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A B S T R A C T   

The importance of identifying plant diseases has risen recently due to the adverse effect they have 
on agricultutal production. Plant diseases have been a big concern in agriculture, as they affect 
crop production, and constitute a major threat to global food security. In the domain of modern 
agriculture, effective plant disease management is vital to ensure healthy crop yields and sus
tainable practices. Traditional means of identifying plant disease are faced with lots of challenges 
and the need for better and efficient detection methods cannot be overemphazised. The emer
gence of advanced technologies, particularly deep learning and content-based filtering tech
niques, if integrated together can changed the way plant diseases are identified and treated. Such 
as speedy and correct identification of plant diseases and efficient treatment recommendations 
which are keys for sustainable food production. In this work, We try to investigate the current 
state of research, identified gaps and limitations in knowledge, and suggests future directions for 
researchers, experts and farmers that could help to provide better ways of mitigating plant disease 
problems.   

1. Introduction 

Plant diseases have adverse effects on crop yields, quality, and economic stability in agricultural systems worldwide [1]. They cause 
crop production losses that vary from 20 % to 40 % annually [2]. Approximately 83 % of plant diseases are caused by fungus, 9 % by 
viruses and phytoplasmas, and more than 7 % by bacteria according to Ref. [3]. Also, about 13 % of the inhabitants of developing 
nations are affected by malnutrition [4] due to inadequate availability of food production caused by the activities of these plant 
diseases on farm yields. Hlophe-Ginindza and Mpandeli [5] suggested that the existing food production level must increase by at least 
70 % in order to guarantee sustainable food production. Therefore, sustainable food production demands immediate proactive 
management strategies to identify diseases accurately and provide appropriate treatment recommendations. Recently, the advent of 
deep learning and content-based filtering techniques have revolutionized the field of plant disease management [6]. Deep learning 
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techniques, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have demonstrated outstanding 
performance in several image analysis tasks [7]. By training on large-scale datasets of plant images, these models can learn to 
accurately identify different types of diseases based on visual patterns and characteristics. On the other hand, content-based filtering 
techniques has the potential to leverage disease characteristics, treatment strategies, and expert knowledge to provide personalized 
treatment recommendations. These techniques analyze the specific symptoms, environmental conditions, and disease phases to tailor 
the treatment approach to individual plants. By considering a wide range of factors, content-based filtering methods can provide more 
precise and effective treatment recommendations [8]. Also, the integration of deep learning and content-based filtering techniques can 
provide a comprehensive approach to plant disease identification and treatment recommendation. By combining the strengths of both 
techniques, it becomes possible to not only accurately detect diseases but also provide personalized treatment support based on the 
unique attributes of each plant. 

Traditional approaches used to identify diseases in plants depend on visual assessment and professional knowledge. Nevertheless, 
these approaches can waste time, biased and be imprecised. Also, general treatment recommendations may not consider the features of 
plants and diseases leading to less optimal outputs. This review explores the use of deep learning and content-based filtering techniques 
for plant disease identification and treatment recommendations. By examining the advantages, limitations and future research di
rections in this field we, aim to contribute towards the development of efficient and sustainable practices for managing plant diseases. 

Specifically, the study has been organized to answer the following important research questions for plant disease identification and 
treatment recommendation.  

1. Which traditional methodologies and current deep learning techniques are exploited to identify plant diseases in the literature?  
2. What are the possible content-based filtering techniques that can be used to provide treatment recommendations for plant diseases?  
3. How can deep learning techniques be combined with content-based filtering techniques to provide tailored and efficient treatment 

recommendations for plant diseases?  
4. What datasets are available for deep learning model training and validation in the context of identifying plant diseases?  
5. What performance measures are applied to evaluate the accuracy and efficiency of the deep learning and content-based filtering 

techniques identified?  
6. What are the gaps and areas of improvement in current research, and what are the likely future directions for advancing this field? 

2. Traditional methodologies and current deep learning techniques exploited to identify plant diseases in literature 

2.1. Traditional methodologies for plant disease identification 

Traditional methodologies of plant disease identification describes the conventional methods used to diagnose and identify plant 
diseases based on visual symptoms, signs, and field observations [9]. These methods have been practiced for many years and are often 
employed by farmers, gardeners, and field workers. This section discusses traditional methods used for plant disease identification, 
such as visual symptom observation, laboratory-based test, and expert knowledge-driven approaches (Fig. 1). It discusses their 
strengths, limitations, and applications. 

Fig. 1. Traditional techniques of plant disease identification.  
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Visual observation: One way to detect diseases in plants is through visual observation of disease symptoms. This method involves 
examining the plants for any changes or abnormalities that may indicate the presence of a disease [10]. These symptoms can include 
spots on the leaves, discoloration, wilting, growth, deformities or strange patterns of development. When these observed symptoms are 
contrasted with reference information or personal knowledge one can easily identified the actual disease. Visual symptom assessment 
is a straightforward method that can be easily used by farmers and field workers without requiring equipment or extensive training 
[11]. It also allows for feedback if disease symptoms are detected. Likewise, visual symptom observation can be done right in the field 
enabling on site diagnosis of diseases [12]. 

Visual observation of symptoms can have problems such as, subjectivity, which depends on human interpretation and judgment 
that can introduce bias and variability into the diagnosis [13]. It also lacks the precision and accuracy provided by more advanced 
diagnostic techniques [14]. Some diseases may not show visible symptoms until later stages of infection, leading to delayed or missed 
detection. Limited information about the presence of symptoms may sometimes not offer comprehensive details about the underlying 
cause, such as the specific diseases or environmental factors contributing to the disease. Also, while visual symptom observation can 
provide valuable initial indications, it often requires additional verification through laboratory assessment or qualified experts. 

Laboratory-based tests: These involves the use of advanced techniques such as microscopy, serological tests, molecular diagnostics, 
and genetic sequencing to detect plant diseases [15]. These techniques provide highly accurate identification of plant diseases with the 
ability to differentiate between closely related species and strains [16]. Laboratory techniques can detect plant pathogens at early 
stages of infection, even before visible symptoms appear. Also, laboratory methods often provide quantitative data on the severity of 
infection, pathogen load, or disease progression [17]. 

Despite the successes recorded by this approach, they require specialized equipment, reagents, and trained personnel, making them 
more expensive than traditional field-based techniques. These methods usually involve sample preparation, testing, and analysis, 
which can be time-consuming [18]. Delay may limit the immediate decision-making required for disease management. Proper 
interpretation of laboratory results requires trained personnel with expertise in plant pathology and diagnostic techniques. Also, 
laboratory-based methods rely on collecting and properly handling plant samples. Improper sampling or sample deterioration during 
transit can compromise the reliability of the results. 

Expert knowledge-driven approaches: They exploit the expertise of domain specialists, such as plant pathologists or agricultural 
scientists, to develop robust and accurate identification systems [19,20]. Expert knowledge-driven approaches frequently depend on 
explicit rules or decision trees, making the reasoning behind the diagnosis transparent and interpretable [21]. This is particularly 
important in agricultural settings, where farmers and agricultural experts need to understand the reason behind disease identification. 
Expert systems can be used to support either a sequence of tactical decisions or single decisions regarding design, selection, inter
pretation, prediction, and diagnosis applied to agricultural problems [22]. 

The disadvantages of expert knowledge-driven approaches to plant disease identification include, limited scalability, as the ap
proaches rely on the expertise of specialists [22], which may not be readily available in all locations or for all plant diseases. Scaling up 

Table 1 
Summary of traditional techniques of plant disease identification.   

S/ 
N 

Plant disease 
identification 
techniques 

Style of inspection Strength of disease 
identification technique 

Limitation of the disease 
identification technique 

Improvement strategy 

1 Visual symptom 
observation [10] 

They look for abnormalities 
that indicate the presence of 
disease such as leaf spots, 
discoloration, wilting, 
stunting, deformities, or 
unusual growth patterns. 

Simple & straightforward, no 
special equipment needed, no 
special skills required, instant 
feedback, cost-effective and 
early detection. 

