecting HPV to CRC

is controversial [135]. Certainly, there is a known cau-

sative association of HPV with anal carcinoma, which

ontologically is a totally different entity: this virus has

been retrieved in 96.7% of 366 anal cancers [136] and

54.5% of 11 anal biopsies [137]. In contrast, some

studies failed to observe HPV DNA in CRC tissues

[138–143], but others detected HPV in 42.2% of 45

CRC biopsies [144] and in 51% of 55 CRC tissues

[145]. The prevalence of HPV in CRC tissues has been

reported to have a mean value of 41.7%, as compared

to the 32.0% in the adjacent normal tissues in a review

article in 2011 [146].

Although mutations of p53 are a CRC landmark,

CRC tissues infected with HPV often show an intact

Tp53 gene. Yet, the functionality of p53 in CRC cells

is disrupted, leading to the suggestion that HPV inacti-

vates p53, thus promoting cancer [16]. In addition,

more and more experimental evidence links HPV infec-

tion to a pro-oncogenic modulation of the Wnt/b-
catenin pathway [147]. For example, in oropharyngeal

cancer, tumour cells infected with HPV expressed

higher b-catenin than HPV-negative tumours [148].

Furthermore, the nuclear localization of b-catenin was

higher in HPV-positive tumours than HPV-negative

control tumours [149], a characteristic also confirmed

in tonsillar tumours [150]. The nuclear import of b-
catenin was mediated by the viral proteins E6 and E7,

since miRNA knockdown by synthetic miRNA target-

ing the E6/E7 promoter resulted in a decrease in

nuclear, and an increase in membrane-associated, b-
catenin [149].

The genomes of papillomaviruses consist of cova-

lently closed circular dsDNA molecules subdivided

into two main transcriptional units – early (E) and late

(L) – each of them containing a promoter (PE and PL,

respectively) and a polyadenylation site [151]. The viral

protein E2 modulates viral transcription in concert

with other cellular transcriptional factors [152]. This

modulation is fundamental in maintaining the expres-

sion of the appropriate amount of viral proteins to

sustain the S phase without prompting the cell into

G0, which would imply the termination of DNA syn-

thesis [153]. Unlike herpesviruses, papillomaviruses do

not encode a DNA polymerase; thus, the virus com-

pletely depends on the host cell’s S phase for its repli-

cation. Maintenance of this phase is obtained by the

action of the viral proteins E7, E6 and E5, which are

all oncoproteins.

HPV infection can induce a switch in the biochem-

istry of the infected cell, which is interesting in the

context of the fact that diets rich in sugar, and meta-

bolic conditions causing obesity in general have been

observed to be associated with an increased risk for

CRC [154,155]. Towards this end, E7 can modify the

structure of M2 pyruvate kinase, boosting glycolysis

and reducing the cell’s dependence on oxygen [156]. It

is known that cancer cells increasingly rely on glycoly-

sis rather than oxidative phosphorylation (Warburg

effect) [157,158]. Thus, HPV provides a selective

advantage for infected cells to survive in hypoxic con-

ditions [159], an ability that we hypothesize would be

able to support cancer cell survival in the growth of

especially metastatic lesions as well, since they are fre-

quently known to harbour a hypoxic centre, especially

when they reach a particular size [160,161]. Remark-

ably, hypoxia upregulates p53 [162]; therefore, the

capability of HPV to inactivate this protein provides a

further advantage to cancer precursor cells.

E7 targets members of the retinoblastoma (Rb) fam-

ily of proteins (pRb, p107 and p130), leading to their

degradation and liberating transcription factor E2F

from these inhibitors [163,164]. E7 is transported into

the nucleus independently of its interaction with pRb

[165,166]. Mutations in the domain binding to pRb do

not abrogate this protein’s transforming activity, indi-

cating that E7 can contribute to carcinogenesis at
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multiple levels within a cell [167]. For instance, E7 can

bind to cyclins A, D and E in the absence of pRb

[168,169], and inhibits the dephosphorylation of pro-

tein kinase B, which is carried out by protein phos-

phatase 2A (PP2A), thus maintaining the activity of

the phosphoinositide-3-kinase (PI3K) signalling path-

way, which is one of the important signalling axes in

CRC [170,171]. Again, PP2A is also an inhibitor of

the Wnt pathway as an essential hallmark of CRC

[172], and HPV infection can affect the Wnt/b-catenin
signalling pathway several-fold. Towards this end,

ectopic expression of E6 and E7 is associated with a

decreased expression of Siah-1 proteins, E3-ubiquitin

ligases that interact with the destruction complex that

degrades b-catenin [173]. Interestingly, a few years ago

our group showed that a network of miRNAs signifi-

cantly deregulated in CRC metastases (one of them

being miR-210, which is inducible by hypoxia; see

above) downregulated Siah-1 as well; thus, this partic-

ular action of E6 and E7 would add to a similar

molecular axis of CRC progression and metastasis

[174]. In anal carcinoma (which is considered to be a

significantly different carcinoma entity than CRC,

however), the expression of the miRNAs miR-16,

miR-20a, miR-150 and miR-155 did not significantly

vary between anal squamous intraepithelial lesions and

normal tissues [175]. Cells expressing high levels of the

genes CCNA2, CCNB1, CCNB2, MSH6 and MCM7

(all involved in the regulation of cellular proliferation)

also expressed high levels of miR-15b [176]. Such a

ncRNA can be under the transcriptional regulation of

E2F also [177], suggesting that the overexpression of

E2F due to the activity of the viral oncoprotein E7

[178] is able to increase the transcription of miR-15b.

