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medicine derived from pluripotent stem cells, residual undifferentiated cells must be eliminated in the
manufacturing process. We previously described the lectin probe rBC2LCN, which binds harmlessly and
specifically to the cell surface of human pluripotent stem cells. We report here a technique using
rBC2LCN to remove pluripotent cells from a heterogenous population to reduce the chance of teratoma
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rBL(l?2IECN Methods: We demonstrate a method for separating residual tumourigenic cells using rBC2LCN-bound
Lectin magnetic beads. This technology is a novel use of their previous discovery that rBC2LCN is a lectin
Cell separation that selectively binds to pluripotent cells. We optimize and validate a method to remove hPSCs from a

mixture with human fibroblasts using rBC2LCN-conjugated magnetic beads.

Results: Cells with the potential to form teratoma could be effectively eliminated from a heterogeneous

cell population with biotin-labelled rBC2LCN and streptavidin-bound magnetic beads. The efficiency was

measured by FACS, ddPCR, and animal transplantation, suggesting that magnetic cell separation using

rBC2LCN is quite efficient for eliminating hPSCs from mixed cell populations.

Conclusions: The removal of residual tumourigenic cells based on rBC2LCN could be a practical option for

laboratory use and industrialisation of regenerative medicine using human pluripotent stem cells.

© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

Human pluripotent stem cells (hPSCs), such as human embry-
onic stem cells (hESCs) [1] and human induced pluripotent stem
cells (hiPSCs) [2], are expected to be applied to cell therapy, disease
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Another has been initiated for banked allogeneic hiPSCs to treat
Parkinson's disease [6]. Further clinical trials have been planned to
treat heart failure, spinal cord injury, Parkinson's disease, and
aplastic anaemia, using cells created from hiPSCs [7—9]. Although
hiPSC-based clinical and industrial applications are becoming
realistic, it is still a major safety concern that residual hiPSCs in
products for cell therapy could form tumours in transplanted sites
[10—12]. The risk of teratoma formation by hPSCs has been reported
in various animal studies [13—17]. It is reported that only 100 iPS
cells are sufficient to produce a teratoma in a mouse model [13,18].
Therefore, the establishment of a method to detect and eliminate
residual hPSCs from cell products without impairing the survival
rate and functionality of the cells to be used for cell therapy, disease
modelling, and drug development, is required.

Several strategies have been reported for selectively eliminating
residual hPSCs from differentiated cells, including expressing a
suicide gene into hPSCs [19], or using cytotoxic antibodies [20—22],
chemical inhibitors [23—26], and synthetic RNA or peptide [27,28].
Cell sorting methods using hPSC-specific antibodies [20,29,30] and
lectins [31] have also been proposed. However, all of these methods
have limitations with respect to specificity, throughput, and other
issues, and therefore it is still necessary to develop alternative or
additional technologies based on different mechanisms.

We have previously reported that a lectin designated recombi-
nant N-terminal domain of BC2L-C lectin derived from Burkholderia
cenocepacia (rBC2LCN) binds to various types of hiPSCs and hESCs,
but not to differentiated somatic cells [32,33]. This lectin binds
specifically to the Fuc1-2Gal1-3 motif that is highly expressed on
hiPSCs [32,34]. In addition, podocalyxin, a typel transmembrane
protein, was identified as a predominant glycoprotein ligand of
rBC2LCN [35]. As its main practical applications, fluorescence-
labelled rBC2LCN allows live staining of hESCs/hiPSCs following
its addition to the culture medium and is capable of separating live
hPSCs by flow cytometry [33]. The staining is specific to undiffer-
entiated cells and rapidly diminishes depending on their differen-
tiation. Furthermore, based on the finding that rBC2LCN was
internalised inside hPSCs after binding to the surface of these cells,
recombinant lectin-toxin fusion proteins in which rBC2LCN was
fused to several domains of Pseudomonas aeruginosa exotoxin A was
developed for selective elimination of hPSCs [36,37].

In this study, we demonstrate an additional application of
rBC2LCN, namely its potential in magnetic bead-based cell sepa-
ration for reduction of tumourigenic hPSCs from differentiated cell
populations. We evaluated cell separation efficiency by flow
cytometry and digital PCR analyses. Effective elimination of hPSCs
was also verified in a teratoma formation assay in a mouse model.

