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Abstract

Background: Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to
predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally
limits their predictive power.

Results: We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy
in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region
of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function
represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered
equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near
optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation.

Conclusion: Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models.
Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a
functionally robust metabolic network.
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Background
Predicting metabolism with constraint-based models
Natural selection, acting within the laws of physics and
chemistry, produces systems well adapted to local con-
ditions. This basic evolutionary insight is formalized in
constraint-based modeling. A biological system might be
understood as the solution to a precisely formulated math-
ematical problem of optimization under constraint [1,2].
A constraint-based approach is often used to model

metabolism in E. coli, for which nearly complete know-
ledge of the metabolic reaction network is available
[3,4]. The exact stoichiometry of each biochemical
reaction imposes a conservation-of-mass constraint that
must hold in the steady state. In some cases thermo-
dynamic, regulatory, or other constraints may be added
to further restrict the possible metabolic reaction fluxes
[5,6]. With the allowed flux space defined, common ap-
proaches select a flux vector that is optimal according
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to some hypothesized objective function [7]. This opti-
mal solution represents an a priori prediction of all
cellular metabolic fluxes.
The objective most often chosen for microbial models

is the maximization of growth rate or yield, an approach
we call simply Flux Balance Analysis (FBA). The utility
of FBA relies on the assumption that growth rate ap-
proximates overall fitness and is the primary focus of se-
lection. Numerous successful applications attest to the
value and versatility of FBA for predicting growth rates
in a variety of contexts [8-11]. However, standard FBA
formulations face practical and principal limitations.
In practice, FBA generally cannot predict a unique rate

for all fluxes. A solution which maximizes growth rate is
typically mathematically degenerate, describing a region
in flux space rather than a single point. Solution degen-
eracy is a well-described problem in systems in systems
like metabolism which are flexible, internally redundant,
and underdetermined by data [12]. Applications of FBA
are therefore complicated when predictions are required
for fluxes other than growth.
In principal, metabolism cannot function only to

maximize growth rate. This is evidenced by deletions of
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metabolic genes in B. subtilis, some of which cause in-
creased growth rates and biomass yields relative to wild
type [13]. Selective pressure to increase growth rate
must be balanced by other demands on metabolism. In-
vestments in cellular maintenance, sensory apparatus,
osmoregulation, intercellular communication, or motil-
ity may reduce growth rate while improving overall
fitness. Finally, limitations of evolutionary time and
genetic variability may mean that metabolism is simply
imperfect, and not optimal for any objective [2]. Thus
we can not necessarily exclude from consideration the
many flux configurations that support, for example,
90% maximal growth.
We address both difficulties with a revision of the

metabolic objective at the heart of genome-scale meta-
bolic optimization models. We propose that microbial
metabolism is better represented as a cloud of nearly
optimal flux distributions, rather than a single ideal
and fixed solution. Under this hypothesis, regulation
drives cellular fluxes to within a degenerate optimal re-
gion. Solutions within this region are not further opti-
mized and considered equally plausible. We present a
mathematical formulation of this theory that preserves
the properties of continuous and convex optimization
that make standard FBA mathematically elegant and
computationally quick.
Our model allows stronger predictions in some cases,

despite strictly weakening the optimality assumption
that grounds standard FBA. The Perturbed Solution
Expected Under Degenerate Optimality (PSEUDO) out-
performs comparable methods in predicting the re-
distribution of central carbon fluxes that occurs in
metabolic mutants of E. coli. Our model attributes cen-
tral metabolism with significant flexibility to negotiate
the trade-off between optimizing growth rate and
matching a target flux vector. This is particularly rele-
vant for metabolic engineering applications when genet-
ically modified cells must adapt to suboptimal flux
profiles.
The success of the PSEUDO method suggests that de-

generate optimality may be a basic organizing principle
for metabolism. In support of this hypothesis, we will
show that reported measures of flux variability correlate
with the dimensions of the degenerate optimal region.
More degenerate fluxes, which theoretically do not
require precise values for fast growth, indeed exhibit
more variation. Tolerance for numerous optimal and
near-optimal flux configurations would be an asset to
microbial metabolism, enabling robust growth in the
face of perturbations to the network. A degenerate
organization of metabolism may be an essential adap-
tation given fundamental physical constraints on the
ability of cells to control their internal and external
environments [14].
Results and discussion
Common approaches to genome-scale optimization: FBA
and MOMA
Figure 1 presents a geometric interpretation of the com-
monly used FBA and MOMA objective functions, con-
trasting them with the PSEUDO objective that we will
describe below.
Standard FBA solves for a vector of metabolic fluxes

within constrained flux space that maximizes cellular
growth rate (Figure 1A). Because time is not represented
in the model, predictions of growth rate or yield are
treated identically. Mutations within the FBA framework
are modeled as additional constraints that remove a re-
gion of the allowed flux space. For example, deletion of
the pgi gene in E. coli eliminates phosphoglucose isom-
erase activity and constrains flux through that reaction
to be zero. A mutant model is then re-solved to predict
a new growth rate optimum (Figure 1B).
A popular alternative method for predicting mutant

behavior is based on the Minimization of Metabolic Ad-
justment (MOMA) [15]. A mutant may not grow opti-
mally if natural selection has not had a chance to act on
the new genetic background. Instead, MOMA hypothe-
sizes that a mutant will tend to approximate the wild-
type state as closely as possible. Formally, a MOMA flux
vector is found with minimum Euclidean distance to a
single optimal wild-type profile, subject to the con-
straints of mutation (Figure 1C). This method therefore
requires as input a unique optimal wild-type flux vector,
which may be known from empirical measurements. In
practice however, this point is often predicted with a
standard FBA model.
Both FBA and MOMA use convex objective functions