Since miR-15b stimulates cell proliferation through the

expression of CCNA2, CCNB1, CCNB2, MSH6 and

MCM7, an induction of this ncRNA by HPV can

have severe consequences on the cellular environment

[176]. In recent years, it has become additionally evi-

dent that HPV can transcribe ncRNAs [179]. Still,

however, although the involvement of HPV-encoded

ncRNA in fostering several types of squamous cell car-

cinomas (cervical, head and neck, and oropharyngeal)

has been established, viral ncRNA in the genesis of

CRC is still poorly understood [180].

Nevertheless, in the context of CRC-related impor-

tant pathway molecules, HPV protein E6 has been

shown to bind to b-catenin with the PDZ domain,

thus promoting nuclear localization of b-catenin [181].

Expression of E6 stabilizes b-catenin [182] and also

enhances the expression of forkhead box M1 (FOX1),

increasing the rate of nuclear translocation for b-
catenin [183]. E7 also binds to histone deacetylases

and the E2F suppressor p21, overall extending the S

phase [184,185]. The consequences of this action can

be several-fold: for example, E7 induces chromosomal

instability (which is often detected in CRC) and an

increased rate of integration of foreign DNA into

transfected cells [186,187]. Furthermore, the unsched-

uled extension of DNA replication activates p53, trig-

gering apoptosis [188]. HPV has evolved to neutralize

p53 by encoding E6, which forces p53 into ubiquitin-

dependent degradation [189–191]. E6 also induces

overexpression of the catalytic subunit of telomerase

(TERT), further promoting DNA replication [192]. E6

interferes with many other cellular proteins involved in

ubiquitination (E6AP), apoptosis (Bak, c-myc, procas-

pase 8, FADD, survivin, TNF), transcriptional regula-

tion (CBP/p300, E6TP1, hADA3, Gps2, tuberin),

immune surveillance (IRF-3, TLR9), chromosomal sta-

bility (hMCM7, XRCC1, O(6)-methylguanine DNA

methyltransferase), differentiation (ERC-55, fibulin,

paxillin, zyxin), and cell adhesion and proliferation

(hDlg, MAGI-3, hScrib, MUPP1, MAGI-1, MAGI-2,

PATJ, PTPN3) [193]. Finally, HPV protein E5

enhances the functions of both E6 and E7 and inhibits

the degradation of activated EGFR, sustaining sig-

nalling pathways promoted by this receptor [194,195].

This and further molecular targets of HPV described

in this paragraph are evidently essential players in

CRC carcinogenesis, progression and/or metastasis,

and could be, in theory, ideal mediators of HPV-

promoted carcinogenesis and/or progression in this

context.

4. Polyomaviruses

John Cunningham virus (also known as JCPyV) was

first isolated from brain tissues of a patient with pro-

gressive multifocal leucoencephalopathy (PML) [196].

Early studies on the prevalence of JCV failed to iden-

tify this virus within CRC, but such a failure might

have been due to the structure of the viral genome.

Subsequent work, involving DNA digestion with

topoisomerase and genome amplification with degener-

ated primers, showed a prevalence of JCV of 81–89%
in CRC tissues, and the virus was enriched in CRC

sections with respect to the surrounding normal tissues

[197–199]. Even when the virus was present in both

tumour and healthy tissues, the viral load was reported

to be significantly higher in the former (103–104 copies

per µg of tissue) than in the latter (101–
102 copies�µg�1) [200].

John Cunningham virus establishes a life-long and

asymptomatic infection of the kidneys in about half of

the adult population [201]. JCV also infects tonsillar
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stromal cells, bone marrow cells, oligodendrocytes and

astrocytes [202]. In the presence of immunosuppres-

sion, the virus can reactivate, causing PML [203].

PML is usually fatal, and its incidence has drastically

increased with the spread of acquired immunodefi-

ciency syndrome (AIDS) [204]. Given the role of

immune suppression in PML and the high prevalence

of JCV infections, the use of immunosuppressive ther-

apy to treat CD has raised concern about potential

side effects [205].

The JCV genome is a circular dsDNA molecule of

5 kb in length [206]. Replication of the virus depends on

the large T antigen (TAg), which recruits the cellular

replication machinery and functions as a helicase [207].

Alternative splicing of the TAg ORF produces addi-

tional regulatory proteins (small t antigen, T´135, T´136,
T´147, T´152 and T´165) [208]. There are two primary

forms of JCV: the prototypical and the rearranged. The

former is the full-genome length commonly recovered

from urine and renal tissues, possibly representing the

viral infectious entity [209]. The latter shows rearrange-

ments in the genome, particularly in the regulatory

region, and several versions have been recovered in dif-

ferent cell lines. This suggested that the rearrangements

represent adaptations to specific cell types [210].

Remarkably, a subvariant of the JCV strain, Mad-1

(M1Δ98), has been consistently recovered in CRCs but

not in normal surrounding colorectal tissues [211]. The

introduction of either Mad-1 or M1Δ98 into the colon

carcinoma cell line RKO revealed direct interactions

between TAg and both p53 and b-catenin, and the

infected cells developed chromosomal instability and

loss of contact inhibition [212]. Other studies have con-

firmed that TAg interacts with b-catenin, promoting its

stability and nuclear import [213]. Moreover, TAg binds

to Rac1, which in turn connects with b-catenin, result-
ing in further stabilization of the latter [214]. The b-
catenin stabilization carried out by TAg, together with

the aforementioned epidemiological and experimental

data, renders JCV as a chief suspect in fostering carcino-

genesis and potentially also progression of CRC [17].