2. Materials and methods
2.1. Cell culture

The human ES cell line H9 hNanog-pGZ [1] was maintained in
mTeSR1 (STEMCELL Technologies, Vancouver, BC, Canada) on a BD
Matrigel growth factor reduced (GFR) matrix (BD Biosciences, San
Jose, CA, USA) with zeocin, according to the WiCell feeder inde-
pendent pluripotent stem cell protocols provided by the WiCell
Research Institute (www.wicell.org). The human iPS cell line 201B7
[2] was maintained in mTeSR1 (STEMCELL Technologies) on the BD
Matrigel hESC-qualified matrix (BD Biosciences), according to the
manufacturer's instructions (STEMCELL Technologies). HDF (ATCC
PCS-201-012) was maintained in 10% FBS containing DMEM
(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). HDF
cells were treated with 10 ug/ml of Mitomycin C (Kyowa Hakko
Kirin Co., Ltd., Tokyo, Japan) for 120 min to prevent proliferation.
The experiments using hiPSCs and hESCs were approved by the

National Institute of Advanced Industrial Science and Technology
(AIST) (accreditation numbers and hi2016-099).

2.2. Lectin labelling and magnetic cell separation

Recombinant BC2LCN lectin (rBC2LCN) (FUJIFILM Wako Pure
Chemical Corporation) was labelled with a Biotin Labeling Kit-NH2
(Dojindo). Biotin-conjugated rBC2LCN (1—100 ng) or biotin-
conjugated BSA were incubated with 50 pL of Dynabeads M—280
streptavidin (Thermo Fisher Scientific, Waltham, MA, USA) in 1 ml
of MACS buffer [0.5% bovine serum albumin (BSA) and 2 mM EDTA
in PBS] on a rotator for 30 min at room temperature. After incu-
bation, the beads were rinsed twice with MACS buffer (rBC2LCN-
magnetic bead and BSA-magnetic bead).

Cells (hESCs and hiPSCs) were dissociated with ESGRO Complete
Accutase (Merck Millipore, Billerica, MA, USA) and mixed with HDF
in a ratio of 1:1. HDF cells were pre-marked with a CellTrace Violet
cell proliferation kit according to the manufacturer's protocol
(Thermo Fisher Scientific) or with mitomycin C treated for prolif-
eration inhibition, depending on the following analysis. A total of
2 x 10® mixed cells were incubated with 50 uL of the rBC2LCN-
magnetic bead, BSA-magnetic bead or magnetic bead alone for
30 min at 4 °C in 1 ml of MACS buffer. The suspensions were placed
in a DynaMag magnet (Thermo Fisher Scientific) for 2 min, and the
supernatant with untouched cells was collected for flow cytometry,
gene expression analysis and teratoma formation assay.

2.3. Flow cytometry

Flow cytometry was performed as described previously [33].
The cells were resuspended at approximately 1 x 108 cells/mL in
MACS buffer and incubated with anti—TRA-1-60 antibodies (1:300
dilution; clone TRA-1-60, Merck Millipore) for 1 h at 4 °C. Normal
mouse IgM (Merck Millipore) was used as an isotype control. The
cells were rinsed with MACS buffer and then incubated with Alexa
Fluor 488 goat anti-mouse IgM (1:300 dilution; Thermo Fisher
Scientific). After further rinsing, cells were stained with propidium
iodide (PI) (Thermo Fisher Scientific), and 20,000 cells were ana-
lysed using a Cell Sorter SH800Z (Sony Corporation, Tokyo, Japan).
The data were analysed with Flow]o software (BD Biosciences).

