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A B S T R A C T   

The ‘sensitive period’ for phonetic learning posits that between 6 and 12 months of age, infants’ discrimination of 
native and nonnative speech sounds diverge. Individual differences in this dynamic processing of speech have 
been shown to predict later language acquisition up to 30 months of age, using parental surveys. Yet, it is unclear 
whether infant speech discrimination could predict longer-term language outcome and risk for developmental 
speech-language disorders, which affect up to 16 % of the population. The current study reports a prospective 
prediction of speech-language skills at a much later age—6 years-old—from the same children’s nonnative 
speech discrimination at 11 months-old, indexed by MEG mismatch responses. Children’s speech-language skills 
at 6 were comprehensively evaluated by a speech-language pathologist in two ways: individual differences in 
spoken grammar, and the presence versus absence of speech-language disorders. Results showed that the pre
frontal MEG mismatch response at 11 months not only significantly predicted individual differences in spoken 
grammar skills at 6 years, but also accurately identified the presence versus absence of speech-language disor
ders, using a machine-learning classification. These results represent new evidence that advance our theoretical 
understanding of the neurodevelopmental trajectory of language acquisition and early risk factors for develop
mental speech-language disorders.   

1. Introduction 

Decades of research have demonstrated that towards the end of the 
first year, infants undergo a ‘sensitive period’ for phonetic learning 
where their discrimination of native speech contrasts improves while 
discrimination of nonnative speech contrasts declines (Kuhl et al., 2006; 
Tsao et al., 2006; Werker and Tees, 1984). The biological and neural 
mechanisms underlying this important learning process have been 
extensively examined over the last decade (Kuhl, 2010; Werker and 
Hensch, 2015). 

One central theoretical issue concerns what infants learn and how 
they learn during this ‘sensitive period’ and more importantly, how the 
learning outcome relates to later language development (Best et al., 
2016; Kuhl et al., 2005; Kuhl et al., 2008; Werker and Curtin, 2005). 

Specifically, the recent Native Language Magnet theory-expanded 
(NLM-e) (Kuhl et al., 2008) postulates that infant learning of native 
speech sounds, shaped by input speech characteristics and social in
teractions, leads to neural commitment to the native language (Native 
Language Neural Commitment, NLNC) that forges a 
perception-production link, and is therefore predictive of later language 
skills. Indeed, Tsao et al. (2004) reported on the first prospective study, 
showing that 6-month-old native vowel discrimination (using a condi
tioned head-turn procedure) is positively correlated with later language 
skills at 13, 16, and 24 months of age measured with the 
MacArthur-Bates Communicative Developmental Inventory (CDI) 
parental survey (Fenson et al., 1993). 

However, a competing explanation is that this predictive relation 
could be contributed to general auditory processing skills, that is, infants 
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with better auditory skills discriminate speech sounds better, and 
therefore learn languages faster. To address this issue, Kuhl et al. (2005) 
using behavioral measures, and Kuhl et al. (2008) using brain measures 
tested infants’ nonnative speech discrimination in addition to their 
native speech discrimination skills. If general auditory perceptual skill is 
the driving cause, then infants’ nonnative speech discrimination should 
predict later language skills in a positive direction, the same as native 
speech discrimination. That is, on the general auditory skill explanation, 
the better an individual infant’s nonnative speech discrimination is, the 
better language outcome would be later in development. Alternatively, 
if neural commitment to native language sounds is the driving cause, 
then nonnative speech discrimination should either be unpredictive of 
later language skills or predict later language in a negative direction, the 
opposite from native speech discrimination. That is, individuals who 
show better nonnative speech discrimination should have worse lan
guage outcomes later in development. Kuhl et al. (2005) showed that 
nonnative speech discrimination in fact predicted later language skills, 
but in the opposite direction as native speech discrimination, bolstering 
the idea of neural commitment. Specifically, infants at 7.5 months of age 
were tested behaviorally using the head-turn conditioning procedure on 
both native and nonnative consonant discrimination and their language 
development was followed to 30 months of age using the CDI (Kuhl 
et al., 2005). The results showed that at 7.5 months of age, 1) native and 
nonnative speech discrimination were negatively correlated, and that 2) 
individuals with better native speech sound discrimination at 7.5 
months showed faster language growth, whereas individuals with better 
nonnative speech sound discrimination at 7.5 months showed slower 
language growth. These results were later replicated using EEG-ERP 
methods to measure native and nonnative speech discrimination at 7.5 
months at the cortical level (Kuhl et al., 2008). Specifically, the 
mismatch negativity (MMN) (Naatanen et al., 2007) was used as an 
index of neural speech discrimination, whereby a larger MMN reflects 
better neural discrimination. Indeed, the results again demonstrated 
that individuals with better discrimination of the native contrast, 
indexed by a larger MMN for the native contrast, showed higher lan
guage skills later on while the opposite relation was observed between 
the nonnative contrast and later language skills. These results further 
demonstrated that better native speech discrimination is reflective of a 
neural circuitry committed to native language processing, which places 
the infant on a faster trajectory for native language development, 
whereas good nonnative discrimination is actually a negative predictor – 
it suggests that infants are not selectively attending to native contrasts, 
and that infants have uncommitted neural circuitry for native language, 
thus putting the infants on a slower trajectory for language 
development. 