Further epidemiological and experimental evidence

on TAg itself confirmed the hypothesis of a central

role of this protein in CRC. TAg was observed in

77% of CRCs as compared to 72% of healthy sur-

rounding tissues, and its expression was associated

with increased chromosomal instability and hyperme-

thylation of tumour suppressor genes [215]. Others

have reported the presence of TAg in 26% of CRC

sections but in none of the normal colon tissues [216].

TAg interacts with pRb and p53, extending the S

phase and replication of the viral genome [217]. Fur-

thermore, TAg stimulates ataxia telangiectasia mutated

(ATM) and ataxia telangiectasia mutated and Rad3-

related (ATR), triggering G2 arrest and boosting viral

amplification [218].

Further JCV proteins disrupt the cell cycle. Small t

antigen (tAg) and the short isoforms T´ inhibit pRb

[219,220]. Moreover, tAg inhibits PP2A, which

dephosphorylates agnoprotein (AP), a JCV regulatory

protein [221]. As in the case of HPV E7, this interac-

tion might indirectly promote the stability of b-
catenin, activating the Wnt pathway. Moreover, AP

represses the expression of p21 and impairs the

double-strand break (DSB) repair mechanism of

infected cells [17,222]. This is interesting in the light of

our own recent finding that AC3 mutational signa-

tures, which reflect mutations/malfunctions in DSB

repair and BRCAness, were increasingly ongoing and

active in progressive CRCs, and specifically in meta-

static lesions [38]. Again, it is tempting to speculate

that such findings of mutational genomic signatures

might be, at least in part, an imprint of particular

viruses, in this case, JCV, that could have aided in

CRC carcinogenesis and/or metastasis.

In summary, there is epidemiological, but also, at

least in part, some molecular evidence that supports

hypotheses for classically known DNA viruses, such as

CMV, HPV, EBV and JCV, to be potential contribut-

ing factors to CRC. A graphical summary of the main

mechanisms that could be targeted in this context is

given in Fig. 1A,B.

5. Phages

Dysbiosis has been recognized as a risk factor in CRC

development, since about one-third of CRC patients

show dysbiosis and, at least in part, associated inflam-

mation [223,224]. Faecal transplantation of mice with

bacterial communities found in CRC patients resulted

in CRC development in the recipients, highlighting the

risk associated with specific bacteria within the micro-

biome, such as Bacteroides [225]. Using metagenomic

approaches, recent work has shown differences in the

prevalence of phages between the healthy and inflamed

intestine [226]. Specifically, an increased richness (num-

ber of species) of phages belonging to the order of

Caudovirales has been consistently reported [227].

Although it is understood that phages can modulate

human physiology at several levels, the scale of this

influence is still not well comprehended [228]. It has

been proposed that phages might alter the overall

balance of the bacteriome by targeting species, which

are not necessarily pathogenic per se, promoting

the expansion of driver bacteria (those capable of

causing inflammation) and passenger bacteria (those

1430 Molecular Oncology 16 (2022) 1423–1450 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies.

Viruses in colorectal cancer L. Marongiu and H. Allgayer



contributing to oncogenesis), and thus CRC carcino-

genesis and/or progression [229,230]. In addition,

phage-induced bacteriolysis releases cellular debris into

the microenvironment, which can induce inflammation.

For instance, bacterial DNA and lipopolysaccharides

act as a pathogen-associated molecular pattern

(PAMP) that trigger an immune response [231].

The current status of knowledge suggests that the role

of phages in CRC is indirect. Although it is known that

phages can get access to epithelial cells [232], the current

hypothesis rather is that they do infect human cells sensu

proprio and do not encode for oncoproteins. However,

by promoting the growth of pathobionts, able to dam-

age intestinal cells and to establish local inflammation,

phages represent a risk factor for CRC, whose impor-

tance has only recently started to be appreciated [233].

It has been proposed that phages are capable of induc-

ing a ‘leaky gut’, loci of increased intestinal permeability

that facilitate the infiltration of pathogenic bacteria and

foster chronic inflammation [234]. Thus, phage-

mediated carcinogenesis implies the presence of patho-

genic and/or oncogenic bacteria. Several bacterial spe-

cies have been suggested to be involved in this process,

but the most recurrent in the literature are Escherichia

coli, Bacteroides fragilis, Enterococcus faecalis and

Fusobacterium nucleatum.

Escherichia coli is a commensal of the human gut, and

strains such as Nissle 1917 are commonly used as probi-

otics [235,236]. However, some strains contain genes

encoding virulence factors that can damage intestinal

cells, causing chronic inflammation and, subsequently,

cancer [237]. One of these virulence factors is cytolethal

distending toxin (CDT) (which is also present in strains

of Shigella, Campylobacter, Actinobacillus and Helicobac-

ter), which causes DNA damage and blocks exposed cells

within the G2/M transition [238]. Colibactin is another

virulence factor that damages the DNA of exposed cells

and is common among Enterobacteriaceae, including

E. coli [21,239]. Colibactin is encoded by a 54-kb geno-

mic region, known as polyketide synthases (psk) island,

which promotes the synthesis of nonribosomal peptides

[240]. Remarkably, even the probiotic strain Nissle 1917

contains the psk island [241], highlighting how our under-

standing of the bacterial role in inflammation and cancer

still needs to be refined with more intense functional stud-

ies, especially regarding strains widely applied as probi-

otics in an, up to now, rather uncritical fashion.