2.4. Digital droplet polymerase chain reaction (ddPCR) analysis

Magnetically sorted or unsorted cells were stained with propi-
dium iodide (PI), and PI-negative live cells were collected using a
cell sorter SH800Z (Sony Corporation). Total RNA was extracted
from frozen cell samples using ISOGEN (Nippon Gene Co., Ltd.,
Tokyo, Japan) and ddPCR was carried out using a QX200 droplet
digital PCR system (Bio-Rad, Hercules, CA, USA), according to the
manufacturer's instructions. Samples were analysed using 2x One-
Step RT-ddPCR Supermix (Bio-Rad). The primers and TagMan probe
sequences, their concentrations, and thermal cycling conditions
used in the ddPCR methods were according to a previous publica-
tion [38]. The probe and primer sequences are as follows: LIN28
probe, FAM-CGCATGGGGTTCGGCTTCCTGTCC-BHQ1, LIN28 forward
primer, CACGGTGCGGGCATCTG, LIN28 reverse  primer,
CCTTCCATGTGCAGCTTACTC; NANOG probe, FAM-
TGCTGAGGCCTTCTGCGTCACACC-BHQ1, NANOG forward primer,
CTCAGCTACAAACAGGTGAAGAC, NANOG reverse primer,
TCCCTGGTGGTAGGAAGAGTAAA. As the internal control, TagMan
GAPDH Control Reagent was used (Thermo Fisher Scientific). Each
reaction was performed in duplicate. Total RNA quantities used for
the reactions were 0.05, 5, and 50 ng for GAPDH, LIN28, NANOG,
respectively. Fluorescence intensities of each droplet in samples
were measured using a QX200 droplet reader (Bio-Rad). Positive
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and negative droplets were discriminated and counted by applying
a threshold determined manually in QuantaSoft software. The same
threshold was applied to all the wells for each gene on one PCR
plate. We adopted the larger measurement result of accepted
droplets among the duplicated wells. The number of adopted
droplets was >10,000. The copy number concentration in the
sample was calculated using the numbers of positive and accepted
droplets. The concentration results in terms of target copies per
microliter were provided by QuantaSoft software. The number of
target copies per template RNA (ex, copies/50 ng of RNA in the case
of NANOG) was calculated as concentration (copies/ul) x 20
(ul) x dilution factor of template RNA. The dilution factors were 1
for NANOG, 10 for LIN28 and 1000 for GAPDH, respectively. Absolute
counts of NANOG or LIN28 were normalised to GAPDH. Experiments
were performed in triplicate and repeated three times with similar
results.

2.5. Teratoma formation assay

Eight-week-old immune-deficient NOD/ShiJic-scidJcl mice
(CLEA Japan, Inc., Tokyo, Japan) were used for transplantation. NOD/
ShiJic-scid]cl mice were anaesthetised using 2% isoflurane and an
animal anesthetizer device (MK-AT210D, Muromachi Kikai Co., Ltd.,
Tokyo, Japan). The surgical area was disinfected with 70% ethanol.
After cutting the centre of the scrotum, a testis was carefully pulled
out and injected with 20 pL (~1.0 x 10° cells) of cell suspension with
BD Matrigel hESC-qualified matrix (BD Biosciences). The same
treatment was applied to the other testis. Cell-injected testes were
returned to their original location, and the wound was sutured. The
transplanted animals and tumour growth were observed routinely
about once a week. They were sacrificed after the development of
tumours larger than 2 cm in diameter or following an observation
period of about 3 months. Tumours were fixed with 4% para-
formaldehyde phosphate buffer Solution (FUJIFILM Wako Pure
Chemical Corporation). Paraffin embedding, sectioning, and H&E
staining of tumours were performed by UNITECH Co., Ltd (Chiba,
Japan). Images were obtained using BZ-X710 microscope (Keyence,
Osaka, Japan). This experiment was approved by the National
Institute of Advanced Industrial Science and Technology (AIST)
(accreditation number A2018-290).

2.6. Statistical analysis

A one-way ANOVA followed by Tukey's honest significant dif-
ference (HSD) test was used for analysis of ddPCR and teratoma
size. Statistical significance was inferred where p < 0.05. The data
were analysed with KaleidaGraph v.4.5.2 (Synergy Software,
Reading, PA, USA).

3. Results and discussion

3.1. rBC2LCN-bound magnetic beads eliminated hESCs from a
heterogeneous cell mixture

To facilitate the application of hPSC technology, it is important
to detect and eliminate residual tumourigenic cells with high
sensitivity. As a method to eliminate tumourigenic hPSCs from
differentiated cell populations, we applied a magnetic bead-based
cell separation system using rBC2LCN. We used hESCs (H9
hNanog-pGZ) [1] and normal human adult dermal fibroblasts (HDF)
pre-labelled with CellTrace Violet. Biotin-labelled rBC2LCN was
incubated with Dynabeads M—280 Streptavidin (Thermo Fisher
Scientific). In this process, rBC2LCN was bound to magnetic beads.