and convex constraints. Applications of these models
can therefore access a powerful suite of convex pro-
gramming algorithms [16]. A flux vector identified by
convex programming is guaranteed to be unique, glo-
bally optimal, and can be computed in milliseconds. This
is unlike most nonlinear optimization methods, which
are computationally intensive and often can not guaran-
tee a global optimum. The fast run times provided by
convexity means that thousands of model variants can
be rapidly re-solved in seconds on a conventional desk-
top. In metabolic engineering, for example, mutations
can be screened combinatorially in silico for sets that
improve production of a metabolite of interest.
The problem of degeneracy in genome-scale models
Although solutions to FBA and MOMA problems are
guaranteed to be globally optimum, they are not guaran-
teed to be unique. In practice, many different flux pro-
files allow equally optimum growth (Additional file 1:
Figure S1 and Additional file 2: Figure S2). The problem
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Figure 1 FBA, MOMA and PSEUDO approaches to predicting metabolic fluxes. (A) In FBA wild-type flux space is constrained to a polytope
defined by thermodynamic and conservation-of-mass requirements. A linear objective describing cell growth, the green arrow, is maximized
within this region. If the growth vector is perpendicular to a facet of the constrained polytope then a range of fluxes allow equally optimum
growth, indicated by the heavy green edge. However, a linear programming solver can return only a single optimal point, the green target.
(B) Mutations are represented as additional linear constraints that reduce the size of the allowed flux polytope. The yellow region represents the
subset of wild-type fluxes allowed under a mutation. FBA finds a new optimum within this space as for the wild type. The green face represents
a range of equally optimal mutant solutions. The blue target is a single point that a solver might return. (C) MOMA is an alternative approach for
predicting mutant fluxes. The point in the mutant region, blue target, is found that minimizes the distance to a wild-type solution, green target. If
FBA was used to generate the wild-type solution, then alternative optima may exist along the heavy green edge. (D) The PSEUDO strategy does
not use FBA to select a wild-type flux vector. Instead we define a degenerate optimal region that contains all flux distributions capable of
supporting near-maximal growth. A solution within the mutant region is found with minimum distance to this degenerate optimal region. Note
that PSEUDO may select a point in mutant flux space different from the MOMA solution and closer to the growth-optimal region.
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of degeneracy is encountered frequently in the literature,
and numerous attempts have been made to address it.
Degeneracy can be reduced by further constraining

the model using known regulatory interactions [17],
metabolite concentrations [18] or thermodynamic laws
[19]. Previously measured flux rates, when available,
are a particularly valuable guide for further predictions
[15,20,21].
However, in many cases the additional information

required to formulate these constraints is simply not avail-
able. Much of the power genome-scale methods is their
potential to make predictions even in poorly characterized
systems. Few metabolic flux measurements are available
for most organisms, so here we have used only flux predic-
tion techniques without flux measurements as inputs.
Even in well known model organisms, regulatory interac-
tions are only partially understood and imperfectly cap-
tured in a linear framework. In contrast, the approach we
propose here uses only stoichiometric models and basic
thermodynamic constraints, which can be inferred from
any annotated genome sequence [22].

PSEUDO: a new objective for microbial metabolism
A geometric interpretation of the PSEUDO method is
presented in Figure 1D. We propose an objective func-
tion that explicitly accounts for a region of degenerate
near-optimality. This region, p, is bounded as in a wild-
type FBA model, with the additional constraint that it
includes only flux configurations with nearly optimal
growth. In this case, we set a threshold of at least 90%
maximal growth rate on the vectors we will consider.

bL ≤ p ≤ bU
S⋅p ¼ 0½ �

pGROWTH ≥ 0:90⋅f̂GROWTH

ð1Þ

The flux bounds bL and bU constrain fluxes that are
known to be thermodynamically irreversible or that are
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limited by media inputs. The matrix S represents the
biochemical stoichiometries of all metabolic reactions.
The product S⋅p yields the net production or consump-
tion rate of each metabolite in the system, necessarily 0

in the steady state. The maximum growth rate, f̂GROWTH ,
derives from a standard FBA problem. Yet compared to
a single-point FBA solution, the above is a more com-
plete and conservative expression of what we can predict
with confidence regarding growth-optimal fluxes. It ex-
presses imperfection in the proposition that metabolism
works only to maximize growth rate.
We then introduce a flux vector, q, representing a mutant

version of the same organism. The q vector is not required
to show near-optimal growth, but the mutation imposes
the additional bounds, b0U and b0L , on a subset of fluxes,
qMUT. We propose that cellular regulation will push metab-
olism in the mutant, not towards a single optimal point as
in MOMA, but towards a degenerate optimal region.

minimize : ║p−q║
subject to :

bL≤p≤bU
pGROWTH≥0:90⋅f̂GROWTH

S⋅p ¼ 0½ �

bL≤q≤bU
b0L≤ qMUT ≤b0U

S⋅q ¼ 0½ �

ð2Þ

The above describes the geometric problem of finding
the minimum distance between two polytopes: p
representing the region of nearly optimal growth and q
the space of possible fluxes limited by mutation. The
point in q closest to the region p is the PSEUDO-
predicted flux configuration for this metabolic mutant.
A PSEUDO solution will exist when the maximum

mutant growth rate is less than the threshold set for the
near-optimal region. Otherwise, the mutant and near-
optimal flux polytopes overlap, describing a range of
possible degenerate solutions. A minimum distance of 0
as a solution for (2) is immediately diagnostic for this
degenerate case. A second form of degeneracy is possible
in our model if the near-optimal and mutant polytopes
align such that multiple solutions share the same non-
zero Euclidean distance. This case is similar to classical
FBA, in that an optimal objective value is defined but
does not correspond to a unique solution.
As detailed in the Methods section, we can reformulate

the objective ║p-q║ as a problem for either quadratic or
conic convex programming. Therefore this formulation re-
tains the desirable computational properties of FBA and
MOMA, i.e. a guaranteed global optimum can be computed
rapidly.

PSEUDO growth predictions fall between FBA and MOMA
predictions
Genome-scale optimization methods have a well-
established utility for predicting growth rates of mutant
strains under a variety of conditions. We compared
growth rate predictions using the PSEUDO method to
predictions from the FBA and MOMA techniques, both
of which are commonly used for this purpose [23]. Pre-
dictions were compared to growth rates of E. coli dele-
tion mutants from the Keio collection in defined
glucose medium [24]. We compiled data for 795 mutant
strains that could be represented in our model and for
which growth rate data was available. The results of this
comparison are shown in Figure 2.
The PSEUDO method was able to correctly predict the

lethality phenotype for 88% of the deletion mutants exam-
ined. Results were comparable with FBA and MOMA
(88% and 87%, respectively) and consistent with previous
reports [4]. A deletion was predicted lethal if the growth
rate was calculated to be less than 5% of the maximum. A
deletion was empirically lethal if the measured OD yield
was less than 5% of the maximum reported yield. The
quantitative growth rate predictions made by the three
methods were in general similar, with PSEUDO growth
rates within 5% of the FBA optimum for 763 of the 795
mutants examined. Overall, FBA, MOMA and PSEUDO
predictions correlated equally well with yield data
(Spearman's ρ = 0.55, 0.54, 0.55, respectively). This general
similarity was expected. Mutations which stoichiometric-
ally block the production of biomass must be lethal by
all three methods. Mutations in pathways that are not
active in these media conditions will not affect growth
predictions in any model.
However, PSEUDO growth predictions were found to