Furthermore, in our own analyses of primary colon

tumours and liver metastases [38], we observed sequences

of several coliphages specifically in these tissues but not

in normal matched colon tissues [39], and it remains to be

functionally determined how this additional phage level

of complexity contributes to the overall picture of

microbiome-associated modulation of CRC carcinogene-

sis or metastasis.

Bacteroides fragilis can be subdivided into two main

groups: nontoxigenic and enterotoxigenic. The former

(NTBF) is used as a probiotic, but the latter (ETBF)

can cause tumours in mice, and it is associated with

CRC in humans. ETBF asymptomatically infects

about one-third of the human population and pro-

duces a toxin (a metalloprotease known as BFT) that

induces chronic inflammation by transactivating

STAT3 [242]. BFT binds to E-cadherin and mediates

its cleavage, with the consequent release of b-catenin
into the cellular milieu [243].

Enterococcus faecalis is also used as a probiotic and

shows anti-inflammatory activity. However, even in

this case, certain strains have been suggested to be

involved in the carcinogenesis of CRC [244,245]. The

peculiarity of this bacterium is that it does not encode

for a cytotoxic virulence factor, but produces extracel-

lular superoxide (�O2
–), which stimulates the COX-2

pathway in macrophages that is responsible for dam-

aging epithelial cells [246,247]. Although the metabolic

process that generates �O2
– is still poorly understood,

pathogenic strains produce a higher amount of it than

commensal strains, suggesting that this molecule pro-

vides a selective advantage for E. faecalis [248].

Fusobacterium nucleatum, which is commonly

encountered in the oral cavity, activates macrophages.

It has been shown that F. nucleatum infection increases

the infiltration of macrophages into gingivae [249].

Furthermore, this bacterium stimulates macrophage

migration and conversion into the activated M1 phe-

notype in vitro and in vivo [250,251]. This opportunis-

tic bacterium is an endocellular parasite able to gain

access to epitheliocytes using the E-cadherin CDH5,

which is recognized by the bacterial surface protein

FadA, resulting in higher cytoplasmic expression of b-
catenin [252]. Autoinducer 2 (AI-2) is a secretory pro-

tein involved in the quorum-sensing response, and it is

shared by different bacterial families [253]. AI-2 pro-

duced by F. nucleatum upregulates the production of

IL-1b, promoting the transition of macrophages into

the M1 phenotype [254]. Fusobacterium nucleatum

increases the expression of NF-jB [255] and encodes a

two-subunit immunosuppressive protein (FIP) of

about 10 kDa that arrests T lymphocytes in G0, thus

triggering immunosuppression [256]. To the extracellu-

lar space, F. nucleatum releases short peptides (formyl

methionyl alanine and leucyl-phenylalanine) and fatty

acids (butyrate, propionate and acetate) that are

chemo-attractants for immunosuppressive cells [257].

If lytic phages selectively target commensal

species within the intestine, the results could expand
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opportunist bacteria, such as the aforementioned, that

lead to chronic inflammation [258]. Indeed, in our own

recent genome sequencing studies of CRC primary

tumours and corresponding metastases [38], we found

evidence for the presence of sequences of different

Enterobacteria, Bacillus, Streptococcus and other

phages [39]. The prolonged exposure of epithelial cells

within the colon and rectum to an inflammatory envi-

ronment ultimately results in the accumulation of

genetic damages within these cells. In this context,

phages play a more decisive role than being simple

modulators of bacterial populations. Phages give their

hosts a selective growth advantage, and it has been

observed that antibiotic treatment boosts a horizontal

genetic exchange between bacteria and phages [259]. It

is known that phages can cross the intestinal barrier

by transcytosis of epithelial cells [232], although poten-

tial effects that phage particles might exert on the cel-

lular environment are still not, or poorly, understood

[231]. For example, an exposure of several cell lines,

including lymphocytes and fibroblasts, to several types

of phages (T2, MS2 and /X174) did not cause an

increase in mutation rates or chromosomal aberration

of the exposed cells, although phage T2 inhibited the

DNA replication of the treated cells [259]. Interest-

ingly, especially in the context of CRC and the micro-

bial flora of the human intestine, phage T4 was shown

to reduce the rate of phagocytosis of E. coli and of

reactive oxygen species (ROS) production in phago-

cytes in in vitro models [260]. Also, in vivo, T4 cur-

tailed antibody production in mouse models [261]. The

attachment of phages to the membrane of lymphocytes

and epithelial cells has been demonstrated to suppress

cellular amplification [260]. These results even suggest

that, against the current hypothesis of phages as

merely indirect players in CRC oncogenesis or pro-

gression, phages such as T4 or coliphages might be

exerting an additional, more active, role in colorectal

inflammation and cancer. This is supported by the

observation that phages can cause a misfolding of cel-

lular proteins, and the debris generated by the lysis of

bacterial cells can trigger an immune response causing

conditions in the host, which raises the case of consid-

ering phages as human pathogens tout court [231].

Further functional and molecular studies need to sup-

port this hypothesis.