We first tested the capability of rBC2LCN-magnetic beads to sepa-
rate undifferentiated hESCs from a mixed cell population contain-
ing hESCs (H9 hNanog-pGZ) expressing GFP and HDF pre-labelled
with CellTrace Violet at aratio of 1:1 (each 1 x 10° cells). The mixed
cell populations were incubated with rBC2LCN-magnetic beads.
The suspensions were treated with a magnet, and the supernatant
containing unbound cells was collected for flow cytometry (Fig. 1).
The flow of the experiment and details of each sample are shown in
Fig. 1a and b, respectively. We tested three concentrations of
rBC2LCN (0.1, 1, and 10 pg/ml) (Fig. 1b—h). Residual hESC levels
evaluated by the percentage of GFP-positive and CellTrace Violet-
negative cells after magnetic sorting were reduced up to 0.092%
(Fig. 1h). The reduction in hESCs was correlated with increased
rBC2LCN concentration (Fig. 1c—h). Magnetic beads alone as a
negative control did not affect hESCs dislodged from the HDF/hESC
mixture (Fig. 1e). These results suggest that rBC2LCN-bound mag-
netic beads efficiently eliminate live pluripotent stem cells from
heterogeneous cell mixtures.

3.2. rBC2LCN-bound magnetic beads eliminated hiPSCs from a
heterogeneous cell mixture

In order to test more realistic conditions for cell sorting, we next
used Mitomycin C-treated HDF (MMC-HDF) and unlabelled hiPSCs
(201B7) [2]. The hiPSC/MMC-HDF mixtures were incubated with
rBC2LCN-magnetic beads. The subsequent analysis is the same as in
Fig. 1, and the collected supernatant was used not only for flow
cytometry (Fig. 2) but also for gene expression analysis by ddPCR
(Fig. 3) and teratoma formation assay (Fig. 4). We detected hiPSCs
as tumour rejection antigens-1—60 (TRA-1—60)-positive cells [39]
(Fig. 2). The flow of the experiment and details of each sample are
shown in Fig. 2a and b, respectively. The percentage of TRA-1-60-
positive cells after magnetic sorting by rBC2LCN (0.19—0.29%)
closely matched that of an MMC-HDF sample without iPSCs (0.23%)
(Fig. 2c—h). We examined three concentrations of rBC2LCN (1, 10,
and 100 pg/ml) (Fig. 2b), which were 10-fold higher than those
used in Fig. 1, and no substantial difference in hiPSC removal effi-
ciency was seen among them. The biotin-labelled BSA-magnetic
beads as a negative control had no effect on eliminating hiPSCs
from an MMC-HDF/hiPSC mixture (Fig. 2e). This result indicated
that magnetic sorting using rBC2LCN efficiently functioned to
eliminate hiPSCs from cell mixtures, and the separation efficiency
was comparable to the limit of detection of flow cytometry with
TRA-1-60. In subsequent experiments, we fixed the concentration
of rBC2LCN to 10 pg/ml.