Following this idea, the current study further expands the theory on 
two major axes that have not been previously discussed. First, existing 
studies have only employed a single method of measuring language 
skills, namely the CDI parental report (Fenson et al., 1993), which is 
limited to 30 months of age. While the CDI parental report surveys 
children 8–30 months of age on language skills that are appropriate at 
different stages (e.g. gestures, word understanding, word production, 
sentence understanding and sentence production) and has been 
repeatedly validated, no published studies have examined the 
long-range predictive effect of infant speech discrimination beyond 30 
months of age. Second, while NLM-e focuses largely on typical devel
opment and does not make explicit predictions about clinical 
speech-language disorders, we have a reasonable basis for extending the 
theory to the atypical realm. Specifically, our prediction is that in
dividuals with over-sensitive (better) nonnative speech discrimination 
predicts a slower language growth trajectory, which could also be an 
early indicator of speech-language disorders that will call for clinical 
intervention. Using infant speech perception to predict longitudinal risk 
for prevalent developmental speech-language disorders, which cumu
latively affect up to 16 % of the population but are drastically 
under-identified (National Academies of Sciences and Medicine, 2016), 

could have significant clinical-translational impact. 
To address these questions, the current study prospectively followed 

infants from a previous study (Zhao and Kuhl, 2016) and examined their 
speech and language skills at a much later age: 6 years of age. As infants, 
the participants’ nonnative speech discrimination was measured at 11 
months (i.e. at the end of the ‘sensitive period’), indexed by the 
mismatch response measured using Magnetoencephalography (MEG). 
Here we conducted follow-up tests at 6 years of age: children’s 
speech-language development was comprehensively assessed by a 
speech-language pathologist (second author OB) in the laboratory 
setting. The evaluation included standardized assessments of expressive 
syntactic skills, articulation and speech intelligibility, short-term mem
ory, word reading efficiency, and non-verbal intelligence. We focused on 
two specific outcomes: 1) individual differences in expressive syntactic 
skills, measured as a continuous variable on a spoken grammar task and 
2) risk of developing speech or language disorders, measured as a binary 
variable from a comprehensive clinical best estimate of presence versus 
absence of disordered speech or language. 

Higher sensitivity to nonnative speech stimuli has previously been 
shown to predict lower sentence complexity and mean length of utter
ance (MLU) at 24 and 30 months respectively; this is important because 
sentence complexity and MLU are both early markers of grammatical 
competency in children (Kuhl et al., 2008). The current study sought to 
examine whether the previously observed relationship between speech 
discrimination and expressive grammar outcomes at 24 and 30 months 
extends later into childhood and formal schooling (i.e., at 6 years of 
age). At the same time, expressive syntactic skill (i.e., spoken grammar 
ability) in early elementary school is a crucial component of overall 
language competence. It contributes to school readiness, reading 
comprehension, and social skills among peers (Brimo et al., 2017; Catts 
et al., 2002; Fujiki et al., 1999). Skills such as following complex di
rections in a classroom, storytelling, peer collaboration, and early 
reading all rely on a foundation of efficient processing of syntactic 
structures. Moreover, communication barriers related to poor syntactic 
competence contribute to negative downstream effects in children’s 
academic success and social-emotional development (Hubert-Dibon 
et al., 2016). Therefore, expressive syntactic skill was chosen as our 
primary measure of interest. 

In order to test whether the NLM-e theory can generalize and 
generate predictions in a clinical context, our second outcome of interest 
uses comprehensive clinical assessment to identify children with atyp
ical speech-language development (i.e., presence of speech-language 
disorder). Our criteria for atypical speech-language development at 6 
years of age included clinically classifiable articulation difficulties or 
language structure problems. These broad criteria follow the trans- 
diagnostic approaches that target shared underlying mechanisms across 
disorders that may present as clinically distinct (Sauer-Zavala, 2017). If 
infant nonnative speech discrimination turns out to be a reliable pre
dictor of atypical speech-language development, it would open up av
enues for robust prediction of individual risk of developmental 
speech-language disorders at a much an earlier age than currently 
thought possible. Understanding these risk factors will ultimately allow 
the improvement of early identification and access to early intervention, 
following an epidemiological framework (National Academies of Sci
ences and Medicine, 2016; Raghavan et al., 2018). 

Therefore, the current study tested two specific questions: 1) Can 
nonnative speech discrimination at 11 months of age, indexed by MEG- 
measured mismatch response, predict expressive syntactic skills at age 
6? And 2) Can infants’ nonnative mismatch response also help accu
rately detect the presence of speech-language disorders at age 6, thus 
providing a window on atypical versus typical speech-language devel
opment? In addition, the original mismatch response measured by MEG 
also allows examination of the hypothesized effects from two specific 
cortical regions separately, namely prefrontal and temporal regions of 
the brain that are largely thought of as the neural generators of the 
mismatch response (Alho, 1995). 
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2. Method 

2.1. Participants 

Participants were 27 typically developing children being raised in 
monolingual English-speaking households (mean age = 6.12 years, 
min = 5.91 years, max = 6.35 years, std = 0.14 years). All children 
previously participated in the Zhao and Kuhl (2016) study as infants. 
Out of the original 38 infants, 2 were excluded from the current study 
due to a diagnosis of significant developmental disorders not compatible 
with our test battery (e.g. autism), 9 were either not reached or could not 
participate (e.g. moved out of state, did not arrive at the appointment), 
27 returned for the in-laboratory behavioral testing, with 1 child who 
could not complete the testing. Out of the 26 children who completed 
standardized language tests at 6 years of age, 23 also had usable MEG 
mismatch response for nonnative speech discrimination at 11 months of 
age that was included in the initial publication. Note that 10 of the 23 
individuals were in the original music intervention group. 