Fig. 1. (A) Major signalling molecules and pathways by which viruses discussed in this review could contribute to CRC carcinogenesis and

progression: Involvement of cell surface receptors and cytosolic signalling molecules. Oncogenic viruses sustain their multiplication by hijacking

the cellular replication machinery and have coevolved to target the same cellular pathways to extend the S phase and avoid senescence or

apoptosis. The cellular multifunctional protein b-catenin is targeted at several levels. In nonstimulated cells, b-catenin is sequestered at the

membrane in a complex with E-cadherin, and any unbound b-catenin is rapidly targeted for ubiquitination by the destruction complex, which is

formed by several proteins, including APC and axin. Binding of the mitogen Wnt to the frizzled receptor conjugated with Dsh results in inhibition

of the destruction complex and release of b-catenin from cadherin. JCV, HPV and EBV repress activity of the destruction complex via TAg, E7

and LMP2A, respectively. In addition, LMP1 decreases the degradation of E-cadherin while promoting the stability of b-catenin. The binding of

the mitogen TNF to the receptor CR2 induces the phosphorylation of IKK, which in turn phosphorylates IjB and the release of the transcription

factor NF-jB. The binding of EBV to CR2 activates this process independently from TNF. The transcription factor STAT3 is involved in sustaining

cell proliferation and is formed upon phosphorylation carried out by JAK. Activation of JAK is also dependent upon phosphorylation induced by

the cytokine receptor and EGFR. The former is activated upon binding with TGF-a and the latter by the association with IL-10. Binding of EBV to

the cytokine receptor activates JAK. Furthermore, EBV promotes STAT3 activity by encoding LMP1, which inhibits the degradation of EGFR

and stimulates JAK. HPV E5 also activates EGFR. In addition, HPV E7 forces a structural change in the M2 pyruvate kinase, promoting

glycolysis and reducing the cell’s biochemical dependence on oxygen. It is important to note that virus-derived molecules such as EBV-derived

LMP1 might also enter (cancer) cells via, for example, microvesicles from microenvironmental (in the EBV case B) cells in a ‘paracrine’ fashion,

not only by direct infection of the cell. (B) Major signalling molecules and pathways by which viruses discussed in this review could contribute

to CRC carcinogenesis and progression: Involvement of nuclear import and intranuclear events. The transcription factor E2F is central in the

expression of genes involved in converting the prereplication complex into the fully formed replication machinery. This transition is tightly

regulated by cyclins and pRb. In particular, pRb sequesters E2F, and the release of E2F is promoted by cyclins D/E and inhibited by p21. JCV

and HPV affect this process by promoting the degradation of pRb via TAg and E7, respectively. Furthermore, E7 facilitates the nuclear

transportation of E2F and enhances the activity of cyclins A/D/E. Cyclin A is instrumental in the formation of the replication complex, but this

cyclin is ubiquitinated by the destruction complex. As shown in Fig. 1A, the destruction complex is inhibited by TAg, E7 and LMP2A. The

suppressor p21 inhibits cyclins A/D/E, but it is counteracted by JCV-derived AP and HPV-derived E7. S phase extension activates effectors of

DNA damage response such as p53. Viral replication associated with direct DNA damage activates the kinases ATM and ATR, which stimulate

the expression of p53. EBV-derived EBNA1 has been reported to cause direct DNA damage. JCV, HPV, EBV and CMV prevent blockage of the

S phase by targeting p53 via TAg/tAg, E6 (which induces the ubiquitination of p53), BZLF1/LMP1 and mtrII, respectively. Intranuclear NF-jB

activity is enhanced by EBV-derived BZLF1, whereas the transcription factor STAT3 facilitates its nuclear translocation. The protein b-catenin is

involved in the activation of cellular proliferation by releasing the inhibitor Groucho from the transcription factor TCF/LEF1. Nuclear import of b-

catenin is enhanced by HPV-derived E6 and EBV-derived LMP2A. HPV facilitates DNA replication by upregulating the expression of TERT

through the action of E6.
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Still, phages are also able to provide beneficial fea-

tures to the human body. Phages modulate the activity

of macrophages, dendritic cells, lymphocytes, mono-

cytes and granulocytes, reducing the expression of IL-

2, TNF-a and IFN [261]. It has been proposed that

phages containing the sequence Lys-Arg-Gly (KGD)

in their capsids attach to activated T lymphocytes,

causing immunosuppression [262]. Such modulation is

beneficial because it reduces the risk of abnormal

immune responses. In addition, phages can help fight

infections by lysing invading bacteria. It has been sug-

gested that phages constitute a sort of primordial

adaptive immune response residing in the mucus sur-

rounding the intestine, removing foreign bacteria

before they can reach the epithelial cells underneath

[263]. We think that, especially according to, for exam-

ple, environmental circumstances (e.g. the intestinal

microenvironment and individual microbiome, nutri-

tional factors, pH, potentially also environmental tox-

ins which are actively, or unknowingly, ingested),

phages might take on opposing roles, as either

‘friends’ or ‘foes’, which facilitate the spread of oppor-

tunistic bacteria. Taken together, it is highly likely that

it is the context that determines the outcome of the

phagial influence on human physiology, inflammation

and cancer. A graphical summary of some of the func-

tions of particular phages in the intestine, within dys-

biosis and as potential contributors to CRC

carcinogenesis and progression, is given in Fig. 2.