differ by more than 5% from either FBA or MOMA pre-
dictions for 41 of the examined mutants (Figure 2A).
This subset includes mutants bearing deletions of genes
involved in glycolysis, the pentose phosphate pathway
and the citric acid cycle. These disruptions in central
carbon processing significantly impact cell fitness and
require adaptations throughout the metabolic network,
providing a challenging test case for predictive theories
of metabolism. We therefore examined more closely
behavior of our model in these cases.
Without exception, the PSEUDO growth prediction falls

between those of FBA and MOMA. This pattern highlights
an important feature of the PSEUDO objective function.
FBA, by definition, calculates the highest possible growth
rate consistent with thermodynamics and the conservation
of mass. MOMA and PSEUDO growth predictions will
both fall short of this maximum if there is a trade-off
between matching the optimal growth rate and matching
the rest of the wild-type flux vector. PSEUDO relaxes this
trade-off by considering a range of targets within the
degenerate optimal region and therefore PSEUDO growth
rate predictions generally exceed those of MOMA.
The growth predictions that differ among the three

models are plotted against measured growth data in
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Figure 2 PSEUDO growth predictions fall between FBA and
MOMA. Predicted and measured yields are both normalized to a
maximum of 1, corresponding to wild-type growth in these
conditions. (A) Yields are plotted for 41 mutants for which growth
predictions differ by more than 5% among the three methods. The
diagonal line indicates equal predictions in PSEUDO and other
methods. Note that MOMA predictions are consistently above the
diagonal, and FBA consistently below. (B) Compared with measured
growth rate data, PSEUDO growth predictions produce a rank
correlation ρ of 0.63 with yield data, compared to 0.45 for the FBA
method and 0.42 for MOMA. (C) PSEUDO predictions show no
systematic bias. The error is the difference between prediction and
measurement. The mean of the error distribution for PSEUDO was
0.06 with a 95% confidence interval of [0.13, -0.01] by bootstrap
resampling. FBA predictions exceeded growth rates by 0.48 on
average [0.39, 0.54]. The mean MOMA prediction error was -0.13
[-0.18, -0.08]. While the PSEUDO errors were unbiased, FBA and
MOMA predictions were systematic over- and
underestimates, respectively.
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Figure 2B. The mathematical requirement that PSEUDO
predictions fall between FBA and MOMA correctly recapit-
ulates the growth phenotypes of these strains. In all cases, a
comparable rank correlation was found between predicted
and observed growth rates (0.45, 0.42 and 0.63 for FBA,
MOMA, PSEUDO respectively). However, we found the
FBA predictions to consistently overestimate growth of these
strains, while MOMA predictions were an underestimate in
general. Figure 2C shows a histogram of prediction errors,
the difference between measured and predicted yields for
each method. The average PSEUDO prediction error was
0.06, and the mean of the error distribution was not signifi-
cantly different from zero by either bootstrap resampling or
ANOVA statistics (p-value: 0.2). In contrast, FBA systemat-
ically overestimated growth rates by 0.48 on average
(p-value: 7.5·10-9). MOMA predictions were lower than pre-
dicted values by 0.13 on average, and were significantly
biased to underestimation (p-value: 1.0·10-8).

Precision and accuracy of PSEUDO flux predictions
We next sought to compare the biochemical flux predic-
tions derived from our model to empirical flux measure-
ments. The Metabolic flux rates of 31 central carbon
reactions in 24 E. colimetabolic deletion mutants as deter-
mined by 13C-tracer experiments were reported by Ishii
and [25]. We found that 12 of these mutants carried
enzymatic deletions that could be treated within our
genome-scale optimization framework, and that 27 fluxes
showed measureable variation between strains. Account-
ing for occasional omissions in the data set, we were able
to curate a total of 320 flux measurements against which
to compare our predictions.
Figure 3 compares measured fluxes values to predic-

tions derived using the FBA, MOMA or PSEUDO ob-
jective functions. To facilitate comparison, both
predicted and measured fluxes were normalized to the
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Figure 3 Correlations of flux predictions by three methods.
Measured values of 31 fluxes from the Tomita data set were compared
to predictions using the FBA, MOMA and PSEUDO objective functions.
(A) Pearson correlations of flux predictions from the three methods for
each of 12 metabolic deletion mutants. (B) Meng's Z-test was applied
to the hypothesis that PSEUDO-derived correlation coefficients were
higher than those derived using FBA (red circles) or MOMA (blue
squares). The dotted line indicates a significance threshold of 0.05.
PSEUDO significantly outperformed MOMA in every case and FBA in 9
of 12 cases. Exact correlation coefficients and p-values are reported in
Additional file 3: Table S1.
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glucose uptake rate. Pearson correlation coefficients
obtained for predictions within each of the 12 individual
mutants ranged from 0.74 to 0.96. For 9 of the 12 strains,
the PSEUDO method yielded a significantly higher cor-
relation coefficient than either of the other two methods
(p-value < 0.05). In one case, standard FBA produced the
best predictions. In two cases, correlations from two or
more methods were statistically equivalent. Statistical
significance was assessed with Meng’s Z-test, which takes
into account the high degree of correlation between the
predictions from each method [26]. Similar significance
results were obtained by bootstrap resampling. Exact
correlation coefficients and p-values are reported in
Additional file 3: Table S1.
For a global view of the metabolic behavior predicted

by the FBA, MOMA and PSEUDO objective functions,
we aggregated and examined predictions for all 320
measured fluxes across 12 mutants (Figure 4ABC).
Across all 320 fluxes, PSEUDO was more predictive than
FBA and MOMA (Pearson correlation coefficients of
0.86, 0.84 and 0.91 respectively for FBA, MOMA, and
PSEUDO; p-value: 2.4·10-12, Meng’s Z-test). Because
measured flux values span several orders of magnitude,
we also compared predictions to data using rank correl-
ation coefficients that are less influenced by numerical
outliers. An overall Spearman rank correlation of 0.82,
0.80, and 0.87 was obtained with FBA, MOMA and
PSEUDO respectively. The higher coefficient from
PSEUDO was again significant by bootstrap resampling
(p-value < 1·10-6).
Prediction accuracy was found to vary substantially for

different pathways within central carbon metabolism.
The histograms in Figure 4DEF compare prediction er-
rors by each method in reactions belonging to glycolysis,
the pentose phosphate cycle (PPP) and the tricarboxylic
acid cycle (TCA) reactions. While prediction errors
within glycolysis and the PPP were comparable among
the 3 methods, the PSEUDO method produced signifi-
cantly lower prediction errors within the TCA cycle. The
FBA, MOMA and PSEUDO methods produced mean
prediction errors of -41%, -42%, and -17% respectively.
Flux variation within this class was also better predicted
by PSEUDO. For TCA cycle reactions, FBA, MOMA
and PSEUDO yielded Pearson correlations of 0.41, 0.38
and 0.60 respectively (p-value: 0.01). Thus, both the ab-
solute level of TCA cycle flux and flux variations within
the TCA cycle were better predicted by PSEUDO. Rela-
tively high error in TCA cycle predictions when using
growth as an objective in carbon-limited conditions has
been reported in other models [15,27]. We found predic-
tions within the TCA cycle to be both the most error-
prone and the most revised under our model, being
responsible for most of the improved performance. We
found no other significant differences in predictions
from the 3 methods in glycolysis, the PPP, anapleurotic,
or secretion reactions.