Bias and variability in 
diagnosis, overlapping 
symptoms issues, limited 
accuracy, delay in symptom 
manifestation can lead to 
missed detection of disease. 

Diagnosis methods such as 
pathogen isolation and 
molecular techniques can be 
used to validate initial 
observations. 

2 Laboratory- 
based test [15] 

They use advanced 
techniques such as 
microscopy, serological tests, 
molecular diagnostics, and 
genetic sequencing to detect 
plant diseases. 

Highly accurate, can detect 
plant pathogens at early stages 
of infection, provision of 
quantitative data on the 
severity of infection, detailed 
pathogen characterization. 

They are expensive as they 
require specialized equipment, 
reagents, and trained 
personnel, time-consuming, 
not good for immediate 
decision-making, cannot be 
used in remote or 
economically disadvantaged 
areas where there are no well- 
equip laboratories. 

Establish standardization of 
procedures for consistency and 
comparability of results, 
implement automation 
technologies, such as robotics, 
provide training programs for 
laboratory personnel, 
implement robust laboratory 
information management 
systems 

3 Expert 
knowledge- 
driven 
approaches [19] 

They combine expert 
knowledge with 
computational techniques to 
analyze plant disease 
symptoms for accurate 
diagnosis. 

Accurate diagnosis, transparent 
and interpretable diagnosis, 
they can be adapted and 
updated easily, limited data 
requirements. 

Limited scalability, can be 
influenced by the subjective 
judgments and biases of the 
specialists, difficulty in 
capturing complex 
relationships in formal 
knowledge representation, 
inability to capture knowledge 
gaps for emerging or less- 
studied diseases. 

A hybrid approach that 
combines expert knowledge 
with data-driven techniques, 
such as machine learning can 
be employed.  
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these approaches to cover a wide range of crops, diseases, and regions can be challenging, as it requires access to experts and the ability 
to transfer their knowledge effectively. These approaches are influenced by the subjective judgments and biases of the specialists 
involved. There may also be difficulty in capturing complex relationships as plant diseases and their interactions with environmental 
factors can be complex and multifaceted. To overcome some of these limitations, a hybrid approach that combines expert knowledge 
with data-driven techniques, such as machine learning, can be beneficial. This allows for leveraging the strengths of the approaches 
and mitigating their respective weaknesses. Table 1 presents the summary of the findings of the traditional plant disease identification 
techniques considered. 

Traditional approaches are still in use today despite the development of newer technologies because of their affordability, 
accessibility, and simplicity. Combining traditional and modern methods can help to detect diseases earlier, manage crop diseases 
better, and ultimately promote sustainable agriculture. 

2.2. Current deep learning technique for plant leaf disease identification 

Due to their potential in a variety of domains, deep learning techniques have lately made their way into numerous agricultural 
applications. Deep learning focuses on training artificial neural networks to learn and make predictions directly from data [23]. Deep 
learning has demonstrated outstanding performance in diverse domains, such as computer vision, natural language processing, speech 
recognition, and recommendation systems [24]. Their ability to learn hierarchical representations from raw data, couple with ad
vances in hardware and large-scale datasets, have contributed to their significant progress in the domain of artificial intelligence. 
Generally, current deep learning techniques, such as Convolutional neural networks, Generative adversarial networks, Recurrent 
neural networks and Transformers (Fig. 2), offer powerful tools for plant disease identification. These techniques are discuss in the 
following sections. 

2.2.1. Convolutional neural network in plant disease identification 
Convolutional Neural Networks (CNNs) have emerged as a powerful tool for plant disease identification and classification [25]. By 

exploiting their ability to automatically learn and extract features from images, CNNs have shown an outstanding performance in 
diagnosing various plant diseases. The following section describes how CNN has contributed to plant diseases identification. 

CNNs has powerful feature extraction potentials as they are particularly built to extract relevant features from images [26]. Using 
multiple layers of convolutional and pooling operations, CNNs can automatically learn and extract significant features such as color, 
texture, shape, and patterns that are essential for disease identification [27]. This ability to extract relevant features makes CNNs very 
effective for distinguishing between healthy and diseased plants [28]. CNNs have demonstrated to be very precise when it comes to 
detecting plant diseases [29]. They can explore large datasets of plant images and learn complex patterns and features associated with 
different diseases [30]. By training on a various range of healthy and diseased plant images, CNNs can classify new images with a high 
level of accuracy [31], enabling farmers and researchers to identify diseases early and take appropriate actions. 

CNN has three categories of layers which are, convolutional layers, pooling layers, and fully connected layers. For the convolutional 
layer, the input plant image passes through filters to produce some feature maps. In the pooling layer, the dimension of each of the 
feature maps is reduced to keep the number of weights small. The fully connected layer helps to transform a two-dimensional feature 
map into a one-dimensional vector for final classification [32]. For plant leave disease identification using CNN, activation map 
analysis is utilized in determining the detection quality. The maps highlight the areas of a plant image that are crucial to the model’s 
ability to make decisions. An analysis of the detection can be made based on the network’s learnt features and patterns, high activation 
in particular regions indicate the possible presence of disease. CNNs have shown incredible performance in plant disease identification 
due to their ability to capture spatial patterns in images effectively. The technique of CNN for plant disease identification is shown in 
Fig. 3. 

CNN models contribute to the development of accurate, efficient, and deployable systems for identifying plant diseases. Several 

Fig. 2. Current deep learning techniques for plant disease identification.  
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CNN models such as AlexNet, MobileNet, ResNet, VGGNet, Inception, DenseNet, and EfficientNet use transfer learning approach which 
have had a significant impact on plant disease identification. They facilitate the use of pre-trained models on new tasks with limited 
training data [33]. This is specifically useful in plant disease identification, where gathering and labeling of huge datasets can be 
difficult. CNNs can rapidly adjust to new disease identification tasks by using these pre-trained models which decreases the need for 
extensive training and efficiency improvement. That is why several studies have applied transfer learning in their disease-discovery 
techniques [34,35]. 

Scalability of CNN is also vital as it gives room for efficiently and quickly performs lots of computation when managing diseases 
across different crops, regions, and seasons. In the work of [36], a Bi-linear Convolution Neural Network (Bi-CNNs) was utilized for 
plant leaf disease identification and classification where Visual Geometry Group (VGG) was fine-tuned and ResNet was pruned and 
used for feature extraction to improve scalability in the disease detection task. Another significant advantage of CNNs is their ability to 
perform real-time disease diagnosis. With the advancements in edge computing and the integration of CNN models into portable 
devices, such as smartphones or drones, farmers can quickly capture plant images and receive instant disease diagnosis. For instance, 
Lanjewar and Panchbhai [37] developed and implemented a real-time disease prediction system using a convolutional neural network 
(CNN) on the Platform-as-a-Service (PaaS) cloud. This timely feedback enables prompt action and effective disease management. 

Finally, ensemble methods, such as bagging and boosting, have been successfully applied to CNNs for plant disease identification 
[38]. When multiple CNN models are combined, either through averaging or weighted voting, ensemble methods can improve the 
classification accuracy and enhance the robustness of the system. They help mitigate overfitting and capture different aspects of the 
disease patterns, leading to more reliable predictions. This was demonstrated in the work of Al-Gaashani et al. [39] where three 
lightweight CNNs models (MobileNetv2, NasNetMobile and a simple CNN model from scratch) were used to address the high bias of 
the single CNN model in order to boost the efficiency of CNN in plant disease identification. 

Issues with the implementation of CNNs for plant disease identification. 
There are some issues that could come with the implementation of CNN for plant disease identification.  

• The performance of CNNs heavily relies on the quality and diversity of the training dataset [40]. Limited or biased datasets can lead 
to inaccurate disease identification. In order to ensure that datasets are characterized of diverse disease classes, different stages of 
infection, and environmental conditions is crucial for robust and reliable models.  