6. Other viruses

The virus families discussed so far have the highest

epidemiological evidence for a potential association

with CRC. A few more have been implicated, and it

will be highly interesting in the future to perform more

studies on these, epidemiologically and functionally.

With an exciting review a few years ago, Harald zur

Hausen suggested a link between the consumption of

red meat of certain species and the development of

CRC [264]. Specifically, a limited group of viruses [pa-

pillomaviruses, polyomaviruses and torque teno virus

(TTV)] are able to resist the temperature of cooking

and survive in the meat, thus potentially explaining the

increase in CRC incidence in countries whose popula-

tion consumes, or started to consume, high quantities

of red bovine meat [265]. Papillomaviruses and poly-

omaviruses, as described in the preceding paragraphs,

do have a connection with CRC. TTV (family Cir-

coviridae) was originally isolated from a hepatitis

patient (whose initials were T.T.) in the late 1990s

[266,267] and was subsequently observed at high fre-

quency in CRC tissues by de Villier et al. (38 out of

50 sections) [268]. TTV was present in the blood of

150 out of 153 (98.0%) CRC patients compared with

43 out of 50 control subjects (86.0%) [269], and in 72

out of 82 (87.8%) CRC tissues compared with 16 out

of 40 (40.0%) normal colon sections [270]. TTV has

been reported to infect, asymptomatically, a large pro-

portion of the human population [271,272] and has

been associated with hepatitis, pulmonary diseases,

inflammation and systemic lupus erythematosus [273].

Interestingly, in our genome analysis [38], we can con-

firm the presence of TTV in raw genomic data of

CRC, including some liver metastases [39], although of

course these data still need to be considered with cau-

tion since it is known that TTV is highly prevalent in

the blood in general [264], and that the liver is one of

the organs with the highest content, and flow, of blood

within the human body.

Other viruses that have rarely been reported to

have been detected in CRC are human bocavirus

(HBoV) and Inoue–Melnick virus (IMV) [19]. HBoV

(family Parvoviridae) was isolated from children with

respiratory infections in the mid-2000s [274] and then

observed in the blood of healthy donors [267]. HBoV

was reported in 9 out of 44 (20.5%) [275] and 24 out

of 101 (23.8%) [276] CRC sections, but also as low

as one out of 66 CRC patients (1.5%) compared with

one out of 91 healthy controls (1.1%) [277]. IMV (no

assigned family) was isolated from a multiple sclerosis

patient in the 1980s [278] and later isolated from five

CRC-derived cell lines (SW-480, WiDr, LoVo, DLD-1

and SW-1463) [279]. Serological investigation in 26

CRC patients showed the presence of IMV in all of

them, compared with 9 out of 26 (34.6%) cases of

non-CRC and 10 out of 26 healthy controls (38.5%)

[280], and, in another sample set, in 20 out of 24

CRC cases (83.3%) [281]. IMV was present in 100%

of nine CRC samples but absent in ten normal colon

tissues from healthy controls [279]. Up to now, no

functional link has been published, as far as we

know, to CRC.

Human endogenous retroviruses (HERVs) belong to

a family of proviruses of retroviral origin that consti-

tute about 8% of the human genome [282]. Virtually

all HERVs are inactive, but a small proportion can

express their viral genome if certain, still not com-

pletely understood, conditions are met [283]. The

expression of HERV oncoproteins has been associated

with oncogenesis [284–286]. High expression of HERV

ERV3-1 has been reported in CRC samples [287], and

transcriptome analysis in one paper suggested that an

increase in HERV transcripts was associated with a

poor prognosis in CRC patients [288]. Also, in our

own series of colorectal cancer/metastasis samples [38],
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we frequently observed HERV-K113 sequences in the

genomes; however, due to the setting of the analysis

(whole-genome sequencing), we could not determine

whether there were differences in retroviral expression

between normal tissues, primary colorectal tumours

and metastases, and therefore, future studies on this

might lead to additionally interesting discoveries [39].

As mentioned in Introduction, HIV is also a recog-

nized oncogenic virus, which has primarily been associ-

ated with lymphomas. However, due to its

immunosuppressive capabilities, it is also involved in

facilitating the establishment of chronic infections of

other viruses known to progress to cancer, such as

HPV [289–291]. Conversely, the relationship between

HIV infection and CRC risk is less clear, although it is

increasingly recognized in general that HIV-positive

patients have a higher cancer risk and a poorer prog-

nosis than HIV-negative people [292,293]. HIV-

positive people have a hazard risk of 2.3 for cancer as

compared to HIV-negative people, specifically 2.8 for

pancreatic cancer. The hazard risk is 3.0 for HCV

infection and CRC, and 2.4 for an HIV/HCV coinfec-

tion and CRC [294]. The exact oncogenic mechanisms

that link HIV to CRC are not clearly understood yet.