Sensitivity analysis of TCA cycle predictions
To understand why the PSEUDO objective function im-
proves flux predictions for the TCA cycle, we chose to
investigate central carbon metabolism in greater detail
using the zwf mutant as a case study (Figure 5). Carbon
consumed in the form of glucose may be converted to
biomass, fully oxidized to CO2 or secreted as reduced
organic metabolites. We reasoned that the metabolic
strategy used to fulfill a given objective function would
be reflected in the way carbon is partitioned among
these three final forms.
We observed significant differences in the ultimate fate

of carbon in the zwf mutant as predicted with the FBA,
MOMA and PSEUDO objective functions (Figure 5A).
The FBA model predicts the largest flux of carbon into
biomass (63%, 48%, 56% and for FBA, MOMA, PSEUDO,
respectively). This is consistent with the mathematical
requirement that FBA identify the highest possible growth
rate. The MOMA model predicts a significant amount of
carbon secreted in the form of organic metabolites (0%,
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20%, and 2% for FBA, MOMA, PSEUDO, respectively).
The profile of secreted metabolites also varies among the
models. While PSEUDO predicts mainly acetate secretion,
MOMA predicts significant secretion of 33 diverse metab-
olites including urea, glutamate, leucine and tryptophan.
Organic secretion is likely driven by the MOMA objective
to match the WT flux profile. In effect, the MOMA at-
tempts to produce metabolites at WT levels that cannot be
completely consumed and partially secretes the difference.
The PSEUDO objective function predicts the highest

CO2 output (37%, 32% and 42% for FBA, MOMA,
PSEUDO respectively). This increase in total carbon oxi-
dation is consistent with the higher TCA cycle flux pre-
dicted by PSEUDO. It may be explained by the relaxation
in PSEUDO of strict optimality requirements used in the
other methods. PSEUDO is not explicitly driven, like FBA,
to optimize biomass production. Nor does it produce ex-
cess metabolites and secrete them, like MOMA. With less
carbon flux dedicated to these objectives, the PSEUDO
model retains more carbon to fully oxidize.
We next performed a sensitivity analysis to charac-

terize the effect of CO2 output on the behavior of each
model. We constrained the total CO2 output flux to a series
of specific values near the WT optimum and re-solved the
zwf mutant model to determine the fluxes to growth and
organic secretion. The resulting plots reveal the trade-offs
confronted in each objective function when assigning
central metabolic fluxes near optimality (Figure 5BC).
In the FBA model, the zwf mutant reaches a maximum

growth rate of 87% WT with a slightly increased CO2

output. The secretion flux approaches zero as growth
attains a maximum, indicating that secreting organic
carbon is costly to growth. The MOMA model predicts
less growth and more secretion, but also exhibits a
trade-off between the two. Any deviation of CO2 output
levels from the WT optimum results in less growth and
more secretion. In contrast, the PSEUDO solution is not
found near a local growth maximum. Instead, the
PSEUDO method identifies a range of CO2 output fluxes
that are consistent with near-optimal growth. In the ab-
sence of a trade-off with growth, the PSEUDO objective
is free to match other features of the WT flux vector. In
this case, it selects a high CO2 flux that coincides with
low secretion, similar to the WT.
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Figure 5 Increased TCA cycle predictions using PSEUDO are partially explained by decreased growth, organic secretion and PPP fluxes.
(A) Carbon consumed as glucose may ultimately be converted into biomass, oxidized to CO2 or secreted as organic metabolites. For the zwf
mutant, FBA predicts the most growth, MOMA predicts the most secretion and PSEUDO the most CO2 production. The molar flux is reported in
units of mmol carbon gDW-1 hr-1. (B, C) Sensitivty analysis of growth and organic secretion with respect CO2 output. The WT model achieves
optimal growth when CO2 output reaches 15 mmol gDW-1 hr-1. The FBA model of the zwf mutant attains 87% WT growth with a slightly higher
optimal CO2 output. The MOMA model predicts a CO2 flux output for the zwf mutant similar to WT, with decreased growth and increased
secretion. The PSEUDO objective identifies a wide range of CO2 output fluxes consistent with growth near 80% optimal. The high CO2 output
selected by PSEUDO coincides with near-zero carbon secretion, similar to the WT. (D) PSEUDO predicts near-zero flux though the oxidative PPP
in the zwf mutant, while both FBA and MOMA predict positive flux. Reducing oxidative PPP flux only marginally decreases growth (<1%) for FBA
and MOMA predictions, while significantly increasing MOMA growth predictions. Growth is reported as percent WT. (E) Reducing PPP flux
reduces organic secretion in the MOMA model, with no effect on secretion in other models. (F, G) Reduced PPP flux leads to increased glycolysis
and TCA cycle fluxes. As the PPP flux approaches zero, the FBA, MOMA and WT predictions converge, suggesting this perturbation moves all
three methods to PSEUDO-like solutions.
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To further characterize the assignment of TCA cycle
fluxes in PSEUDO, we extended our analysis to examine
the CO2 produced by the three main carbon-oxidizing
pathways: Glycolysis, the PPP and the TCA cycle
(Figure 5EFG). We observed a striking qualitative difference
in the behavior of PSEUDO and the other objective func-
tions. Uniquely, the PSEUDO objective function predicts
that no CO2 is generated through the PPP. In contrast,
FBA and MOMA predict that significant CO2 production
through the oxidative reactions of the PPP (2.5% and 10%
of the total for FBA and MOMA, respectively).
In fact, the zwf mutant shows no oxidative PPP activity