• Overfitting is a critical issue that can result in a model that struggles to identify plant diseases when given new or diverse plant 
images yet performs incredibly well on the images it was trained on. This constraint makes it more difficult for the model to 
generalize to a wide range of datasets, which reduces its usefulness in detecting new plant diseases or variations in plant conditions 
[41]. Regularization techniques, data augmentation, and accurate model selection can help mitigate overfitting issues and improve 
generalization abilities [42].  

• CNNs are often considered as black box models, since they lack interpretability [43]. Understanding the rationale behind a model’s 
decision can be difficult, especially when it comes to complex image data. Providing insights into the features of plant images that 
influence the decision of the model is difficult due to lack of interpretability of CNN. Therefore, if the logic underlying the disease 
identification is unclear, farmers, researchers, or end users can find it difficult to apply the suggestions of the model. The 
decision-making process can be made more transparent and clearer by exploiting techniques like attention mechanisms, visuali
zation tools, or explainable AI approaches to provide insights into the plant image regions that contribute most to the disease 
identification of the model.  

• Other issues with CNN and other deep learning models for plant disease identification include, hyperparameter tuning which 
requires experimenting with different settings for hyperparameters such as batch sizes, regularization terms and learning rates to 
determine the setup that optimized model performance. Techniques such as grid search, randomized search, and automated 
hyperparameter optimization are often used to combat this issue. Execution time is equally another concern because of lengthy 

Fig. 3. Convolutional neural networks technique for plant disease identification.  
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training and inference process; solutions to this hurdle include using hardware accelerators, optimization techniques, and inves
tigating cloud-based services for faster computation. Also, significant computational power demands require specific hardware like 
GPUs or TPUs to guarantee compatibility with common deep learning frameworks. 

Convolutional neural networks are exceptional tools for identifying plant diseases. They are important in the agricultural domain 
because of their correctness, scalability, and capacity to extract relevant features from images. With further advancements in their 
research, they are anticipated to play a crucial part in disease management to increase agricultural output and guarantee food security. 

2.2.2. Generative adversarial networks in plant disease identification 
Generative Adversarial Networks (GANs) is also a type of deep learning technique that can be used in plant disease identification 

context to augment dataset with synthetic samples in order to improve the generalization and robustness of the models [36]. Some 
examples of GANs models include Vanilla GAN, Conditional GAN, Deep Convolutional GAN, Progressive GAN (PGAN), and Wasser
stein GAN (WGAN) [44]. GANs can be used for anomaly detection in plant disease identification by learning the distribution of healthy 
plant images and detecting deviations from this learned distribution [45,46]. 

Basically, GANs are valuable for generating synthetic data that looks like the real plant disease patterns in plant disease detection. 
The generator networks within the GAN framework creates synthetic samples of plant leaves affected by various diseases. The 
discriminator network then learns to differentiate between these generated samples and the real data, which consists of images of plant 
leaves with actual diseases [47] as depicted in Fig. 4. 

GANs are effective when it comes to training with unlabeled data which usually assist them to quickly generate feasible and high- 
quality outputs. GANs are very easy to train, hence they usually converge faster than other types of generative models. For instance, 
Stephen et al. [48] employed optimized deep generative adversarial network (DGAN) and 3D 2D CNN to successfully classify rice leaf 
diseases with an improved accuracy of 98.7 %. Wang and Cao [49] proposed a generative adversarial classified network (GACN) that 
generated synthetic images to balance plant disease datasets and at the same time the model was able to directly identify plant disease. 
In the same vein, Song et al. [50] addressed the maize disease identification problem for improved accuracy. They used Attention 
Generative Adversarial Network (Attention-GAN) to capture relevant information on the vital parts of images and Generative 
Adversarial Network (GAN) for data augmentation to produce more training data. They reported high performance of their method. 

Issues with the implementation of GANs for plant disease identification. 
Although Generative Adversarial Networks (GANs) are celebrated for their ability to generate reliable data, they also come with 

certain drawbacks.  

• One of the drawbacks of GANs is mode collapse. This is when GANs produce only a limited number of outputs instead of exploring 
the entire distribution of the training data. This makes the output produced to be repetitive and usually unconnected to the training 
data. In the situation of plant diseases, mode collapse can result in the generation of only a few types of diseases, which can limit the 
capability of the model to identify an extensive range of conditions. To overcome this challenge, model architecture can be 
modified for better performance.  

• Training Generative Adversarial Networks (GANs) can be challenging when it comes to plant disease identification. This is based on 
the fact that the generator and the discriminator are always in constant competition with each other. The competition can lead to 
training instability and a slow convergence which can impact the development of an effective model for identifying plant diseases. 
Careful parameter tuning and optimization could be introduced to achieve stable and efficient training.  

• Large GANs training can be computationally intensive since it requires significant computational resources, which can lead to 
longer training times that could be impractical for certain research or practical applications. Strategies such as model optimization, 
distributed training and cloud computing can be investigated to address these computational demands to speed up training process. 

2.2.3. Recurrent neural networks in plant disease identification 
Recurrent Neural Networks (RNNs) are a model of choice for processing data sequences [51], which makes them suitable for plant 

Fig. 4. Generative adversarial networks for plant disease identification.  
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disease identification. RNNs are particularly excellent at identifying patterns and temporal dependencies in datasets that demonstrate 
the progression of diseases over time. Their capability to process sequential information provides a detailed knowledge of how plant 
diseases progress. This makes RNNs an effective tool for the analysis and identification of temporal patterns associated with different 
stages of diseases in plants. RNN architecture typically allows the output from the previous step to be fed as input to the current step 
[52] as seen in Fig. 5. The architecture is defined as a network of interconnected units which can be connected to features of plant 
leaves in the context of detecting plant diseases. The input layer receive information about these features, and the connections between 
nodes, with their adjustable weights to allow the network to learn relationships and patterns within the data. The output layer then 
produces the final classification that determines if a plant leaf is healthy or unhealthy. Since RNNs are well-suited for processing 
sequential data, they are easily applied to tasks where the order of inputs matters, such as evaluating temporal data like time series or 
sequential data. 

For instance, Lee et al. [53] developed a novel approach based on Recurrent Neural Network (RNN) to automatically locate infected 
areas in plant leaves and extract relevant features for disease identification, they showed through experiments that RNN-based 
technique is more robust and has a better ability to generalize unseen infected plant leaves as compared to traditional CNN ap
proaches. Lately, RNN and CNN are jointly used to address time-series image classification problems. In such situation, convolutional 
layers are used for extracting features from raw image data in deeper layers and producing high-level representations. These features 
are used by the recurrent layers for learning the time dependencies. For example, Nandhini et al. [54] proposed a G-RecConNN which 
is a new sequential image classifier for plant images grounded on CNN and RNN directly accept sequences of images without recal
culating the image differences in the series. The proposed model achieved high accuracy in identifying different plant diseases. In 
addition, Daniya and Vigneshwari [55] developed a classifier, called RSW-based Deep RNN by modifying the training algorithm of 
Deep RNN with RideSpider Water Wave (RSW) algorithm. They reported experimentally that the proposed RWS-based Deep RNN 
provides superior performance with the highest accuracy of 90.5 %. RNNs also have ability to retain information from previous time 
steps, enabling the incorporation of contextual information and accurate predictions based on historical data [56]. Other variations of 
RNN that are applied in plant disease identification include Long Short-Term Memory (LSTM) which can be applied to plant diseases 
identification using sequential data like temporal patterns in plant health observations [57], also, LSTM architecture permits it to recall 
information over long periods, making it able to learn complex relationships between past and present observations [58]. They are 
robust to noise and missing data, which can be common in real-world plant health datasets [59]. LSTM models can operate in real-time, 
enabling continuous monitoring of plant health [60]. While Recurrent Neural Networks (RNNs) have shown some potentials in plant 
leaf disease identification, they also come with some limitations as discusses in the following section. Also, Gated Recurrent Units 
(GRUs) is another variation of RNNs that have the potential to improve the identification of plant diseases through efficient temporal 
data analysis. They are used to analyze time-series data, capture the sequential dependencies and temporal nuances in the progression 
of plant diseases. 