2.2. Neural speech discrimination at 11 months 

The original infant MEG experiment (Zhao and Kuhl, 2016) utilized a 
nonnative speech contrast based on a consonant duration change 
embedded in disyllabic nonwords (/bibbi/ vs. /bibi/). On 85 % of the 
trials, infants were presented the disyllabic nonword with a long con
sonant between the vowels (i.e., /bibbi/); in the 15 % deviant trials, the 
syllable structure was violated by shortening the length of the middle 
consonant from 150 ms to 50 ms (i.e., /bibi/) (Fig.1A), effectively 
reducing the silent gap between two vowels by 100 ms. This difference 
reflects an acoustic feature for phonemic contrasts in languages such as 
Japanese and Finnish, but not used in English (Aoyama, 2000). We also 

separately recorded the neural response to /bibi/ when it was presented 
in a constant stream (as standard for 200 trials); we subtracted neural 
responses to /bibi/ when it served as standard from neural responses to 
/bibi/ when it served as deviant (200 trials) in the context of the syllable 
/bibbi/. This design removes neural responses to acoustic differences 
between the standard and the deviant (Kujala et al., 2001). The MMR 
time window (Fig. 1B, shaded region) was timed to the onset violation (i. 
e., onset of the 2nd syllable, Fig. 1A). 

2.3. Speech-language evaluation at 6 years old 

Children completed a comprehensive battery of speech and language 
assessments (described below) administered by a speech-language 
pathologist (second author OB) during a single visit to the laboratory 
(approximately 1.5 h), with breaks as needed. The Speech-Language 
Pathologist and other research staff involved in testing were blind to 
participants’ individual MEG data at the time of 6-year-old visit and 
during the presence-versus absence classification process (described 
below). Parents completed a demographic questionnaire describing 
parent formal education, child’s medical and developmental history, 
parent speech and language concerns, and parent musical experience. 
All procedures were approved by IRBs at both the University of Wash
ington and Vanderbilt University Medical Center. Informed consents 
were obtained from all parents and assents were obtained from all 
participating children prior to the testing procedure. All participating 
families were compensated monetarily. 

The comprehensive battery of speech and language assessment took 
place in a quiet booth and included tests as follows: 1) a bilateral pure- 
tone hearing screening (20 dB SPL at 1000, 2000, and 4000 Hz) was first 
administered to confirm hearing within functional limits. 2) The Test of 
Early Grammatical Impairment Screening Probe (TEGI; (Rice and 

Fig. 1. A) Schematics of MEG experiment: in the long recording, a traditional oddball paradigm was used where deviants /bibi/ was presented 15 % of the time, 
among the standards /bibbi/ (85 % of the time). In a separate shorting recording, the same number of /bibi/ was presented in a constant stream as standard. MMR 
was calculated as the difference between identical stimulus (i.e. /bibi/) when presented as standard vs. as deviant. B) Group average MMR for the 23 participants in 
the current study in the temporal (blue) and prefrontal (red) regions. The time window for MMR is shaded in yellow. C) Box plot of MMR (averaged across the shaded 
time window) for Temporal and Prefrontal region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article). 
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Wexler, 2001)) was administered both to rule out phonological disor
ders that would impact validity of language testing and to screen for 
language impairment. Children were asked to answer questions about 
various pictures designed to elicit specific phonological sounds and 
morphological endings such as past tense and third person singular, and 
were assessed to be either at/above or below criterion for the TEGI 
Screening Probe. 3) The Primary Test of Nonverbal Intelligence (PTONI; 
(Ehrler and McGhee, 2008)) was administered to assess and control for 
age-normed nonverbal IQ. Children were shown a series of images and 
asked to point to the object that did not belong. Results from the PTONI 
were quantified through standard scores. 4) The Number Recall subtest 
of the Kaufman Assessment Battery for Children, Second Edition (KAB
C-II; (Kaufman and Kaufman, 2004)) was used to assess short-term 
memory. Raw scores from this subtest were used to quantify 
short-term memory performance. 5) The Structured Photographic 
Expressive Language Test, 3rd Edition (SPELT-3; (Dawson et al., 2003)) 
was used as our primary measure of expressive syntax, and was quan
tified as a standard score. Children were asked to describe pictures that 
were designed to elicit particular morphosyntactic forms, and their re
sponses were scored based on appropriate use of those forms. 6) The 
Sentence Imitation subtest of the Test of Language Development – Pri
mary: 4th Edition (TOLD-P:4; (Newcomer and Hammill, 2008)) was also 
used to assess expressive language. A scaled score was derived from this 
subtest. Sentence imitation tasks have been shown to be reliable and 
sensitive in identifying children with language impairment (Archibald 
and Joanisse, 2009; Redmond et al., 2011). 7) Speech sound errors 
observed throughout testing and conversation with the participant were 
used to flag errors that were inappropriate for age and gender. The 
Sounds-in-Words subtest of the Goldman-Fristoe Test of Articulation, 
3rd Edition (GFTA-3; (Goldman and Fristoe, 2015) was administered 
and a standard score was derived to assess speech and articulation in 
participants flagged by the clinician for speech-sound concerns. And 
finally, 8) the Test of Word Reading Efficiency – Second Edition 
(TOWRE-2; (Torgesen et al., 2012)) was administered to assess fluency 
and accuracy of both sight word and nonword reading. Children were 
given lists of sight words and nonwords and asked to read words aloud as 
fast and accurately as possible. Based on rate and accuracy of children’s 
responses, standard scores for sight word and non-word reading were 
derived. The TOWRE-2 is normed for ages 6 years 0 months to 24 years 
and is not appropriate for children who are not yet reading; therefore 16 
out of 26 children could not complete this assessment (n = 4 had not yet 
reached their sixth birthday on the date of testing, and of the 22 children 
who were old enough to complete the TOWRE, testing was discontinued 
for 12 of them based on inability to complete the practice items). 