in published observations [28]. During normal glucose-
limited growth, the zwf gene product (together with pgl)
supplies 6-phosphogluconate to the oxidative reactions of
the PPP. In the zwf mutant, the FBA and MOMA models
alternately supply this molecule through the action of glu-
cose dehydrogenase and glucokinase. While E. coli is cap-
able of oxidizing glucose directly to gluconate, the activity
appears only under a narrow range of conditions not
found in laboratory cultures [29].
As revealed by sensitivity analysis, small alterations the

in the PPP flux had significant consequences for the pre-
dictive power of each model. Constraining the oxidative
PPP flux to zero only slightly decreased the growth
predictions for the FBA WT and zwf models (Figure 5D).
This indicates that a zero-PPP solution exists near the
WT optimum. However, neither FBA nor MOMA iden-
tified this solution. In the case of FBA, glucokinase activ-
ity bestows a small growth advantage, while MOMA is
driven to match the high PPP flux of the WT.
When PPP flux was decreased, the MOMA model pre-

dicted significantly higher growth and lower secretion,
indicating that a zero-PPP solution alleviated the trade-
off between these two fluxes in MOMA. As PPP fluxes
approach zero, glycolytic and TCA cycle fluxes increase
and converge in all models, indicating that similar solu-
tions were found by FBA, MOMA and PSEUDO under
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reduced PPP flux. We conclude that the low TCA cycle
predictions in the MOMA and, to a lesser extent, the FBA
model are partially a consequence of positive oxidative
PPP fluxes. In contrast, PSEUDO approaches a solution
with near-zero PPP flux, still consistent with near-optimal
WT growth, and much less disruptive for the zwf meta-
bolic network.
In summary, several features of the PSEUDO objective

appear to contribute to higher and more accurate pre-
dictions of TCA cycle fluxes for the zwf mutant. The
PSEUDO model grows less than FBA and secrete less
than MOMA, leaving more carbon available to oxidize.
PSEUDO is less constrained in matching growth rates,
predicting equal growth from a wide range of possible
CO2 output fluxes. Within this range, the PSEUDO ob-
jective selects a flux profile that matches key features of
the WT. High CO2 and TCA fluxes are consistent with
glycolytic fluxes and a secretion profile that resemble
the WT.
In the case of the zwf mutant, the qualitative features

of the PSEUDO prediction including the high growth
rate, the increased CO2 production and zero oxidative
PPP flux agree with published phenotypic observations
[28]. In contrast, the FBA and MOMA predictions fail
to reproduce one or more of these three qualitative
phenotypic features.

PSEUDO predictions are robust to the near-optimal
growth threshold
We next sought to characterize the global behavior of
the PSEUDO model as a function of the threshold that
we use to define near-optimal growth. This value, set to
90% optimal growth in Equation 2, is a required input
parameter for our model that has no equivalent in either
FBA or MOMA. Mathematically, this represents a de-
gree of uncertainty in the hypothesis that metabolism
optimizes only growth rate. Biologically, this threshold
could be understood as the point at which selection for
growth is counterbalanced by other, unknown, selection
pressures or by inherent noise. The results presented
above were made using a threshold parameter of 90%
optimal growth. This selection was guided by growth
variability reported in the literature. For example, the
reported growth rates of metabolic mutants of B. subtilis
suggest that metabolism may be sub-optimal for growth
at roughly this level under laboratory conditions [13].
We found that PSEUDO predictions were remarkably

stable as the near-optimal growth threshold was varied
from 80-99%, as shown in Figure 6. Both Pearson and
Spearman correlation values for PSEUDO predictions
reached a maximum with the growth threshold set to
90%, and declined as near-optimal growth converged to
maximum theoretical growth (Figure 6AB). We observed
no qualitative differences in model behavior across this
parameter range (Figure 6CDEF). This behavior is con-
sistent with the convex shape of flux space. In a convex
space, variability tends to increase rapidly for small devi-
ations from optimality, then decelerate and plateau at
moderate deviations [30-32]. Robustness with respect to
the selected threshold is an important feature of the
PSEUDO model, as this parameter may be difficult to
measure in practice.
For very high or low values of the growth threshold,

the practical application and biological interpretation of
the PSEUDO model becomes more difficult. In practice,
we were unable to compute solutions with threshold
values higher than 99.9%, as extremely narrow range
constraints on individual fluxes are known to challenge
interior-point optimization solvers [33]. In this regime,
we expect that PSEUDO predictions will become
MOMA-like as the near-optimal region shrinks to be-
come the optimal region. For low values of the growth
threshold, the near-optimal region grows eventually to
include the MOMA and FBA solutions and specific
PSEUDO predictions are undefined.

A cloud theory of metabolic regulation
The PSEUDO formulation includes a limit on the power
of growth rate alone to determine metabolic behavior.
This may represent simply a formal accounting for un-
certainty, which is neglected in simpler models. Alter-
nately, our objective function may be interpreted as
expressing an organizational principal at work in metab-
olism. The metabolic network may not be perfectly
adaptable in the service of growth, as imagined in FBA,
nor strictly committed to a singular flux profile, as
postulated by MOMA. The PSEUDO method mediates
between these perspectives, attributing to metabolism
an intermediate level of flexibility. Our model suggests
that regulation drives metabolic fluxes to a certain range
of values, but that fluctuations within that range are
fitness-neutral and unregulated. On this hypothesis, we ex-
pect that regulation will allow fluxes to vary in proportion
to the size of their near-optimal range.
To compare theoretical and observed flux variability,

we first sought a properly normalized measure of the
size of the degenerate optimal polytope in each dimen-
sion. While it is computationally infeasible to describe
this space completely, [12,34], it is possible to estimate
its shape probabilistically [32]. As described in the
methods, we used a Monte Carlo sampling technique to
generate a set of 3000 random points uniformly distrib-
uted within the degenerate optimal region [35,36]. These
points allow an unbiased estimate of the distribution of
values a given flux may attain without compromising
near-optimal growth.
An ideal measure of flux variability in vivo would compile