Fig. 2. Bacterial and phagial influence on the colorectal environment. Some bacteria can induce cell damage and immunological imbalance

able to contribute to fostering CRC. Certain strains of E. coli bear virulence factors encoding colibactin and CDT, capable of inducing DNA

damage in colonocytes. E. faecalis produces superoxide (�O2
–) as a by-product of its metabolism. Superoxide stimulates macrophages to

produce RSO that also induces DNA damage in colonocytes. Virulent strains of B. fragilis encode BFT that promotes cell proliferation by

activating STAT3. Furthermore, BFT promotes the degradation of E-cadherin that, in turn, increases b-catenin levels. F. nucleatum is an

endogenous parasite that stimulates cell proliferation by activating the E-cadherin, with the subsequent release of b-catenin in the

cytoplasm and its nuclear translocation. F. nucleatum also promotes the activation of NF-jB and secretes molecules (AI-2) that induce

activation of macrophages. Moreover, F. nucleatum modulates the immune system by releasing FIP that inhibits T lymphocytes involved in

clearing the infection. F. nucleatum also releases short peptides and fatty acids that activate immune suppressive cells, further weakening

the immune response to infection and extending the bacterium’s activity. Pathogenic bacteria usually are contrasted by the commensal

bacteria present in the intestine. In the figure, such an interaction is represented by a commensal E. coli species downregulating both

E. faecalis and a pathogenic E. coli strain. However, in real conditions, there would be a network of species cross-regulating each other.

Bacteriophages can be important players to alter this equilibrium by, for example, targeting the commensal species and promoting the

proliferation of the pathogenic species. The targeting and lysis of bacteria cause cellular debris, which, in itself, can trigger immune

responses [231]. The latter two scenarios are exemplified in the figure by Enterobacteria phage /80. Besides, phages are able to modulate

the immune system, avoiding a deleterious immune response. For instance, it has been proposed that T4 binds to T lymphocytes [260],

thus inducing immune suppression. In certain conditions not fully understood, this type of immune suppression can promote the

proliferation of pathogenic bacteria. The combination of bacterial interaction and phage modulation provokes genetic damage and

chromosomal instability within colonocytes, which can result in a transformed phenotype, potentially leading to polyps, adenomas and,

eventually, (metastatic) carcinoma cells.
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One hypothesis proposed that this association is not

due to the depletion of T4 lymphocytes, but rather

due to the side effects of the antiviral drugs [295].

Interestingly, anti-HIV drugs were effective in the

treatment of CRC and associated metastases [296].

For instance, raltegravir (RAL) inhibits HIV integrase

but also Fascin-1, a marker of metastasis [297]. Simi-

larly, zidovudine is a nucleotide analogue that inter-

feres with HIV reverse transcriptase and is able to

restore the sensitivity to cisplatin in resistant cancers.

Thus, it has been used in combination with 5-

fluorouracil to treat metastatic CRC [298]. Tenofovir,

another agent used against HIV, has given promising

results in the treatment of adenocarcinoma in rats

recently [299].

Finally, chimeric plasmid-like structures formed by

sequences derived from bacteria (Acinetobacter) and

ssDNA viruses (Geminiviridae and Nanoviridae),

named bovine meat and milk factors (BMMFs), were

reported recently by de Villier, zur Hausen et al. [11]

in bovine meat, serum and cow milk, as already indi-

cated in Introduction. BMMFs were subsequently con-

firmed in CRC tissues, and the current hypothesis is

that they act as indirect carcinogens via an interaction

with (intestinal) macrophages, inducing chronic inflam-

mation and the damage of DNA [300]. Another aetio-

logical agent in the form of a self-replicating plasmid

associated with red meat was associated with transmis-

sible spongiform encephalopathy, named Sphinx [301];

thus, BMMF and Sphinx might be the same entity.

Further analysis reported a high similarity between

Sphinx and Acinetobacter [302], and the transfection of

Sphinx into embryonic kidney cells (HEK293) indi-

cated an alteration in cellular expression that could

support a pathogenic role for this entity [303]. It

remains to be seen in future studies how these novel

taxa might contribute functionally to CRC carcinogen-

esis, progression or metastasis.

7. Conclusions and perspectives

Despite the differences in structure and replication

strategies, the (onco-)viruses associated with direct car-

cinogenesis most frequently observed within CRC

(EBV, CMV, HPV, JCV), and discussed herein, share

some similarities:

� They are all DNA viruses that establish latent
infections.

� They depend on the replicating machinery of
infected cells.

� They disrupt the cell cycle, especially by target-
ing p53, pRb and also p21.

� They interfere with EMT-/EGFR-associated
pathways.

� Especially – and this is supported by the most
abundant pieces of evidence – they target the
Wnt/b-catenin pathway in multiple ways.

Moreover, a putative involvement of phages in the

CRC context is an increasingly exciting field, which

nevertheless renders the microbial contribution to

CRC carcinogenesis more complicated. Still, some of

the mechanisms of carcinogenesis carried out by onco-

genic bacteria as discussed above, which in turn can be

modulated by specific bacteriophages, show similarities

with the viral ones and, in particular, again highlight

the importance of the Wnt signalling pathway as a

specific target of pro-oncogenic colorectal commensals

in CRC progression.

The disruption of the Wnt/b-catenin pathway is par-

ticularly intriguing since a significant number of muta-

tions, and further genomic changes that have been

reported in CRC, are concentrated within this sig-

nalling system (besides others, such as p53-associated

pathways, which are also viral targets). This we have

seen confirmed in our own work of whole-genome

sequencing of CRC primary tumours and correspond-

ing metastatic lesions [38]. It is striking that, in CRC,

the frequency of, for example, APC mutations is 50–
85% but only 7% in bladder carcinoma, and 0.7% in