Each participant was assigned to one of three outcome types based a 
combination of history of speech-language impairment, standardized 
assessment scores, and clinical observation during the testing session: A) 
typical speech-language development: absence of speech and/or lan
guage disorder; B) mild concern for speech-language disorder; or C) 
atypical speech-language development: presence of speech and/or lan
guage disorder. Participants were placed into the ‘presence of speech 
and/or language disorder’ category if they had a reported history of 
speech-language disorder or intervention, or one or more standardized 
speech or language assessment scores that were more than 1.5 standard 
deviations below the mean. Based on these criteria, 5 out of the 26 tested 
children were assigned to this category. Two of these 5 children had a 
history of speech-language disorder which had since resolved: one child 
received services related to articulation difficulties, while one child 
experienced stuttering from ages 2 through 5. While both of these 
children were classified as having atypical speech-language develop
ment, neither were included in the final analyses as their MEG data was 
not usable/available. One additional child had an active individualized 
education plan (IEP) for speech-language services related to receptive 
language skills. The remaining 2 children showed atypical articulation, 
with GFTA-3 standard scores more than 1.5 standard deviations below 
the mean. All clinician concerns were shared with parents at the time of 

the visit, who were encouraged to follow up with their child’s pedia
trician and teachers. 

Participants were placed in the ‘mild concern’ category if there was 
concern for speech and language difficulties that did not meet the 
threshold for therapeutic intervention. The ‘mild concern’ category (B) 
required a combination of 1) clinician observations related to language 
use, articulation, pre-literacy performance from the TOWRE-2, or other 
atypical features such as disfluency or pragmatic oddities, and 2) parent 
concerns related to speech, language, or academic performance. Only 1 
child was assigned to this category based on parent concern in multiple 
speech and language areas, and clinical observation related to atypical 
pre-literacy skills. All other participants were determined to have an 
absence of any speech or language disorder and therefore classified in 
the typical speech-language category. 

In all further analyses, we merged the ‘mild concern’ category with 
the ‘atypical speech-language’ category. 

For the final sample of 23 children who had both neural and 
behavioral data available, two key outcomes were derived from the 
behavioral session: 1) expressive syntactic skills measured by the 
Structured Photographic Expressive Language Test, 3rd Edition (SPELT- 
3) ; and 2) classification of presence of speech-language disorders 
(atypical) vs. absence of speech-language disorders (typical speech- 
language development) based on the comprehensive clinical assess
ment (see Table 1 and Table 2 for participant classification summary). 

2.4. Data analyse 

The final dataset (OSF link) consisted of 23 individuals with both 
neural speech discrimination at 11 months of age and behavioral speech- 
language assessment at 6 years of age. 

Regression analyses were conducted to address our first research 
question: can infants’ mismatch response to the nonnative speech 
contrast at 11 months predict individual differences in spoken grammar 
skills (age-normed SPELT-3 standard scores) at 6 years of age. Specif
ically, we conducted parametric regression analyses as well as a machine 
learning support-vector regression. Parametric: We examined the rela
tion between mismatch response and SPELT-3 while controlling for non- 
verbal intelligence (PTONI). The mismatch response values were the 
published values averaged across the corresponding time windows for 
each region (Fig. 1B, C) (Zhao and Kuhl, 2016). We conducted separate 
regression analyses for the prefrontal region mismatch response and the 
temporal region mismatch response. In addition, to rule out potential 
effects from the original intervention, we conducted an additional 
regression analysis between mismatch response and SPELT-3 while the 
original group assignment (music intervention vs. control) was also 
controlled for in the model. All parametric regression analyses were 
done using SPSS Version 19 (IBM). Support-vector regression: We utilized 
a machine-learning support-vector regression (SVR) to further examine 

Table 1 
Results of speech-language evaluation at age 6, data presented as mean (±
standard deviation) unless otherwise stated, for the 23 children included in the 
final dataset.   