Issues with the implementation of rnn in plant disease identification.  

• RNNs are susceptible to the issue of vanishing or exploding gradients, especially when dealing with long sequences [61]. This can 
lead to difficulties in training the model effectively to capture long-range dependencies in the spread of leaf disease. Techniques 
such as gradient clipping, testing with advanced optimization algorithms, such as RMSprop or Adam and applying gradient reg
ularization methods like dropout or recurrent dropout can be implemented. 

Fig. 5. Recurrent neural networks for plant disease identification.  
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• RNNs process data sequentially, it can restrict their parallelization abilities and make them slower when compared to other ar
chitectures like CNN [62]. This Sequential processing of RNNs might cause delays when processing a significant amount of plant 
image data or when quick disease identification depends on real-time processing. Using deep learning frameworks optimized for 
parallel computation, such as TensorFlow or PyTorch with GPU support can mitigate this problem.  

• Memory constraints is another problem that comes up when managing long sequences [63] or complex disease spread, as the 
memory of the network capacity may become reduced. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells can 
address this issue to some extent by incorporating techniques that can selectively remember or forget information.  

• RNNs can also be sensitive to noisy information in the input sequences [64] as there may be possible differences in lighting 
conditions, backgrounds and other factors that can introduce noise into plant images. It is therefore very important to thoroughly 
clean the data to eliminate such noise and improve the performance of RNNs. Training RNNs effectively requires a substantial 
amount of labeled data [65], collection and labelling such large-scale plant leaf datasets can be frustrating and expensive. Also, 
limited or imbalanced datasets can impact the generalization and accuracy of RNN models. To address some of the issues raised 
above, alternative architectures like Transformer-based models or hybrid strategies that incorporate RNNs with other neural 

Table 2 
Summary of deep learning techniques used for plant disease identification.  

S/ 
N 

DL algorithm in 
plant disease 
identification 

Strength of DL algorithms in 
plant disease identification 

Linitations of the DL algorithm 
in plant disease identification 

Improvement strategies for DL 
algorithm in plant disease 
identification 

Area of application of the DL 
algorithm in plant disease 
identification 

1. CNNs Ability to extract useful 
features for disease 
identification, use of transfer 
learning for pre-trained 
models, it can scale 
effectively to handle large 
volumes of plant images, can 
mitigate overfitting through 
ensemble methods and 
capture different aspects of 
disease patterns, has ability 
to perform real-time disease 
diagnosis 

Limited or biased datasets can 
lead to inaccurate disease 
identification, they can be 
prone to overfitting, they lack 
interpretability. 

Ensure that dataset is 
representative of various 
disease types, different stages 
of infection, and 
environmental conditions, use 
regularization techniques, 
data augmentation, and 
careful model selection to 
mitigate overfitting. 

Leaf disease classification, early 
disease diagnosis, multi-class 
disease identification, disease 
severity estimation, disease 
progression monitoring, disease 
localization. 

2. GANs They can generate synthetic 
images that closely resemble 
real plant disease samples. 
GANs pre-trained on several 
image datasets can be fine- 
tuned for plant disease 
identification. They have 
anomaly detection capability 
which can enhance the 
sensitivity of the model to 
subtle disease symptoms. 

GANs are prone to mode 
collapse which can lead to 
generating only a subset of 
disease symptoms. Their 
training could be ustable which 
sometimes causes difficulties in 
converging to an optimal 
solution. Also, Training large 
GAN models can be 
computationally intensive and 
can lead to long training times. 

Model architecture can be 
modified for better 
performance. 
Engage in careful parameter 
tuning and optimization to 
achieve stable and efficient 
training. 
Also, distributed training and 
cloud computing can be 
considered to address these 
computational demands to 
speed up training process. 

Synthetic samples of plant 
disease generation (data 
augumentation), early disease 
detection, disease identification 
accuracy 

3. RNN Sequential modeling ability 
of RNNs allow them to 
effectively capture the 
temporal nature of plant 
disease symptoms, RNNs can 
process data with varying 
lengths, which is common in 
plant disease identification 
tasks that involve time series 
data, RNNs can adapt to 
different types of input data 
allowing for complete disease 
identification. 

Difficulties in training models 
effectively and capturing long- 
range dependencies in leaf 
disease progression, sequential 
data processing ability which 
can limit their parallelization 
capabilities, need to maintain 
memory of previous inputs to 
capture temporal 
dependencies, be sensitive to 
noisy or irrelevant information, 
challenges to interpret and 
understand why certain 
decisions or predictions are 
made. 

Use LSTM and GRU cells to 
incorporate mechanisms to 
selectively remember or forget 
information, preprocess data 
to remove noise, introduce 
attention mechanisms and 
visualization methods to 
provide some level of 
interpretability to predictions 
made by RNN, use large data. 

Disease severity assessment, 
disease management decision 
support, disease progression 
prediction, disease detection 
and classification, image-based 
disease diagnosis. 

4 Tranformers They could capture long- 
range dependencies in image 
sequences, process spatial 
data effectively, scale to 
handle big datasets, and use 
pre-trained models through 
transfer learning, 

Computational power, resource 
requirements, and possible 
omission of spatial 
relationships are critical for 
disease identification. Also, the 
need to include substantial 
labeled data for training could 
be a major limitation, which 
can make optimizing models 
for efficiency crucial. 

Use transfer learning with a 
variety of datasets, investigate 
hybrid models to handle 
spatial relationship, use 
efficiency-optimized model 
architectures, and experiment 
with methods like image 
cropping for computing 
efficiency. 

To extract spatial information 
in plant images, capture long- 
range dependencies for disease 
identification, to enhance 
scalability of massive datasets, 
and harness the capability of 
pre-trained models through 
transfer learning.  
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network architectures could be examined. Additionally, methods including data augmentation, transfer learning, and ensemble 
learning can assist improve RNNs’ performance in tasks requiring the identification of plant leaf diseases. Table 2 summarizes the 
deep learning techniques used for plant disease identification. 

2.2.4. Transformers in plant disease identification 
Transformers are an advanced type of deep neural network architecture widely used to perform natural language processing (NLP), 

computer vision (CV), and speech processing (SP) tasks. Their distinctive feature is the use of a self-attention mechanism to accurately 
process sequential input data [66]. What sets transformers apart is their unique ability to process entire input sequences simulta
neously to facilitate a more comprehensive understanding of context and relevance compared to traditional models [67]. This char
acteristic proves valuable in overcoming challenges associated with longer sequences to effectively address issues like the vanishing 
gradients problem commonly encountered by recurrent neural networks (RNNs). Transformer models include Bidirectional Encoder 
Representations from Transformers (BERT), Generative Pre-trained Transformer 3 (GPT-3), Vision Transformer (ViT) and DEtection 
Transformer (DETR). BERT and GPT-3 are used for NLP while ViT and DETR are used in Computer vision. 

VisonTransformer models usually represent an image as a sequence of non-overlapping fixed-size patches that are then linearly 
embedded into 1D vectors (Fig. 6). The Transformer model uses the vectors as input tokens. When processing the input data, the self- 
attention mechanism is used to assist the model to determine the relative relevance of various tokens in the sequence. Since the self- 
attention mechanism allows the model to capture global contextual information, it can learn long-range dependencies and relation
ships between image patches. Vison Transformer models comprise of an encoder, which contains several layers of self-attention and 
feed-forward neural networks, and a decoder that generates the final output. 

Currently, transformers are being explored in the domain of plant disease identification [67]. They treat images as a sequence of 
patches to capture fine-grained details and spatial relationships. Their self-attention mechanism enables focused analysis which allow 
the model to discover relevant features associated with disease symptoms [66]. Transformers excel in handling longer sequences which 
make them skilled in processing complex plant images. Therefore, their adaptability, combined with interpretability through attention 
maps, offers promise in accurately identifying diseases, especially with limited labeled data. 