pancreatic adenocarcinoma [304–306]. Assuming that

the rate of genetic mutations is the same for all cells, it

is clear that specific mutations are being selected in

certain tumour entities. Certainly, it is acknowledged

that the presence of mutations is a potentially neces-

sary, but not sufficient, cause of carcinogenesis. For

instance, the mouse strain Min (multiple intestinal neo-

plasia) bears a mutation in the APC gene that disrupts

the protein, and therefore, it is a model for familial

adenomatous polyposis in humans [307]. Although the

mutation is present in all of the mouse cells, tumours

appear in the intestine only, indicating that the intesti-

nal cells are more sensitive to Wnt signalling pathway

disruptions. Still, the processes that promote muta-

tional selections in natural CRC carcinogenesis are still

not entirely clear. Given the molecular impact particu-

lar viruses can exert on, for example, not only the Wnt

but also other pathways, such as DNA DSB repair

(AC3 mutational pattern according to Alexandrov

et al. [308,309]), a mutational pattern we, and subse-

quently others, found to be increasingly pronounced in

CRC progression towards metastasis [38,310], we con-

sider it tempting to suggest that particular viruses as

discussed in this Review could have imposed particular

mutational/genomic/molecular patterns into CRC cells.
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This might have occurred even if their presence in par-

ticular tumours or colorectal tissues was nonperma-

nent, or if particular virus-derived molecules might

have found their way into CRC cells not by direct

infection, but in ‘paracrine’ manners from microenvi-

ronmental cells (e.g. EBV). Thus, increasing muta-

tional patterns within, for example, DNA DSB repair

might, at least in part, be due to the actions of, for

example, passenger viral infections or of reboosted

infections residing in, for example, intestinal lympho-

cytes that transfer viral pro-oncogenic molecules. The

fact that molecular imprints could have remained, even

if the virus infection is not evident or active any more,

could be one explanation as to why it might be partic-

ularly difficult to establish clear and unequivocal epi-

demiological correlations between specific viral

infections such as EBV, CMV, HPV or JCV, and

CRC carcinogenesis and progression. Factors of indi-

rect carcinogenesis by (in part nutritionally modified

or inflicted) phage-bacterial interactions and further

novel species (e.g., BMMFs) most likely at least add

to such a scenario. This certainly is a mere hypothesis

at the moment and would need more experimental

work. Still, our additional recent genomic observation

that apolipoprotein B mRNA-editing enzyme, catalytic

polypeptide (APOBEC) signatures were enriched in

some CRC primary tumour and corresponding metas-

tasis samples [38] is supportive of this hypothesis, since

APOBEC enzymes, amongst other activities, have

specific functions in the defence against viral infections

[38,311,312]. Also, our recent finding, confirmed by

others, that the MACROD2 gene was most frequently

hit by structural variations (SVs) in CRC metastases is

interesting in this context, since it becomes increasingly

clear that the family of MARylating PARPs exerts

functions in host–virus interactions, limiting viral repli-

cation [313,314].

Finally, it is still a matter of debate why the onco-

genic viruses discussed in the present Review have

been established as causative for disease much more

clearly in other types of cancer than in CRC. For

instance, no biological evidence is able to explain why

EBV is a recognized risk factor in gastric cancer but

not in CRC. The specific cellular environment, and its

difference between gastric and intestinal environmental

conditions, is probably involved in generating a differ-

ent response to viral infection. For instance, it is

known that the gastric pH is extremely acidic (between

1 and 4), which raises to a pH between 7 and 8 in the

small intestine, with highly different microbial popula-

tions in the stomach, large and small intestine [315]. It

is possible that EBV could access the host cell via two

independent mechanisms: one pH-independent through

direct fusion with the plasma membrane, and another

mediated by endocytosis that is more effective at low

pH [316,317]. The acidity of the environment could be

therefore one parameter affecting the infectivity of par-

ticular viruses and, consequently, their oncogenic

potential or their general ability to interact as players

within a particular microenvironment. Alternatively, it

is possible that the distinct microbial communities pre-

sent in the stomach, large and small intestine might

pose specific competitive arrangements that alter virus

infectivity. Furthermore, gastric and intestinal epithe-

lial cells most certainly have slightly different genetic

expression landscapes that could profoundly affect

viral activity.

Clearly, more experimental work combining viral

and host (organ) analysis is needed to achieve a more

complete understanding of how viruses contribute to

carcinogenesis and cancer progression in different car-

cinoma entities. If they arise in organs that show com-

plicated and multiple parameters of environmental

exposure, for instance via the lumen of the digestive

tract, this endeavour certainly will pose high levels of

challenges to the community of basic molecular and

medical scientists within fields as different as (molecu-

lar) oncology, microbiology, nutritional and veterinary

sciences, environmental sciences, and others, and

require complex interdisciplinary efforts. Nevertheless,

this challenge for the near future will undoubtedly be

a highly exciting one.

8. Take-home messages

� CRC represents the second most common type
of cancer worldwide, and its incidence is pre-
dicted to increase in the next years, also affecting
increasingly younger people.

� Currently, the evidence is highest for EBV,
CMV, HPV and JCV for an association with
CRC.

� EBV, CMV, HPV and JCV are all DNA viruses
that establish latent infections and rely on the
cellular replication machinery.

� EBV, CMV, HPV and JCV disrupt the cell cycle,
altering the Wnt/b-catenin pathway in multiple
ways, and act at further (CRC-associated) path-
ways.

� Further, novel infectious agents need to be inves-
tigated in future functional/epidemiological stud-
ies as to their function in CRC.

� Bacteriophages are gaining increasing awareness
for a putative role in CRC carcinogenesis or even
progression, due to their ability to modulate the
intestinal microflora and the immune system.
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