3.3. Detection of hiPSCs by droplet digital RT-PCR after magnetic
cell separation

We also performed ddPCR analysis, allowing evaluation of the
frequency of hiPSCs remaining in the cell suspension after magnetic
cell separation using rBC2LCN. For discrimination of dead cells,
magnetically sorted or unsorted cells were stained with propidium
iodide (PI). The population of Pl-negative live cells was collected
and analysed (Fig. 3a—d and see Supplementary Tables S1—3 on-
line). Expression levels of NANOG (Fig. 3a) and LIN28 (Fig. 3b)
relative to GAPDH were dramatically and significantly reduced in
the sample sorted by rBC2LCN-magnetic beads, as compared to the
sample sorted by BSA-magnetic beads, which was equivalent to the
unsorted control sample (NANOG: p < 0.0001, LIN28: p = 0.0037).
Furthermore, the levels of NANOG (Fig. 3c) and LIN28 (Fig. 3d)
mRNAs in sorted cell mixtures were evaluated by comparing to the
samples in which total RNA extracted from HDF (HDF RNA) was
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Fig. 1. Magnetic cell separation using rBC2LCN eliminated hESCs from an hESC/HDF mixture. (a) Experimental design to remove hESCs using magnetic beads. HDF labelled with
a CellTrace Violet, and hESC line H9 hNanog-pGZ (H9) were mixed in a ratio of 1 to 1. The cells incubated with Dynabeads M—280 Streptavidin (M-280-SA) and biotinylated-
rBC2LCN or M-280-SA alone were separated by a magnet and then analysed by flow cytometry. (b) Details of sample preparation (c—h) Flow cytometry of cells selected nega-
tively by magnetic beads. (c) HDF alone showed 0% of GFP-positive and CellTrace Violet-negative cells (sample 1). (d) hESC alone showed 99.8% GFP-positive and CellTrace Violet-
negative cells (sample 2). (e) 42.0% of GFP-positive and CellTrace Violet-negative cells were detected in the prepared cells using M-280-SA alone (sample 3; control). Selection using
(f) 0.1 pg/ml (sample 4), (g) 1 pg/ml (sample 5), or (h) 10 ug/ml (sample 6) of biotinylated-rBC2LCN reduced the ratio of GFP-positive and CellTrace Violet-negative cells in a rBC2LCN

concentration (9.72, 1.04, and 0.092%, respectively)-dependent manner.

spiked with total RNA extracted from hiPSCs (hiPSCs RNA) at a ratio
of 0, 0.025, or 0.25%. No statistically significant differences in
expression levels of NANOG or LIN 28 were found among HDF RNA,
HDF RNA mixed with 0.025% of hiPSCs RNA, or total RNA extracted
from the cells sorted by rBC2LCN-magnetic beads. That is, the

rBC2LCN magnetic beads removed iPSCs from a 1:1 mixture of
iPSCs and HDF to a degree that was not significantly different from
HDF alone in NANOG and LIN28 expressions. These results sug-
gested that magnetic cell separation using rBC2LCN is quite effi-
cient for eliminating hPSCs from mixed cell populations.



310

C
A1 oM

SSC-A

400K

f
A!.DM

SSC-A

Fig. 2. Magnetic cell separation using rBC2LCN eliminated hiPSCs from an hiPSC/MMC-HDF mixture. (a) Experimental design to remove hiPSCs using magnetic beads. HDF and
hiPSCs were mixed in a ratio of 1 to 1. The cells incubated with Dynabeads M—280 Streptavidin (M-280-SA) and either biotinylated-rBC2LCN or biotinylated-BSA, were separated by
a magnet, and then analysed by flow cytometry. (b) Details of sample preparation (c—h) Flow cytometry of cells selected negatively by magnetic beads. (c) HDF alone showed 0.23%
of TRA-1-60-positive cells (sample 1). (d) hiPSC alone showed 95.2% TRA-1-60-positive cells (sample 2). (e) TRA-1-60-positive cells (51.8%) were detected in the prepared cells using
100 pg/ml of biotinylated-BSA (sample 5; control). Selection using (f) 1 ug/ml (sample 4), (g) 10 ug/ml (sample 5) or (h) 100 pg/ml (sample 6) of biotinylated-rBC2LCN reduced the

Y. Haramoto et al. / Regenerative Therapy 14 (2020) 306—314

Dynabeads M-280 StreptavidinO

biotinylated-rBC2LCN

(or biotinylated-BSA)

HDF
20 | (8 [¢
. 9
mix (1:1) °9‘° —_— ~ —> == Flow cytometry
[ o 4
" 1st antibody: TRA-1-60
) % é ép 2nd antibody: anti-mouse IgM AF488
. o I =G
nese & s &
 sample oy 2 3 4 5 G
cell © HDF : hiPSC : HDF:hiPSC=1:1 : HDF:hiPSC=1:1 : HDF:hiPSC=1:1 : HDF:hiPSC=1:1
probe E s . biotinylated- : biotinylated- : biotinylated- biotinylated-
: BSA rBC2LCN rBC2LCN rBC2LCN
probe concentration - 100 pg/ml 1 pg/mi 10 pg/mi 100 pg/ml
beads Do M-280-SA M-280-SA M-280-SA M-280-SA

sample 1 (TRA-1-60+: 0.23%)

800K =

600K = .