Issues with the implementation of transformers for plant disease identification 
Specific challenges may be experience during the implementation of transformers to identify plant diseases.  

• One major problem when training transformer models for plant disease identification is the lack of adequate labeled data [68]. 
Collecting massive, labeled datasets for various plant diseases can be resource-intensive and time-consuming. There may be 
possibility that the overall performance of the model may be limited as it may not be able to generalize well to the different plant 
species and diseases. This problem can be confronted by using transfer learning that pre-trains models on a big dataset of different 
image classes, then fine-tuning it to fit the smaller dataset of plant diseases.  

• Vision transformers, though powerful, often require a high processing power during training [69]. This arises from the extensive 
parameters and the necessity to process every part of the image, even when not essential for the given task. The large pixel sizes of 
images also contribute to their high computational cost. To alleviate this, model architectures optimized for efficiency can be 
explored. The goal of these architectures is to minimize computational demands without sacrificing performance. Likewise, by 
taking advantage of cloud-based resources, training may be scaled efficiently and more cost-effectively due to distributed 
computing capabilities. 

Fig. 6. A Vision Transformer Model for plant disease identification.  
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• Plant diseases often exhibit spatial patterns and localized symptoms, failure to capture these nuances may hinder the accuracy of 
model in identifying diseases [66]. To capture this problem, hybrid models that integrate spatial information can be explored, or 
the transformer may be augmented with extra layers designed to capture spatial dependencies. 

CNNs are well-suited for image-based disease identification, while GANs are powerful in plant disease identification context to 
augment dataset with synthetic samples. RNNs are effective in handling sequential data and temporal dependencies. Transformers 
provide special attention mechanism that assist in capturing relevant features associated with disease symptoms. Depending on the 
nature of the data and the specific task at hand, either CNNs, GANs, RNNs, and Transformers or a combination of any of them can be 
applied to improve plant disease identification accuracy and provide valuable insights for disease management. Table 3 provides 
different instances of research studies where robust algorithms have been applied for Plant disease Identification. 

3. Traditional and content-based filtering techniques for providing treatment recommendations for plant diseases 

3.1. Traditional techniques for providing treatment recommendations for plant diseases 

A rule-based technique in plant disease treatment recommendation uses traditional methods to suggest an approprite remedy for 
plant diseases. It is a recommendation strategy that is based recognized diseases and specific contextual elements. It perates by 
examining the characteristics of the disease, plant species, environmental conditions, and other relevant factors to provide person
alized recommendations for disease control. For instance, Abu-Nasser et al. [75] suggested an expert system that could identify and 
offer remedies for various types of identified watermelon diseases. Alajrami and Abu-Naser [76] equally design an expert system which 
helped farmers to diagnose and provide appropriate treatments for onion plant diseases. In rule-based system for plant disease 
treatment recommendation, the rules are usually created by domain experts, who has knowledge about effective treatment methods 
and management practices. For instance, a rule-based system for plant disease treatment recommendation might be as follows. 

Rule 1: IF the plant leaves show yellow spots AND the spots are encircled by a brown ring AND the leaves are curly THEN it implies 
the likelihood of Tomato Yellow Leaf Curl Virus. Treatment: Detach the unhealthy plants from the healthy ones to avoid further spread 
of the disease. 

Table 3 
Some cases of robust algorithms implemented for plant disease identification.  

Model Study Year Technique Results 

CNN Zhang et al. 
[27] 

2019 Dilated CNN with global pooling The proposed model effectively identified cucumber 
diseases. 

Nanehkaran 
et al. [70] 

2020 Used hue, saturation and intensity-based and LAB-based 
hybrid segmentation algorithm and CNN 

Accuracy obtained was 15.51 % higher than the 
traditional technique for plant disease identification 

Chen et al. [71] 2021 MobileNet-V2 pre-trained on ImageNet as backbone 
network and the attention mechanism along with a 
classification activation map (CAM) were utilized 

Achieved an average accuracy of 99.14 % for Crop pest 
recognition 

Hassan et al. 
[33] 

2021 Different CNN architectures such as InceptionV3, 
InceptionResNetV2, MobileNetV2, and EfficientNetB0 
were used 

A disease-classification accuracy rates of 99.56 % was 
obtained 

Al-Gaashani 
et al. [39] 

2023 Ensemble of MobileNetv2, NasNetMobile and a simple 
CNN 

Achieved 98 % accuracy in identifying plant diseases 

GAN Bi and Hu [36] 2020 Wasserstein generative adversarial network with 
gradient penalty (WGAN-GP) 

Improved the overall classification accuracy of plant 
diseases by 24.4 % 

Wang and Cao 
[49] 

2023 GAN combined with a classifier Achieved recognition accuracy of 99.78 % and 86.52 
%, respectively on PlantVillage and AI Challenger 2018 
datasets 

Song et al. [50] 2023 Generative adversarial network (GAN) and attention 
mechanism 

High accuracy of 97 % in maize disease detection tasks 

Stephen et al. 
[48] 

2024 Optimized deep generative adversarial network (DGAN) 
and 3D 2D CNN 

Classified rice leaf diseases with an improved accuracy 
of 98.7 %. 

RNN Nandhini et al. 
[54] 

2022 RNN and CNN were combined named Gated-Recurrent 
Convolutional Neural Network (G-RecConNN) 

The model correctly classified the diseases of plantain 
trees with between 2.8 % and 4.2 % increase in the 
recall measure 

Tanwar and 
Singh [72] 

2023 Hybrid of ResNext50-LSTM Accuracy of 95.44 % was attained for plant disease 
classification 

Rajalakshmi 
et al. [73] 

2024 Gated recurrent multi-attention neural network (GRMA- 
Net). 

Achieved 99.16 % accuracy in identifying agricultural 
diseases 

Transformers Yu et al. [67] 2023 Inception convolution and vision transformer Had 99.22 % accuracy on ibean dataset for plant 
disease identification 

Thai et al. [68] 2023 ViT + Least Important Attention Pruning (LeIAP) 
algorithm and sparse matrix-matrix multiplication 
(SPMM) 

Evaluation results on the cassava leaf disease dataset 
indicate that the algorithms reduced the model size to 
28 % and increase the training and inference speed by 
10 % and 15 % 

Thakur et al. 
[74] 

2023 CNN combined with ViT model It achieved accuracy of 98.86 % and precision of 98.9 
% on PlantVillage’ dataset in dentifying plant diseases.  
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Rule 2: IF the plant leaves show water-soaked lesions that turns dark and hollowed AND the stems display a blackish stain THEN it 
implies the likelihood of a bacterial infection named Bacterial Blight. Treatment: Use a bactericide that has copper or detach the 
unhealth plant parts to reduce the spread of the disease. 

When a plant disease is detected, the rule-based system evaluate the appropriate facts against the predefined rules to verify the 
suitable treatment. The system confirms which rules are met by the disease features and contextual factors; it then offers recom
mendations according to the activated rules. The basic structure of a rule-based system is depicted in Fig. 7. 

Plant disease treatment recommendation rule-based systems have several benefits. They can provide quick, automated ideas for 
disease prevention and give farmers practical advice on how to mitigate the effects of diseases. Rule-based systems can also be 
transparent and comprehensible [77], as the fundamental principles can be evaluated and adjusted by domain experts to enhance the 
correctness and significance of recommendations. Rule-based systems for plant disease treatment recommendation also face challenges 
[78] such as, limited adaptability to uncommon diseases, difficulty in managing and keeping numerous rules, Lack of ambiguity in 
managing overlapping symptoms and difficulty in describing intricate relationships between symptoms. investigating complementary 
techniques, which include data-driven models or hybrid systems, can be explored to overcome these challenges and enhance the 
efficiency of plant disease treatment recommendation systems. Rule-based systems are often applied in diverse domains, such as expert 
systems [79] and decision support systems. Table 3 shows the strength and the weaknesses of rule-based technique for plant disease 
treatment recommendation. 