Typical language 
category 
(absence of speech- 
language disorder) 

Atypical speech-language category 
(presence of speech-language 
disorder) 

Number of 
Participants 

19 (13 males) 4 (3 males) 

Age 6.10 (± 0.15) 6.15 (±0.10) 
Median SES College/Technical 

Degree (3− 4 years) 
College/Technical Degree (3− 4 
years) 

Non-verbal IQ 
(PTONI) 

113.26 (±21.25) 113.8 (±21.0) 

Expressive 
grammar 
(SPELT-3) 

113.37 (±4.23) 112.8 (±5.56)  
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the relation between infant mismatch response and expressive synthetic 
skills at age 6 (Drucker et al., 1996). The model uses whole mismatch 
response time series, therefore takes into consideration the temporal 
dynamics of the mismatch response at prefrontal and temporal regions. 
All machine-learning analyses for this current study were done using the 
open source scikit-learn package (Pedregosa et al., 2011). The dataset is 
first randomly split into a training and a testing set. Mismatch response 
time series (instead of averaged values) in the training set were first used 
to fit the model with a linear kernel function (C = 1.0, epsilon = 0.1). 
Once the model is trained, the mismatch response time series from the 
testing set were then used to generate predictions of the SPELT scores. A 
k-fold cross-validation method (K = 2) was also used to enhance model 
prediction. The R2 coefficient of determination between actual 
measured SPELT and model predicted SPELT is taken as index of model 
performance. 

To further evaluate the model performance, we shuffled the SPELT 
scores across individuals and then conducted the same SVR analyses. In 
such cases, the mismatch response time series should bear no predictive 
value to SPELT score and the R2 should reflect a model performing at 
chance level. We repeated this process 1000 times and generated an 
empirical null distribution of R2 and we compared our originally ob
tained R2 coefficient against this distribution (Xie et al., 2019). 

To address our second research question of whether we could detect 
risk for developing speech and language disorders using infant mismatch 
response time series, we utilized a supervised Support-Vector Machine 
(SVM) classification method (Cortes and Vapnik, 1995). Similar to the 
SVR analyses, the SVM takes all the time points of the mismatch 
response time series into the model. However, instead of predicting a 
continuous variable (e.g. SPELT score), the SVM generates a binary 
categorical prediction (i.e. typical vs. atypical speech-language cate
gories). A nested cross-validation was adopted to enhance model per
formance while addressing the issue of bias related to having a small 
sample size for SVM (Vabalas et al., 2019). The dataset was first split 
into two folds that preserves the percentage of samples for each class (i. 
e. typical vs. atypical). Then each fold served first as training set and 
then as testing set, or vice versa. Two separate SVM models with linear 
kernel (C = 1.0, epsilon = 0.1) were developed based on the two 
training sets and were then tested on the two testing sets. That is, based 
on the trained model, testing set mismatch response time series was used 
to generate a prediction of presence versus absence of speech and lan
guage disorders. The prediction accuracy score (percentage of correct 
labels) in the testing for each model was first calculated and the overall 
accuracy was calculated as the mean across the two models. The overall 
true positive rate (TPR) /sensitivity and overall true negative rate (TNR) 
/specificity were also calculated (TPR = True Positive/(True Pos
itive + False Negative); TNR = True Negative / (True Negative + False 
Positive)). Similarly, an empirical null distribution of accuracy scores 
was built by shuffling the category labels across individuals and 
repeating SVM with nested cross-validation 1000 times. We then 
compared the obtained accuracy score to the empirical null distribution. 

3. Results 

3.1. Infant speech discrimination as a predictor of individual differences 
in spoken grammar 

Results from the parametric regression analyses suggested that the 
prefrontal region mismatch response at 11 months significantly pre
dicted SPELT-3 scores at 6 years of age while controlling for non-verbal 
intelligence (R2 = 0.35, p = 0.026, Beta (mismatch response) = -0.56, 
p = 0.014, Bonferroni correction applied) (Fig. 2A, left column). The 
results remain in the additional model where the original group 
assignment was controlled (R2 = 0.369, p = 0.03, Beta (mismatch 
response) = -0.546, p = 0.009). In contrast to the prefrontal results, 
results showed that the temporal region mismatch response at 11 
months did not predict SPELT-3 scores at 6 years of age (R2 = 0.19, p =

0.254, Bonferroni correction applied) (Fig. 2B, left column). 
The SVR analyses suggested that when using the whole prefrontal 

region mismatch response time series, the R2 between predicted and 
measured SPELT-3 is 0.305, higher than the 97.5th percentile of 
empirical null distribution for R2 (i.e., R2 = 0.157) (Fig. 2A, middle and 
right columns), in line with results of parametric analyses. However, 
when using the whole temporal region mismatch response time series 
for SVR analyses, the R2 between predicted and measured SPELT-3 is 
0.108, still slightly better than the 97.5th percentile of the null distri
bution (i.e., R2 = 0.009) (Fig. 2B, middle and right columns). In this 
case, using the time series of the temporal region mismatch responses 
achieved better-than-chance prediction of SPELT-3 score. 

To summarize, both parametric and machine-learning regressions 
demonstrate that we can predict individual expressive syntactic skills at 
6 years of age using mismatch responses to nonnative speech contrasts at 
11 months of age. SVR overall performs better than parametric regres
sion analyses, suggesting potentially more sensitive predictions when 
taking into consideration the temporal dynamics of the time series. More 
importantly, this predictive relation is stronger when the prefrontal re
gion mismatch response is used. 