200K =

T L | L | T L}
10! 102 10° 104 10°

>

TRA-1-60

sample 4 (TRA-1-60+: 0.29%)

800K =

600K =

400K =

200K =1

L B B B R
10’ 102 102 10* 10°

>

TRA-1-60

d
A‘ oM

SSC-A

g
A| oM

SSC-A

sample 2 (TRA-1-60+: 95.2%)

800K =

600K =

400K =

200K =

L B B B L B
10’ 102 102 10* 10°

>

TRA-1-60

sample 5 (TRA-1-60+: 0.19%)

800K =

600K =

400K =

200K =

" TRA-1-60 +
) 0.19

L} T L | T L |
10 102 102 10* 10°

>

TRA-1-60

e
A1 oM

SSC-A

h
A! oM

SSC-A

sample 3 (TRA-1-60+: 51.8%)

800K =

600K =

200K =

Rk § Ly T L | Lk |
10! 102 10 10 10°

>

TRA-1-60

sample 6 (TRA-1-60+: 0.29%)

800K =
600K =
400K =

200K .

T T Ty T T
10! 102 10° 10* 10°

>

TRA-1-60

ratio of TRA-1-60-positive cells to levels approximately equal to that of HDF alone (0.19—0.29% vs 0.23%, respectively).

3.4. Teratomas were not produced by transplantation of negative-

sorted cells by rBC2LCN-magnetic beads

The standard method to define pluripotent stem cells capable of
generating tumoural structures containing tissues representing the
three germ layers is to perform a teratoma formation assay
[40—44]. To ensure effective removal of teratoma-forming cells,

in vivo, we performed a teratoma formation assay in immunodefi-
cient mice. We transplanted either cells magnetically sorted using
rBC2LCN-magnetic beads or unsorted hiPSC/MMC-HDF mixtures
into the testes of NOD/ShiJic-scid]cl mice and left them to engraft
for 3 months (Fig. 4a). If any residual hiPSCs remained after sorting,
these cells would form teratomas. In the animals transplanted with
sorted cells or Matrigel alone, the rate of teratoma formation was
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Fig. 3. Detection of hiPSCs by droplet digital RT-PCR. Droplet digital PCR analysis to estimate residual hiPSC frequency after magnetic cell separation by rBC2LCN was performed
by evaluating the expression of pluripotent stem cell marker genes, NANOG (a, c) and LIN28 (b, d). After mixing 1 x 10° of iPSCs and HDF at a ratio of 1: 1 respectively, negative-
sorted cells by rBC2LCN-magnetic beads were analysed (a—d) Absolute counts were normalised to GAPDH (per 1000 copies of GAPDH). Results are presented as mean + standard
deviation of independent triplicate experiments (n = 3). Data were analysed by one-way ANOVA followed by Tukey's HSD test (a, b) The relative copy numbers of NANOG (a) and
LIN28 (b) mRNAs in 50 ng of total RNA derived from magnetically sorted or unsorted cell mixtures. Significant differences are represented by different letters (Fig. 3a: p < 0.001;
Fig. 3b: p < 0.005) (c, d) Relative copy number comparison between NANOG (c) and LIN28 (d) mRNAs in 50 ng of total RNA derived from magnetically sorted cell mixtures, and
comparison samples in which HDF-derived total RNA was spiked with hiPSC-derived total RNA at a ratio of 0, 0.025%, or 0.25% by weight. There are significant differences between
different letters (p < 0.001). B7: human iPS cell line 201B7. BC2-mag: rBC2LCN-magnetic beads. BSA-mag: BSA-magnetic beads.