3.2. Content-based filtering techniques for providing treatment recommendations for plant diseases 

Content-based filtering is a recommendation technique that can be applied to provide treatment for plant disease. It uses diverse 
types of techniques that makes use of the unique features of plant diseases and other vital related information to provide treatment 
recommendations for plant diseases [80]. The following are some content-based filtering techniques that can be used to provide 
treatment recommendations for plant diseases: 

Hybrid Filtering: They can combine various recommendation techniques, such as content-based filtering, collaborative filtering, 
and other approaches [81]. Also, they can enhance content-based filtering by incorporating extra data sources such as past treatment 
records, feedback of user, or collaborative filtering that is based on similar user’s experiences. This type of integration will allow the 
creation of reliable and accurate recommendation systems. As such, different learning techniques were used by Isinkaye and Erute [82] 
to create a user-friendly smartphone-based plant disease detection and treatment recommendation system. CNN was utilized for 
feature extraction and the ANN and KNN to categorize the plant diseases. A content-based filtering recommendation algorithm was 
used to suggest appropriate treatment for the discovered plant diseases after classification. 

Feature-Based Filtering: Feature-based filtering focuses on extracting relevant features from plant and disease data and repre
senting them in a feature space [83]. These features could include plant characteristics, disease symptoms, geographical factors, or 
genetic information. Machine learning algorithms are then applied to learn patterns and similarities within the feature space. This 
approach can provide reliable and efficient recommendations by capturing complex associations between features. For example, Patil 

Fig. 7. Basic rule-based system.  
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et al. [84] utilized a sequential and VGG-16 deep convolutional neural network model to identify diseases in crops while they used 
content-based filtering to suggest suitable crops to users based on factors such as location and the period of the year for cultivation. 
Patil et al. [84] also ustilized a sequential and VGG-16 deep convolutional neural network models to identify diseases in crops, they 
used content-based filtering to suggest suitable crops to users based on parameters like location and the period for cultivation. 

3.2.1. Limitations of content-based filtering techniques in plant disease treatment recommendations 
While Content-Based Filtering (CBF) offers valuable benefits in plant disease treatment recommendation, it also has certain lim

itations to consider when using it. For instance, CBF heavily depends on the availability and quality of data. Inaccurate or incomplete 
data can lead to substandard recommendations [85]. It is imperative to get a reliable and complete dataset for the effectiveness of the 
system. The technique mainly depend on existing knowledge and prior accomplishments [8], it always have issues in detecting novel 
treatments that have not been previously explored. Overemphasis on Attribute-Based Similarity [86] is another difficulty associated 
with CBF, it majorly always compares the attributes and characteristics of plants and diseases. While this approach can be useful in 
certain circumstances, it may neglect critical factors such as genetic variations, developing diseases, or environmental changes that can 
impact disease management approaches. Content-based filtering does not directly consider the experiences and recommendations of 
other users or experts [8]. Collaborative filtering, which draws on the knowledge of other users or experts, might reveal important 
information that content-based filtering alone cannot capture. Therefore, it is necessary to understand these limitations and consider 
them in the design and implementation of a plant disease treatment system that will utilize CBF. Combining CBF with other techniques, 
incorporating user feedback, and accounting for contextual factors can help mitigate some of these limitations and enhance the overall 
effectiveness of the system. Table 4 Summarizes the strengths and the weaknesses of rule-based and content-based filtering technique 
for plant disease treatment recommendation. 

4. Possible approaches to combine deep learning techniques with content-based filtering techniques to provide tailored 
and efficient treatment recommendations for plant diseases 

A thorough and efficient system for managing plant leaf diseases can be created by combining deep learning approaches for disease 
identification with content-based filtering for treatment recommendations. The deep learning component focuses on accurately 
diagnosing diseases, and content-based filtering takes advantage of similarities across disease cases to make recommendations for 
individual treatments. Therefore, to integrate deep learning and content-based filtering for disease identification and treatment 
recommendation, the following techniques could be considered. 

Hybrid Technique [87]: This develops a hybrid model that combines deep learning for disease identification and content-based 
filtering for treatment recommendations [88]. The model can consist of two interconnected modules: a deep learning module that 
classifies plant leaf images and extracts disease-related features, and a content-based filtering module that matches the identified 
disease with appropriate treatment based on similarity measures. This hybrid integration, will produce a robust and flexible system 
that can incorporate correct disease identification with tailored treatment recommendations, thereby supporting in effective man
agement of plant diseases. 

Feature Extraction and Similarity Computation [89] CNN as a variation of deep learning model can be trained to extract useful 
features from plant leaf images. These features can be the descriptions of disease-related patterns and characteristics. The extracted 
features can be used to compute similarity scores between diagnosed leaves and a database of known treatments. Content-based 
filtering techniques, such as cosine similarity [90] or TF-IDF [91], can be utilized for recommedation function. 

Embedding Learning [92]: A deep learning model, such as Siamese or triplet networks can be trained, to learn embeddings [93] of 
plant leaf images and treatment descriptions. The model can be trained using pairs or triplets of examples, where similar leaves or 
treatments are encouraged to have similar embeddings. The learned embeddings can then be used to compute similarity scores be
tween leaves and treatments, and recommendations can be made based on the highest scores. 

Multi-modal Data Combination [94]: Different data such as images, textual descriptions, and environmental factors can be 
introduced into the integrated system [95]. Deep learning models, such as multi-modal networks or fusion architectures, can then be 
employed to process and integrate these modalities. The combined information can enhance disease identification correctness and 
enhance the content-based filtering for treatment recommendations. 

Active Learning and Feedback Loop [96]: Active learning techniques can be integrated to selectively label and acquire new data 

Table 4 
Summary of strengths and the weaknesses of rule-based and content-based filtering technique for plant disease treatment recommendation.  

Technique Strengths Weaknesses 

Rule-based [78] They offer quick suggestion for disease control, they can be 
customized, they are transparent and interpretable. 

Limited adaptability to uncommon diseases, complexity in managing 
and maintaining many rules, subjectivity and variability in symptom 
interpretation, Lack of uncertainty when handling overlapping 
symptoms. 

Content-based 
filtering 
[85] 

Tailored recommendations for managing plant diseases, enhances 
the accuracy and reliability of recommendations, can provide 
advanced and sophisticated recommendations by capturing 
complex relationships between features, multiple recommendation 
techniques 

Inaccurate or incomplete data can lead to suboptimal 
recommendation, limitations in discovering innovative or novel 
treatments, may overlook important factors, ack of joint filtering.  
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points for training the learning models [97]. This can lower the reliance on large pre-labeled datasets and allows the models to adjust 
and improve over time. Also, user feedback on treatment effectiveness can be integrated to refine the content-based filtering 
component and enhance the recommendations generated to users. 

Transfer Learning: Pre-trained deep learning models can be trained on large-scale image datasets like ImageNet and used as a 
starting point for disease identification [87]. The pre-trained models can be fine tunned using a smaller labeled dataset of plant leaf 
images specific to diseases. The fine-tuned models can then be used for disease identification, and the extracted features can be used in 
content-based filtering for treatment recommendations. 

5. Datasets for training and testing the deep learning and content-based filtering models in the context of identifying and 
treating plant diseases 

Datasets on plant diseases are essential for advancing plant pathology research and development [98]. The identification, cate
gorization, and control of many plant diseases are all made possible by the knowledge and insights provided by these datasets. These 
datasets can be analyzed and studied to help create more precise and effective disease detection procedures, disease management 
plans, and crop improvement methods. 

In the fields of computer vision and machine learning, there are several publicly accessible plant disease datasets that are frequently 
used for training and evaluation purposes. These datasets are important tools for creating and evaluating algorithms for plant disease 
detection and classification since they provide labeled images of diseased plants along with corresponding healthy plant images. Fig. 8 
shows some samples of diseased and healthy plant images. The section following provides a brief description of some datasets that have 
been used in plant disease detection and classification. 