flux values from individual wild-type cells. Unfortunately,



M
ea

n 
P

re
di

ct
io

n 
E

rr
or

M
ea

n 
P

re
di

ct
io

n 
E

rr
or

Growth Threshold Growth Threshold

0.99 0.9

−15

−10

−5

0
All Measured

 Fluxes

0.99 0.9
−20

−15

−10

−5

0
Glycolysis

0.99 0.9
−5

0

5

10
PPP

0.99 0.9
−50

−40

−30

−20

−10

0
TCA

C

D E F

P
ea

rs
on

 C
or

re
la

tio
n

0.99 0.9
0.8

0.85

0.9

A

S
pe

ar
m

an
 C

or
re

la
tio

n
0.99 0.9

0.8

0.85

0.9
B

Growth ThresholdGrowth Threshold

M
ea

n 
P

re
di

ct
io

n 
E

rr
or

M
ea

n 
P

re
di

ct
io

n 
E

rr
or

Growth Threshold

Growth Threshold

Figure 6 PSEUDO predictions as a function of the near-optimal growth threshold. Values derived using PSEUDO (black) are compared to
values derived from FBA (red) and MOMA (blue). The PSEUDO method accepts a growth threshold input parameter that has no analogy in the
other methods. This threshold defines a near-optimal flux space, and mutant flux profiles are determined that minimize the distance to this
space. Biologically, this growth threshold could be interpreted as a region of relaxed regulation, within which selection for increased growth is
balanced by other metabolic demands or by noise. The growth threshold parameter was allowed to vary from 80% to 99% WT maximal growth.
(A, B) Pearson and Spearman correlation coefficients as a function of the near-optimal growth threshold. PSEUDO predictions reached a
maximum using a growth threshold of 90%, but were generally robust to parameter variation. Error bars represent one standard error of the
mean, calculated with Fisher's z transformation. (C, D, E, F) Mean flux prediction errors from each of the three methods as a function of the
growth threshold parameter. Errors were calculated for all 320 fluxes curated from the Tomita data set, and for subsets of reactions belonging to
glycolysis, the PPP, or the TCA cycle. Flux errors were generally insensitive to the chosen threshold. TCA cycle fluxes were both the most
error-prone, and the most improved by PSEUDO. Error bars represent one standard error of the mean.

Wintermute et al. BMC Systems Biology 2013, 7:98 Page 10 of 16
http://www.biomedcentral.com/1752-0509/7/98
no such single-cell resolution dataset is currently available.
Instead, we examined flux variability at the population
level under two sources of genetic perturbation. The
Tomita data set includes 31 fluxes measured in chemostat
cultures of 24 deletion mutants for enzymes in central car-
bon processing [25]. Viable glycolysis and pentose phos-
phate pathway deletion mutants often exhibit substantially
revised flux profiles and test the limits of metabolic plasti-
city. The Sauer data set measures 24 central carbon fluxes
in 91 transcription factor deletion mutants [37]. These
regulatory disruptions globally alter flux profiles while
leaving the enzymatic network intact. We reasoned that
these data sets together would allow us to characterize the
tendency of individual fluxes to vary under perturbation.
Figure 7 compares our measures of theoretical and ob-
served variation. For each flux in our data set, we com-
pared the coefficient of variation (CV) derived from
computational Monte Carlo sampling (Figure 7A) to the
CV from published measurements (Figure 7B). Measured
variability in both data sets was well matched by theo-
retical variability within the degenerate optimal region
(Figure 7CD). The Sauer flux measurements produced a
rank correlation of 0.72 (p-value: 6.7·10-5). For the Tomita
data, Spearman's ρ was 0.87, (p-value: 5.6·10-9). Exact
values for the estimated and measured variability of each
flux are reported in Additional file 4: Table S2. The ob-
served correlation between predicted degeneracy and
measured variation supports a model in which metabolism
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may adopt many possible flux configurations without
compromising growth rate.

Conclusions
If the global behavior of metabolic regulation can be
expressed mathematically as an objective function, then
an optimization algorithm can identify the region of flux
space that achieves this objective. The remarkable suc-
cess of FBA, MOMA and other approaches in estimating
metabolic behavior raises the tempting possibility that a
truly general objective function may yet be found. To
that end, recent work seeks to systematically compare
the predictive performance of candidate metabolic objec-
tives under diverse conditions [27,38,39].
Yet a single objective function may never fully capture

the competing demands on a living biochemical net-
work. A more versatile model of metabolism might be
expressed in terms of multiple objectives and a formal
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Figure 7 A cloud theory for metabolic regulation. The PSEUDO method
are regulated to approach this region, but allowed to vary freely within it. (
described in the methods, we used Markov chain Monte Carlo sampling to
least 99% maximal growth. 3 specific fluxes are plotted on these axes, colo
content corresponds to value in x, y and z respectively. Histograms present
values for 24 fluxes across 91 transcription factor deletion mutants from th
generated data. (C, D) Computationally estimated flux variability within the
both the Sauer (C) and Tomita (D) data sets. The coefficient of variation (C
and predicted flux variability. Marker shapes are used to indicate the metab
to biomass production can vary widely within the degenerate optimal regi
published data sets.
framework for describing the tradeoffs among them
[30,40,41]. However, combined objectives have limited
predictive power without prior knowledge of how they
will be balanced in a particular organism.
An alternative approach is to treat suboptimality as an

inherent and irreducible feature of biology. Deviations
from optimality may themselves be well ordered, and
can reveal the action of novel selective forces and
physiological constraints [2,42,43]. We have shown that
variations in metabolic fluxes under perturbation can be
largely explained if variation is constrained to be not
growth-neutral, but nearly so. In general, metabolic sys-
tems biologists will be challenged to distinguish model
errors due to a flawed objective function from variation
which is suboptimal but constrained, or variation which
is stochastic and does not satisfy any objective.
Finally, metabolism may simply be noisy. Metabolic flux

space is large and high dimensional. It could remain so,
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even after all physical constraints have been satisfied and
all functional objectives have been met. This would leave
ample room for variation in flux rates between cells and
within a cell over time. The metabolic behavior of a popu-
lation may not be adequately described by any single flux
profile. Seen from this perspective, suboptimal and degen-
erate solutions are not merely a technical inconvenience
leading to non-unique predictions. They are rather an
inherent and evolved property of metabolic organization.
We propose that a degenerate and variable biochem-

ical flux profile could support a more robust cellular
metabolism. Robustness, the capacity to perform an
essential function despite perturbation, is a common
property of biological systems [44]. Metabolic networks
are already known to be replete with structural features
that support robust function.
For example, the genes that code for many essential

enzymes are carried in duplicate. Isoenzymes have the
opportunity to diverge and specialize through evolution,
but often remain capable of substituting for each other in
the event that one becomes mutated or otherwise comp-
romised [45,46]. This redundancy can extend from single
genes to whole pathways, like the glyoxylate shunt, the
methylglyoxal bypass, or the Entner–Doudoroff path-
way, that provide alternate routes to key metabolic
precursors [47].
Further, metabolic fluxes are typically robust to fluctua-