3.2. Infant speech discrimination as a predictor of presence of speech- 
language disorders 

Results from the SVM classification analyses revealed a similar 
pattern of results. Using the whole prefrontal region mismatch response 
time series, an accuracy score of 86.74 % was achieved to classify par
ticipants into ‘typical’ vs. ‘atypical’ categories. This is at the 97.5th 
percentile of the empirical null distribution of accuracy scores created 
by shuffling the labels (‘presence of speech or language disorder – 
atypical’ vs. ‘absence of speech or language disorder - typical’) across 
participants (Fig. 3A). In addition, the TPR and TNR are 0.5 and 0.94, 
respectively. However, when using the temporal region mismatch 
response time series, the accuracy score was only 82.57 %, below the 
97.5th percentile of the random distribution (Fig. 3B). The TPR and TNR 
are 0 and 1.0 with no true positive identified. Together, the results 
demonstrate that prefrontal MMR, but not temporal MMR, can predict, 
at a higher than chance level, whether an infant will be likely to manifest 
atypical speech-language development prior to age 6. 

4. Discussion 

The Native Language Magnet theory expanded (NLM-e) predicts that 
infant speech discrimination during the ‘sensitive period’ for phonetic 
learning predict later language skills, through the mechanism of native 
language neural commitment (NLNC) to the native language. According 
to this model, discrimination of nonnative phonetic contrast is an 
especially sensitive predictor of slower language development (Kuhl 
et al., 2005, 2008). We followed this theoretical framework and 
extended the current literature on two important axes: 1) we demon
strated that the mismatch response indexing nonnative speech 

Table 2 
Description of classification criteria met for inclusion in atypical speech- 
language category.  

Participant Classification criteria met: 

S1 Currently receiving speech-language services through school system 
related to receptive language and pre-reading skills, per parent report. 

S13 Speech sound delay as demonstrated by standard score of 73 (>1.5 SD) 
on Goldman Fristoe Test of Articulation. 

S16 Child could not complete Test of Word Reading Efficiency practice 
items due to difficulty recognizing letters. Parental concern for speech- 
language disorder based on survey with pre-reading skills (child has 
difficulty recognizing letters and sound to letter correspondence). Note 
that parent also reported co-occurring sensory integration challenges. 

S26 Speech sound delay as demonstrated by standard score of 62 (>2 SD) 
on Goldman Fristoe Test of Articulation.  
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discrimination at 11 months of age prospectively predicted individual 
differences in spoken grammar skills at a much later point in develop
ment, at 6 years of age. 2) We demonstrated that the infant nonnative 
speech discrimination can generalize and generate predictions of clinical 
relevance; that is, using a machine-learning approach, the model accu
rately identified which infants would later exhibit presence of 
speech-language disorders, providing a window on atypical 
speech-language development. Moreover, the MEG data showed that the 

brain area best predicting language development is largely localized to 
the prefrontal region; the auditory region did not predict long-term 
language development. Taken together, the current results are consis
tent with prior findings obtained from parent report of expressive lan
guage skills at 2.5 years of age (Kuhl et al., 2008; Kuhl, Conboy, Padden, 
Nelson, & Pruitt, 2005; Tsao et al., 2004); and further, the study expands 
the theoretical framework of NLM-e significantly, demonstrating that 
infant speech discrimination is one of the earliest milestones that sets 

Fig. 2. A) Left: scatter plot of averaged mismatch response in prefrontal region and expressive grammar skills (measured by SPELT-3). Middle: Measured expressive 
grammar scores and SVR model predicted expressive grammar scores from the whole prefrontal mismatch response time series. Right: Empirical null distribution of 
R2. Black line: R2 from the current dataset. Red line: 97.5th percentile in the distribution. B) Left: scatter plot of averaged mismatch response in temporal region and 
expressive grammar skills. Middle: Measured expressive grammar scores and SVR model predicted expressive grammar scores from the whole prefrontal mismatch 
response time series. Right: Empirical null distribution of R2. Black line: R2 from the current dataset. Red line: 97.5th percentile in the distribution. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 3. A) Random distribution of accuracy scores from SVM classification, using prefrontal MMR. The current data performance is at 97.5th percentile. B) Random 
distribution of accuracy scores from SVM classification, using Temporal MMR. The current data performance (black line) is significantly below 97.5th percentile. 
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individuals on their speech-language acquisition trajectory. 

4.1. Early predictors of later language skills 

Other early predictors of later language skills have also been re
ported. In the speech domain, using retrospective methods, Newman 
and colleagues (Newman et al., 2006) reported that infants’ ability to 
segment speech before 12 months of age is related to later language 
skills measured by both parent survey at 24 months of age and direct 
language assessment between 3− 4 years of age. A series of other work 
shows that word processing speed at age 25 months is a significant 
predictor of expressive language skills at 8 years of age (Fernald et al., 
2006; Marchman and Fernald, 2008). More recently, researchers have 
also reported that environmental factors, such as maternal speech input 
quality, including percent of infant- or child-directed speech, the 
amount of one-on-one interaction, and lexical properties in the speech, 
are important contributing factors to later language skills (Ferjan 
Ramírez et al., 2019, 2020); Newman et al., 2016; Ramírez-Esparza 
et al., 2014). 