The Plant Pathology dataset (https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7/data) is a collection of images 
created for a Kaggle competition focused on classifying foliar diseases of apples. It comprised 1200 images of apple scab, 1399 of cedar 
apple rust, 187 of complex disease symptoms (i.e., more than one disease on the same leaf) and 865 of healthy leaves. The plant images 
were taken with the aid of a Canon Rebel T5i DSLR and smartphones under different illumination, angle, surface and noise conditions, 
directly from the field [99]. The dataset contained a substantial number of images for each category and provided participants with 
diverse samples for training and evaluation. 

The Plant Village dataset (https://github.com/spMohanty/PlantVillage-Dataset) consists of 54303 healthy and unhealthy leaf im
ages divided into 38 categories by species and disease. The images span 14 crop species: apple, blueberry, cherry, corn, grape, orange, 
peach, bell pepper, potato, raspberry, soybean, squash, strawberry and tomato. It contains images of 17 fungal diseases, 4 bacterial 
diseases, 2 mold (oomycete) diseases, 2 viral disease and 1 disease caused by a mite. Twelve crop species also include images of healthy 
leaves that are not visibly affected by a disease [100]. Most of the images were acquired under controlled lab conditions with uniform 
backgrounds. Also, the dataset in Plant Village is unbalanced and they are not representative of real-field conditions, hence they always 
find it difficult to generalize with higher accuracy during model training [101]. 

The Rice Leaf dataset (https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases) consists of three classes of diseases which are 
bacterial leaf blight, brown spot and leaf smut, each having 40 images and a total of 120 images collected from a village called Shertha 
near Gandhinagar, Gujarat, India, captured with a white background using a Nikon D90 digital SRL camera with 12.3 megapixels in 
November 2015. The authors collected leaves with varying degrees of disease spread, where all images have a resolution of 2848 ×
4288 pixels [100]. 

PlantDoc dataset (https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset 
https://github.com/pratikkayal/PlantDoc-Dataset) was released by Researchers at Indian Institute of Technology in the fall of 

2019, it consists of images of 2598 dataset across 13 plant species and 27 classes (17 disease; 10 healthy), most of which were acquired 
under field conditions for the purpose of image classification and object detection. 

The robusta coffee leaf images dataset (RoCoLe) (https://doi.org/10.17632/c5yvn32dzg.2) contains 1560 leaf images with visible 
red mites and spots (denoting coffee leaf rust presence) Tofor infection cases and images without such structures for healthy cases. 
Also, the dataset has annotations about objects (leaves), state (healthy and unhealthy) and the severity of disease (leaf area with spots). 
The images were collected in real-world conditions in the same coffee plants field using a smartphone camera. RoCoLe dataset fa
cilitates the evaluation of the performance of machine learning algorithms used in image segmentation and classification problems 

Fig. 8. Examples of healthy plant images.  
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related to plant diseases identification [102]. 
BRACOL (Brazilian Arabica Coffee Leaf) (https://data.mendeley.com/datasets/yy2k5y8mxg/1/files/c16b08ee-3ca6-4bf0-8f4e- 

4285a53a4a24) images dataset is used to identify coffee diseases. It has 1747 leaves images which are affected by biotic stresses 
such as leaf miner, leaf rust, brown leaf spot and cercospora leaf spot [103]. The images were taken from the abaxial side of the leaves 
under partially controlled conditions and placed on a white background with the aid of five different smartphones. The annotations on 
the images were made using the tool VGG Image Annotator, abbreviated by VIA [104]. 

New Plant Diseases Dataset available at (https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset), is composed of 
87 K images of healthy and diseased crop leaves, categorized into 38 different classes. The datasets is divided into 80 % for training and 
20 % for validation. Additionally, a directory consisting of 33 test images is created for prediction purposes. The dataset was generated 
through offline augmentation techniques applied to the original dataset. 

Plant disease datasets are useful tools that support research and innovation in plant pathology. They aid in building more accurate 
disease detection techniques, management plans, and predictive models. Therefore, efforts should be directed toward improving the 
quality, diversity, and availability of these datasets to further facilitate advancements in plant disease research and support sustainable 
agriculture practices. Numerous datasets suitable for plant disease research are available in the repository of Kaggle at https://www. 
kaggle.com/datasets?search=plant+disease+datasets. 

6. Performance measures to evaluate the accuracy and efficiency of the deep learning and content-based filtering 
techniques 

The evaluation metrics that are frequently employed to measure treatment recommendations for plant diseases usually offer 
insightful information about their effectiveness. The specific intentions and dataset properties should guide the choice of metrics to 
use. A blend of metrics can give a thorough understanding of the strengths and weaknesses of a system. The following evaluation 
metrics relevant to plant disease treatment recommendation are emphasized as prominent in the domain of study. 

Accuracy: Accuracy measures the overall correctness of the model’s predictions [105] for disease treatment recommendations. It 
calculates the ratio of correctly predicted treatment recommendations to the total number of cases. 

Accuracy=
Number of correct treatments recommendation
Total number of treatments recommendations 

Precision: Precision evaluates the accuracy of the positive disease treatment recommendations made by the model. It measures the 
fraction of correctly predicted positive cases over all the positive predictions [106]. 

Precision=
Number of relevant treatments recommended

Total number of treatments recommended 

Recall (Sensitivity or True Positive Rate): Recall calculates the model’s ability to identify all positive disease cases and recom
mended treatments. It measures the ratio of true positive cases and recommendations to the total number of actual positive cases 
[106]. 

Recall=
Number of relevant treatments recommended

Total number of relevant treatments 

F1 Score: The F1 score is the harmonic mean of precision and recall [107]. It provides a balanced evaluation metric that considers 
both precision and recall, which is important for disease treatment recommendation tasks. 

F1 score= 2 ∗
(Precision ∗ Recall)
(Precision ∗ Recall)

Mean Absolute Error (MAE): It is the measure of the average absolute difference between the predicted value, y and the actual 
value, y given by users to items [108]. However, in the context of plant disease treatment recommendations, Mean Absolute Error 
(MAE) can be used to evaluate the accuracy of the system’s predictions for the effectiveness of different treatments for specific plant 
diseases. The MAE formula for plant disease treatment recommendations is calculated as: 

MAE= 1
/

N
∑

|y − y|

where "N" represents the total number of plant disease treatment cases. A lower MAE specifies that the recommendation system’s 
predictions are more accurate and closer to the actual effectiveness, while a higher MAE suggests less accuracy in the predictions. 

Confusion Matrix: The confusion matrix provides a detailed breakdown of the model’s predictions for disease treatment recom
mendations. It shows the number of true positive, true negative, false positive, and false negative cases. It helps in understanding the 
types of errors made by the model and its performance across different classes [109]. 

Execution time: The execution time or CPU time in plant disease identification is the amount of time required for a learning model 
to finish the training and inference processes (time taken for the model to make predictions on new, unobserved data). That is, the 
execution time, ET of the operation corresponds to the difference between the end time, TE and the start time, TS as depicted: 

ET =TE − TS 
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Table 5 highlights the strength and the weaknesses of evaluation metrics used for plant disease treatment recommendation and 
possible improvement that can enhance their performances. 

7. Gaps and areas of improvement in current research, and the likely future directions for advancing the field 

This section discusses the gaps, areas primed for improvement, and promising avenues for future development in the existing plant 
disease identification and treatment recommendation systems. 

7.1. Gaps and improvements 

Despite improvements in image recognition and machine learning approaches, current systems can still have trouble in correctly 
identifying plant diseases. The quality and diversity of the training dataset, which may not always capture the full spectrum of disease 

Table 5 
Summary of the Strength and the weaknesses of evaluation metrics used for plant disease treatment recommendation.  

Metric Strength Weaknesses Improvements 

Accuracy Simplicity as it is easy to understand and 
calculate, it gives a direct interpretation of 
the performance of RSs in terms of how well it 
is making correct treatment suggestions, 
when the dataset is well-balanced, accuracy 
metric appropriately reflects the overall 
model performance. 