tions in the abundance of the enzymes that catalyze them.
While pathway fluxes can be controlled by the coordi-
nated regulation of multiple enzymes, the total flux
through a metabolic pathway rarely depends strongly on
variations in the expression any single enzyme [48]. Most
enzymes are produced in significant excess to the needs of
a cell in standard conditions [49]. Perturbations that alter
enzyme production are therefore unlikely to result in any
given enzyme becoming flux-limiting. These sources of
robustness may be particularly important given ubiquitous
and substantial stochastic variation in protein copy
number [50].
Degenerate optimality of the sort we have described

would allow another level of functional redundancy.
Even confronted with perturbations in enzyme function,
regulation or copy number that destabilize intracellular
fluxes, microbial growth would be unaffected so long as
fluxes remain within the degenerate optimal region.
Every cell must confront fundamental physical limits on
its ability to regulate the internal environment [14]. A
degenerate organization of metabolic fluxes would side-
step these limits, uncoupling growth rate from strict
regulation which may be energetically costly or mechan-
istically impossible.
If selection and therefore regulation were relaxed with

respect to growth rate, opportunities would emerge for
selection to act on other features of the metabolic flux
vector. For example, cells could anticipate a changing
environment by minimizing the need to redirect fluxes
under different metabolic conditions that are likely to
appear [30]. Phenotypes within this open space could in
principle be selected for any biochemical feature re-
quired by the local environment, without sacrificing
near-optimal growth. Two bacteria may occupy the same
metabolic niche and grow at the same rate, yet exhibit
differently specialized flux profiles.
Strategic metabolic heterogeneity at the population level

is already known in some systems. For example, E. coli
populations under certain conditions display a bimodal
distribution for expression of the lactose permease [51].
Individual cells can switch randomly between high or low
enzyme levels, then propagate that state for a time scale of
generations. A subset of the population is able to rapidly
take up lactose, should it become available, while other
subsets remain specialized for other carbon sources. This
may be a way of hedging bets in unpredictable nutritive
environments, without requiring each cell to prepare for
all possible conditions [52,53]. Degenerate and growth-
neutral variation in intracellular fluxes would allow an-
other opportunity for adaptive bet hedging, as certain flux
configurations may tend to better anticipate environ-
mental changes. By tolerating growth-neutral variability, a
more relaxed metabolic regulation would expand the
range of accessible individual phenotypes.
Under this cloud theory of metabolic regulation, we ex-

pect flux magnitudes to exhibit substantial diversity at the
single-cell level. This variation should occur even in clonal
populations and uniform environments. It should correl-
ate with the dimensions of the degenerate optimal flux re-
gion and have very little effect on growth rate. Phenotypic
heterogeneity is increasingly seen to underlie complex
emergent behaviors in genetic competence [54], antibiotic
resistance [55], lysogeny [56], apoptosis [57], and stem cell
induction [58]. Many other fundamental cellular properties
are now known to vary substantially within populations
[59-61]. We expect that the stochastic variations of meta-
bolic fluxes within single cells, once measured, will reveal
new modes of robust biological order.

Methods
FBA and MOMA

Standard FBA solves for a vector of metabolic fluxes, f̂ ,
that maximizes cellular growth rate, fGROWTH.

maximize : fGROWTH

subject to :
bL≤f≤bU
S⋅f ¼ 0½ �

ð3Þ

The growth flux fGROWTH represents metabolites leav-
ing the system in the form of new biomass with a
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composition determined by measurement [62]. The
matrix S represents the biochemical stoichiometries of
all metabolic reactions. The product S⋅f yields the net
production or consumption rate of each metabolite in
the system, necessarily 0 in the steady state. The flux
bounds bL and bU constrain fluxes that are known to be
thermodynamically irreversible or that are limited by
media inputs. Mutations in FBA are modeled by setting
the appropriate flux bounds to zero.
The MOMA method [15] identifies a flux vector, m,

with minimum Euclidean distance to an optimal wild-

type solution, f̂ , subject to the constraints of mutation.

minimize : ║m‐ f̂║
subject to :

bL≤ m ≤bU
b0L≤ m MUT ≤b0U

S⋅m ¼ 0½ �

ð4Þ

The stoichiometric matrix, S, and the bounds, b, are de-
fined as in (3). The modified bounds b’L and b’U are applied
to the subset of fluxes eliminated by mutation, mMUT.

Quadratic and conic formulations of PSEUDO
The PSEUDO method finds the minimum Euclidean dis-
tance between two high-dimensional flux polytopes, p and
q. Constraints are added to place p within the region of
degenerate optimality and impose a mutation on q.

minimize : ║p−q║
subject to :

bL≤ p ≤bU bL≤ q ≤bU
pGROWTH≥0:9⋅f̂GROWTH b0L≤ qMUT ≤b0U

S 0
0 S

� �
⋅

p
q

� �
¼ 0 0½ �

ð5Þ
Note that (5) is identical to (2) from the main text, ex-

cept we have concatenated the conservation-of-mass
constraints S·p = 0 and S·q = 0. This form is standard
for most solver algorithms.
In order to be analyzed with the powerful tools of con-

vex programming, an optimization problem must be for-
mulable with a convex objective under convex constraints
[63]. The system of constraints above is composed only of
linear inequalities, and is therefore convex. It remains only
to provide a general convex formulation of the objective
function:║p-q║. We first substitute the definition of a
Euclidean distance between two vectors.

minimize :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i
pi−qið Þ2

r
ð6Þ

Minimizing a positive radicand is equivalent to
minimizing the root, so we neglect the radical.
The objective then expands to:

minimize : ∑
i
p2i −2piqi−q

2
i ð7Þ

Finally we reformulate the above as a linear algebraic
expression, with I representing the identity matrix:

minimize : p q½ � ⋅
I ‐I
‐I I

� �
⋅

p
q

� �
ð8Þ

The square matrix in the above expression is symmet-
ric and positive semidefinite, with eigenvalues of only
2 or 0. This is sufficient to guarantee convexity and
polynomial solvability [64].
It is also possible to formulate PSEUDO as conic

optimization problem. Conic optimization is among the
most general forms of nonlinear convex optimization
treated by commercial solvers. In this case we add a vector
x to our variable set with the linear constraint that xi = pi -
qi. The x vector and a new variable, zDIST, are further
constrained to lie within a convex quadratic cone C such
that zDIST is at least the Euclidean distance between p and
q. Minimizing zDIST under these constraints produces the
shortest distance from p to q.