In addition to speech predictors, other work has demonstrated that 
general auditory processing skills can also predict later language skills as 
well as detect language disorders (Benasich and Tallal, 2002; Molfese, 
2000; Molfese and Molfese, 1997). A seminal study showed that neo
nates’ obligatory evoked responses to speech sounds predicted language 
skills in the same children when they turn 3 years of age (Molfese and 
Molfese, 1985). Using another approach, researchers have shown that 
the ability to process rapid auditory cues is predictive of later language 
skills, and it distinguishes children at-risk of language disorders from 
those with typical language (Benasich and Tallal, 2002). More recently, 
researchers described neural signatures related to rapid auditory pro
cessing in infants that are related to later language skills and also 
differentiate children at-risk for language impairment (Cantiani et al., 
2019). Recent research also suggests that the ability to process music 
rhythm can be related to language skills, and these authors hypothesized 
that musical rhythm is a potential early predictor of language skills and 
developmental speech and language disorders (Gordon et al., 2015). 

Thus far, the mechanisms by which these predictors (native speech 
vs. nonnative speech vs. nonspeech/general auditory) are inter
connected and complement each other remains unknown. Future 
research in larger samples is warranted to systematically examine the 
interconnections, interactions and relative contributions of different 
predictors with the aim of identifying an ideal set of measures in infants 
that can generate best predictions for future language skills and also 
produce best detection of at-risk infants for early intervention. To 
illustrate, in our current study we utilized only a single nonnative speech 
contrast to generate prediction, we did not incorporate any native 
speech contrast or nonspeech contrast. Future studies will need to test a 
variety of native and nonnative speech contrasts that utilize a variety of 
cues to replicate this result and characterize potentially different pre
dictivity from different speech contrasts. Such study will also allow 
further examination of different theoretical perspectives with regard to 
the underlying mechanisms through which native vs. nonnative speech 
contrasts drive such predictions. In addition, it would also be important 
to systematically compare speech processing with a range of tests 
assessing infants’ general auditory skills, especially ones related to 
temporal information processing, to examine their long-term predictive 
value for children’s language skills. 

4.2. Clinical application for mitigating risk of speech-language disorders 

The current study provides an important step for future work into the 
predictive power of speech processing in infancy and speech-language 
outcomes in childhood. Given the high prevalence of developmental 
speech and language disorders and their academic, social-emotional, 
financial, and vocational impacts later in life, early identification and 
preventive intervention in infants at risk for communication 

impairments could mitigate these consequences in childhood and 
beyond (NASEM, 2016). Preventive approaches for very early identifi
cation and treatment of children at risk of communication disorders 
have already shown promise in improving child outcomes, such as in a 
pilot study for infants with galactosemia, which is frequently accom
panied by expressive language impairments (Peter et al., 2020). The 
potential for noninvasive approaches such as MEG to assist in identi
fying children with speech discrimination characteristics that put them 
at greater risk of speech-language disorders, is worthy of expansion and 
further exploration as means to make a significantly positive impact on 
public health. 

4.3. Language assessment in children 

While all children in this study were comprehensively evaluated for 
identifying atypical speech-language development, expressive grammar 
itself could also be a particularly critical measure that can indicate 
speech and language disorders. Children with language impairment 
have notable weaknesses in morphology and syntax (Owen and Leonard, 
2006). In addition, children with late language emergence (often 
referred to as “late-talkers”) also have greater vulnerability for 
continued weaknesses in grammar later in childhood, compared to other 
domains of language such as vocabulary (Rice et al., 2008). In our 
current sample, children with typical vs. atypical speech-language 
development did not differ on their expressive grammar scores. Future 
studies in larger samples should investigate whether poor grammar skill 
is a main driving mechanism for language deficits in children using a 
large sample and can investigate associations/dissociations between 
phonological and grammatical skill in relation to presence or absence of 
developmental speech/language disorders. 

On the other hand, our current results provide indirect support for 
continuity of measures for syntactic skills over development. The Sen
tence Complexity and the Mean of Longest Intelligible Utterances (M3L) 
metrics from the CDI have strong concurrent validity with metrics of 
grammatical complexity from behavioral language sampling in both 
children with typical development and language impairment (Law and 
Roy, 2008; Thal et al., 1999; Dale, 1991). However, their predictive 
validity past the third year of life warrants further investigation. Indeed, 
our current work, along with prior work indirectly support such pre
dictive validity given that infant nonnative speech discrimination 
similarly predicts CDI measures at 30 months and formal assessment of 
expressive grammar at 6 years. 

4.4. Machine-learning methods as a powerful tool 

In the future quest to understand the interconnections of large sets of 
infant characters and their combined predictive values of later language 
skills, automated machine-learning methods are becoming especially 
relevant and useful. Indeed, there is an increasing amount of interest in 
applying machine learning methods to identify individuals affected or 
at-risk for developmental communication disorders, such as autism (Bosl 
et al., 2011; Justice et al., 2019; Zare et al., 2016). 