Imbalance datasets can lead to high accuracy 
which can be misleading, as the model may be 
biased towards predicting the majority class, 
leading to poor performance on the minority 
class, it ignores severity of errors as it treats all 
recommendations as equally important, 
regardless of the treatment’s effectiveness, it 
does not consider the degree of relevance or 
effectiveness of treatments 

use data augmentation techniques to enhance 
dataset class imbalance problem, include 
treatment effectiveness score or confidence 
levels in the recommendation process, use 
accuracy in conjunction with other 
evaluation metrics 

Precision It Focuses on the correctness of treatment 
recommended, useful for decision making, 
especially in situations where the cost of false 
positives (e.g., recommending irrelevant 
treatments) is significant, 

Precision does not consider false negatives; 
therefore, a model can achieve high precision 
by being conservative and rarely 
recommending treatments, this might result 
in ignoring critical cases where speedy 
treatment is required. 

a filter that verifies recommendations based 
on additional information or expert 
validation before presenting them to the end- 
users, in the case of imbalanced datasets 
where one class (e.g., disease) is more 
prevalent than the other (e.g., healthy 
plants), use class weights during model 
training to assign higher weights to the 
minority class (disease) to emphasize its 
importance, which can lead to improved 
precision. 

Recall It captures all positives cases, for example, in 
plant disease treatment recommendation, 
recall indicates the ability of the model to 
recommend treatments for as many cases of 
the disease as possible, it ensures 
comprehensive recommendations in 
situations where missing a positive case (a 
disease) is costly. 

A model with high recall might generate 
many treatment recommendations, including 
some false positives, which could lead to 
unnecessary expenses and resource wastage, 
models designed to be highly sensitive (high 
recall) may be more likely to recommend 
treatments even when there is uncertainty, 
leading to an increased number of false 
positives. 

Incorporate data from various sources to 
supplement traditional plant disease data, 
this can improve the model’s ability to detect 
diseases, leading to higher recall, set a lower 
probability threshold for making treatment 
recommendations to increase sensitivity. This 
can lead to more false positives which can 
help identify a higher number of true positive 
cases, thereby improving recall. 

Mean 
Absolute 
Error 
(MAE) 

MAE is easy to understand and interpret, less 
sensitive to outliers compared to other error 
metrics like Mean Squared Error (MSE), 
emphasis on accuracy hence, it penalizes 
large errors proportionally to their 
magnitude. 

MAE treats all errors equally, regardless of the 
severity level, as MAE is not differentiable at 
zero, it may not be ideal for some 
optimization approaches. 

Properly preprocess the data to handle 
missing values, outliers, and noise, removing 
or imputing problematic data points can 
improve the model’s ability to learn from the 
clean data, augment the dataset with 
additional synthetic samples to improve the 
model’s ability to generalize to different 
disease severity levels and conditions. 

Confusion 
Matrix 

It allows for a more distinctive analysis 
beyond simple accuracy, confusion matrix 
helps identify the types of errors a model 
makes, this can help reveal which diseases 
are misclassified or missed by the model, 
leading to insights for improvement. 

Confusion matrix treats all misclassifications 
equally, irrespective of the severity of the 
disease, majorly confusion matrix is used for 
binary classification problems so it might not 
thrive on multi-class classification. 

Experiment with different confidence 
thresholds for making disease predictions, 
adjusting the threshold can impact the trade- 
off between false positives and false 
negatives. 

Execution 
time 

It gives a practical estimation of the 
performance of the system in real-world 
situation, 
Extreme execution times can indicate 
performance bottlenecks which can guide 
optimization efforts 

consistency across different datasets can be 
affected because of varied execution time, 
which is based on the input data features, it 
may not provide in-depth understanding of 
the underlying behavior of specific 
computational complexities of algorithms. 
The complete picture of the performance of 
the system may not be captured by execution 
time alone, therefore factors such as 
responsiveness or efficiency could be ignored 

To have a better understanding of the 
algorithm’s performance, combine 
algorithm-specific diagnostics tools with 
execution time metric. For a thorough 
assessment, combine execution time metrics 
with other metrics like memory usage and 
responsiveness. Use diverse datasets for 
evaluation.  
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variations or account for regional variances, have a significant impact on the accuracy of these systems. Efforts should be focused on 
establishing bigger and full datasets that contain diverse conditions and geographical areas. For disease identification, many current 
systems rely on static photos or periodic data, which may not adequately reflect the dynamic character of plant diseases. For detecting 
the spread of diseases and speedy intervention, real-time monitoring is essential, but it is frequently absent in current systems. Real- 
time monitoring and early disease identification made possible by advances in sensor, IoT, and remote sensing technologies can lead to 
prompt intervention. There is room for improvement in the field of developing prediction models that can predict disease outbreaks 
based on historical data, weather patterns, and other variables. It is possible to give farmers timely warnings by modeling disease 
spread using sophisticated machine learning and statistical methodologies. If these models are successfully implemented, crop losses 
might be decreased, interventions could be made sooner, and resource usage in agriculture could be improved. 

Systems for identifying plant diseases frequently need a lot of computing power to process and analyze big datasets or execute 
sophisticated machine learning algorithms. Deploying and utilizing these systems may be hampered by a lack of access to high- 
performance computing infrastructure, particularly in distant agricultural areas or locations with limited resources. To address this 
gap, domain knowledge can be utilized to extract and choose relevant features from input data, thereby lowering the input space and 
computational effort without noticeably affecting accuracy. Deep neural networks are frequently referred to as "black boxes," as it is 
always challenging interpreting the inner workings of these models and comprehend the justification for their decisions. Lack of model 
interpretability can undermine reliability, openness, and the capacity to verify and improve the recommendations generated by the 
system. It is possible to create reliable user interfaces that permit users to interact with and examine model explanations, predictions, 
and insights. This hands-on exploration enhances accurate understanding of the system. 

7.2. Future directions 

Future research in the domain of plant disease identification and treatment recommendation systems can focus on several 
promising areas to enhance their accuracy and effectiveness. For example, developing more interpretable and transparent machine 
learning models is crucial for building trust and understanding in plant disease identification systems. Research can explore ap
proaches that can make complex models more understandable, so that users can decrypt the reasons behind the system’s recom
mendations and thus enhance better decision-making. Diverse data modalities can also be combined to provide a clear understanding 
of plant disease. In other words, when various data sources are combined with current systems, disease detection, prediction, and 
treatment recommendation accuracy can be improved. Internet of Things (IoT) devices and sensor networks can also enable real-time 
data collection and monitoring of environmental conditions, soil moisture, pest populations, and plant health parameters. These data 
sources can be combined with disease identification systems to improve their accuracy and enable timely interventions. Additionally, 
the detection of disease-resistant trait in plant variations and the provision of tailored recommendations based on certain genetic 
features can be made possible by integrating genetic and genomic data into disease identification systems. 

8. Conclusion 

Plant diseases have adverse effects on crop yields, quality, and economic stability in agricultural systems worldwide. Agricultural 
sector has been faced with the challenge of protecting yields against the threat of these diseases. Traditional methods for identification 
of plant diseases have many limitations. To reduce plant disease imposed-threat to crop growth and hence sustainable food production, 
there is need to identify alternative techniques that could provide a better remedy to plant disease problems. Therefore, in this review, 
we have described the different strengths and weaknesses of both traditional and the state of the arts techniques in identifying and 
treating plant diseases and suggested their improvement stategies, we proposed possible approaches to combine content-based 
filtering with deep learning to provide tailored and efficient treatment recommendations for plant diseases, the features of different 
datasets used in the domain were also examined, also the strength and the weaknesses of evaluation metrics used for plant disease 
identification and treatment recommendation were also investigated and possible enhancement to improve their performances were 
suggested. Finally, gaps associated with the domain were identified and areas of improvement in current research, and the likely future 
directions for advancing the field were suggested. Acting on these improvement startegies and future directions suggested will 
empower researchers, experts and policy makers to continue to advance technologies that will better help farmers preserve their crops 
and carry out agricultural activities with ease and hence sustainable and resilient agriculture. 
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