minimize : zDIST
subject to :

bL≤ p ≤bU bL≤ q ≤bU
pGROWTH≥ 0:99⋅f̂GROWTH b0L≤ qMUT ≤b0U

S 0 0
0 S 0
I ‐I ‐I

2
4

3
5⋅

p
q
x

2
4

3
5 ¼ 0 0 0½ �

x zDIST½ � ∈C :¼ zDIST≥
ffiffiffiffiffiffiffiffiffi
∑
i
x2i

q� �

ð9Þ

Linear, quadratic, and convex programming
All convex programming was implemented in MATLAB
and solved using MOSEK optimization software.
All E. coli metabolic simulations were implemented

using the iAF1260 model, incorporating stoichiometric
and thermodynamic but not regulatory constraints [4].
Media parameters were defined minimal glucose media,
using standards set by the model authors. Glucose avail-
ability was set to 8 mmol per gram dry weight (gDw) per
hour, oxygen to 18.5 mmol gDw-1 hr-1, with ammonia,
phosphate, sulfate and trace minerals available in ex-
cess. Growth-associated ATP consumption was set to
59.81 mmol gDw-1, with 8.39 mmol ATP gDW-1 hr-1

required for growth-independent cellular maintenance.
Model conditions correspond to a standard media for-
mulation as used in the experimental data set [25].
Flux values were normalized to the glucose uptake rate
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of each mutant, and are reported as a percentage of
this value.
The MOMA solver requires a wild-type flux distribu-

tion as input. In all cases, this was calculated as an
FBA prediction for the wild type strain with the same
media conditions and biomass composition. Empirically
measured fluxes were not an input to any solver.
A secondary objective function was used with the FBA

and MOMA techniques to minimize the 1-norm of a
growth-optimal solution vector. For the FBA method,
this secondary objective was applied directly to the mu-
tant solution. For MOMA, the secondary optimization
was applied to the FBA-derived wild-type flux vector.
Unless otherwise indicated, the PSEUDO solutions

reported were calculated using a growth threshold par-
ameter of 90% the WT maximum, as calculated with
standard FBA.
Sensitivity analysis was performed by constraining the

fluxes corresponding to CO2 output or phosphogluconate
dehydrogenase to a range of exact values and re-solving
each model. Molar carbon secretion fluxes were obtained
as the sum of all output fluxes weighted by the number of
carbon atoms in each output molecule.

Uniform sampling from flux space
Random flux configurations were generated by Monte
Carlo sampling [35].We used an artificially centered hit-
and-run algorithm to produce a series of points within
the degenerate optimal flux polytope [36]. As this series
is extended, it asymptotically approaches a uniform
random distribution.
Briefly, a random set of initial points was generated

within the degenerate optimal region by solving a linear
programming objective to maximize a random vector
chosen on the unit sphere. These solutions sample the
extreme vertices. The hit-and run algorithm is initialized
from the center of these extrema, which by the defin-
ition of convexity must also lie within the degenerate
optimal region. A direction is chosen as the difference
between a random extreme point and the center point.
Then a line is drawn in this direction from the initial
point to the region boundary and a new point is selected
randomly from this line. After a sufficiently large num-
ber of such movements, the point reached is as drawn
from a uniform distribution.
Following Bordbar et al., we define a mixed fraction

for a set of points that allowed us to determine when our
algorithm has reached an approximately uniform distri-
bution [35]. We partition the initial points into two sets
along the median value of any flux. The mixed fraction is
defined as the number of points which cross the line as
the algorithm progresses. The mixed fraction approaches
50% asymptotically, with the algorithm terminated at a
value of 53%.
Additional files

Additional file 1: Figure S1. Degeneracy in Metabolic Flux Analysis.
(A, B) Two alternate flux distributions in central carbon metabolism that
support equally optimal growth. Configuration A uses the pentose
phosphate cycle to oxidize glucose. Configuration B runs the pentose
phosphate cycle in reverse only as a source of precursor metabolites.
While A produces more NADPH, B produces more pyruvate for the TCA
cycle. Both options identically supply the ATP, reducing equivalents and
carbon skeletons needed for growth.

Additional file 2: Figure S2. Fluxes vary widely within the degenerate
optimal range. As described in the main text, the degenerate range is the
gap between the minimum and maximum possible values for each flux
that support above a threshold near the maximum value. (A, B, C) The
degenerate range in these three panels is calculated under the constraint
of 99.9%, 99% and 95% maximal growth, respectively. The flux magnitude
is calculated for the wild type system using FBA. Fluxes above the grey
dotted line can vary by more than 100 times their predicted value
without compromising growth. Fluxes on the red dotted line can vary by
exactly 1%. Infinite flux variability is possible for fluxes in futile cycles.
Zero flux variability indicates a metabolic reaction that cannot occur
under these media conditions. Example enzymes from various metabolic
pathways are indicated. (D) Flux variability for selected reaction classes.
For nonzero fluxes, fold degeneracy is the degenerate range divided by
the FBA-predicted flux magnitude. The median fold degeneracy is
plotted for each class, with bars indicating the 10th and 90th quantiles.

Additional file 3: Table S1. Correlations of flux predictions by three
methods. 31 Measured flux values from the Tomita data set were
compared to predictions using the FBA, MOMA and PSEUDO objective
functions. Reported values are Pearson correlation coefficients. Meng's
Z-test was used to test the hypothesis that the PSEUDO-derived
correlations were higher than those from each other method. Similar
significance results were obtained by bootstrap resampling. Entries in
bold and marked with an asterix indicate that the PSEUDO method was
not more predictive than both other methods at a p-value less than 0.05.

Additional file 4: Table S2. Flux variability under perturbation and the
shape of the degenerate optimal region. As described in the main text,
flux measurements were collected from two published data sets. The
Tomita data set consists of 31 fluxes measured in 24 deletion mutants for
central carbon processing enzymes. The Sauer data set includes 24 fluxes
from 91 deletion mutants for regulatory transcription factors. The
standard deviation, σ, divided by the mean flux value yields the
coefficient of variation, CV, a unitless measure of flux variability. The
Markov Chain Monte Carlo method was used to generate 3000 random
points uniformly distributed within the degenerate optimal region of the
iAF1260 FBA model of E. coli. Each of these points corresponds to a
possible flux profile sustaining growth at at least 90% of the theoretical
maximum. The mean and standard deviation of the MCMC-generated
points yield an estimated CV representing the variation possible for each
flux while still maintaining near-optimal growth. As depicted in Figure 7
of the main text, simulated flux variability correlates with measured
variability from both data sets. This suggests a model in which relatively
tight regulation is applied only to fluxes that strongly impact cell growth.
Inversely, substantial variation is tolerated in fluxes with less impact on
growth rate.
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