Our current results complement the existing efforts and suggest that 
we can leverage machine-learning methods to identify healthy and 
typically developing infants who will later develop speech-language 
disorders in the mild-moderate range. Given the growing evidence 
that language impairments occur on a continuum rather than dichoto
mously (Lancaster and Camarata, 2019), similarly to mental health 
traits in the population (Martin et al., 2018), it becomes even more 
important to both identify biological mechanisms underlying individual 
differences in language acquisition, and uncover prodromal markers of 
later clinical speech or language problems that might be relatively mild 
but still require intervention to mitigate long-term academic and social 
consequences. While machine learning methods can be powerful, the 
caveats of applying ML models on neural data is that there is generally a 
very small sample in each individual dataset such that the inherent bias 
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in these samples may be amplified by the ML models (Vabalas et al., 
2019). Future research is warranted in which large longitudinal 
population-based datasets can be accessed or aggregated to allow us to 
further examine differences across a wider continuum of speech and 
language impairment. More complex machine-learning models can then 
be applied to more accurately predict children’s language outcome from 
the earliest ages with less bias, with the ultimate goal to intervene 
during early development when they are the most effective. 

4.5. The role of inferior frontal gyrus 

The importance of the prefrontal mismatch response in its predictive 
power for later language skills over the temporal mismatch response is 
of particular interest. It leads to some interpretation and speculation 
regarding how such long-range predictions are possible, considering the 
important role of the inferior frontal gyrus (IFG) in both phonetic 
learning and syntax processing. The IFG, which overlaps with Broca’s 
area, is demonstrably crucial to speech perception and production 
(Hickok and Poeppel, 2007). More recently, the advancement in infant 
MEG neuroimaging has allowed us to directly observe the change in IFG 
during phonetic learning (Imada et al., 2006; Kuhl et al., 2014). Spe
cifically, pre-verbal young infants are engaging motor areas (e.g., IFG, 
Cerebellum, see Kuhl et al., 2014) of the brain as they listen to speech, 
long before they can actually produce speech; and such engagement is 
interpreted as infants’ attempting to simulate the motor gestures 
required to produce the speech sounds they hear. In these studies, in
fants’ brain activity in IFG increased for nonnative contrasts between 6 
and 12 months of age, suggesting that nonnative contrasts become too 
difficult to simulate in comparison to native speech sounds and thus 
recruit additional neural resources. In the current study, infants who had 
higher prefrontal region mismatch (including IFG) are likely to be more 
reactive to nonnative speech contrasts, thus showing a pattern of less 
committed brain structure to native language contrasts at 11 months, 
which appears to have placed them on a slower language development 
trajectory, evidenced by their outcomes at age 6. These findings suggest 
that the functional and structural development of the inferior frontal 
gyrus may have an important role in the ‘sensitive period’ for phonetic 
learning (see Kuhl, 2021 for additional discussion). 

The link between infant speech discrimination in the prefrontal re
gions and school-age syntactic skills may also implicate the IFG’s central 
role in hierarchical processing, which manifests as syntactic (gram
matical) task performance in language (Fitch and Martins, 2014; Frie
derici, 2020; Heard and Lee, 2020). Activation of the IFG is present 
during syntactic encoding in adults even in the absence of lex
ical/semantic information, and the increase in activation magnitude 
correlates with increases in syntactic complexity (Pallier et al., 2011). In 
particular, the pars triangularis is activated in a distinct temporal 
sequence across lexical, inflectional, and phonological expressive lan
guage tasks (Sahin et al., 2009). In addition, the left IFG’s role is not 
limited to processing syntactic information; rather it works in concert 
with the left posterior middle temporal gyrus and the bilateral supple
mentary motor area to support many aspects of receptive and expressive 
language (Segaert et al., 2011). As children develop, the resting state 
functional connectivity of these regions becomes increasingly lateral
ized (Xiao et al., 2016) and activation of Broca’s area during sentence 
processing shifts from the opercular IFG to the pars triangularis (Vis
siennon et al., 2017). In children and adults with speech sound (artic
ulation) disorders, the left IFG shows hyperactivation during task 
performance compared to TD controls, suggesting that individuals with 
speech sound disorders may rely on the left IFG as a compensatory 
network for impairments in the phonological processing loop (Tkach 
et al., 2011; Preston et al., 2012; Liégeois et al., 2014). As knowledge 
evolves regarding the complex structural and functional divisions within 
Broca’s area (Fedorenko and Blank, 2020), future research should sys
tematically examine the developmental trajectory of the IFG in relation 
to infant phonetic processing and later syntactic perception and 

production in older children and adults, along with risk of developing 
disordered speech or language. 

5. Conclusion 

We reported on a theory-driven prospective follow-up study and 
demonstrated a robust prediction of 6-year old’s language skills from the 
same child’s nonnative speech discrimination at 11 months of age, 
indexed by neural mismatch response measured with MEG. Specifically, 
using both parametric statistics and machine-learning approaches, we 
demonstrated that the prefrontal region mismatch response not only 
predicted the individual differences in expressive syntactic skills but also 
detected risk of developmental speech-language disorders with high 
accuracy. These results are promising in their contribution to the current 
literature of potential robust early predictors of clinically-relevant lan
guage skills in childhood. 
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