0% (n = 8 or four mice, n = 16 or eight testes for the injection of
unsorted cells or Matrigel alone, respectively; Fig. 4b and c, and see
Supplementary Table S4 online). In contrast, most testes trans-
planted with unsorted cell mixtures developed teratomas; 14 out of
16 transplanted testes formed large teratomas (>1.7 cm in maximal
diameter) (n = 8 mice; n = 16 testes) (Fig. 4b and ¢, and see
Supplementary Table S4 online). Statistical analysis of maximal
diameter of testes revealed significant size differences between
unsorted and sorted cell transplantation (p < 0.0001, Fig. 4b and see
Supplementary Table S5 online). Further microscopic observation
by Haematoxylin and Eosin (H&E) staining showed these teratomas
contained tissues derived from the three germ layers: ectoderm
(immature neuroepithelium), mesoderm (cartilage), and endoderm
(glandular epithelium) (Fig. 4c). In agreement with the results from
flow cytometry (Fig. 2) and ddPCR (Fig. 3), magnetic-cell separation
using rBC2LCN effectively removed hiPSCs and could exclude po-
tential teratoma formation in NOD/ShiJic-scidJcl mice as no tera-
tomas were observed in any of the tested animals (Fig. 4b and c).

3.5. Cell sorting efficiency using rBC2LCN-magnetic beads

To evaluate an elimination efficiency of rBC2LCN magnetic
beads, we predicted number of residual iPSCs in cell mixture used
in teratoma formation assay from the ddPCR data. By calculating
based on NANOG and LIN28 expression, the mean + 2SD value of
residual iPSCs in the transplanted cells in the teratoma assay was

about 213 + 615 and 65 + 128 cells, respectively (Supplementary
Fig. S1). These data indicated that approximately 99.8—100% of
iPSCs were eliminated by rBC2LCN-magnetic beads. When using a
mixture of differentiated cells and undifferentiated hPSCs in a ratio
of 1:1, the separation efficiency of hPSCs by magnetic beads with
SSEA4 or 57-C11 antibodies was less than 80% [30,45]. The sepa-
ration efficiency was up to 99.5% using UEA-1 lectin [31]. Although
the experimental conditions were not the same, simple compari-
sons should be avoided, but this technology showed superior per-
formance compared to existing magnetic bead technology using
antibodies and lectins. Our results indicate that even with this
technique, trace amounts of hPSCs can remain in the cell products.
When used as a quality control technology for cell therapy prod-
ucts, the removal efficiency of this technology is not sufficient for
products with a high number of transplanted cells. Previous study
reported that an antibody against SSEA-5 glycan expressed on
hPSCs is a useful tool to removal of teratoma-forming cells. How-
ever, an anti-SSEA-5 antibody alone was insufficient to completely
remove teratoma potential and complete removal was achieved
only after combining SSEA-5 with two additional pluripotent sur-
face markers (SSEA-5/CD9/CD90 or SSEA-5/CD50/CD200) [29]. Cell
sorting by combination of rBC2LCN with other pluripotent surface
markers may also improve separation efficiency. Proper combina-
tions of various techniques, including rBC2LCN, to remove residual
hPSCs in the manufacturing process are important to ensure the
safety of cell therapy products.
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Fig. 4. Teratoma formation assay. (a) Schematic illustration summarising the experimental design. Magnetically sorted cells were resuspended in Matrigel and transplanted by
injection into a testis (20 L volume with <1.0 x 10 cells). (b) Box plot analysis of the size of testes in mice transplanted with Matrigel alone (negative control; n = 8), unsorted
(positive control; n = 16), or sorted (n = 16) cells. The number of days from transplantation to sampling of testes varied depending on teratoma growth. The sizes of testes
transplanted with unsorted cell mixture were significantly larger than those transplanted with sorted cells or Matrigel alone. Data were analysed by one-way ANOVA followed by
Tukey HSD test. ***: p < 0.0001. (c) The appearance of the testes taken from NOD/ShiJic-scidJcl mice transplanted with unsorted (upper left) or sorted (upper right) cells.
Representative H&E-stained sections of testes with teratomas transplanted with unsorted cell mixtures of iPSCs and MMC-HDF, showing the generation of all three germ layers.
Teratoma sections contained immature neuroepithelium (ectoderm), cartilage (mesoderm), and glandular epithelium (endoderm). Scale bar: 50 pm.

4. Conclusions

We optimized and validated a method to remove hPSCs from a
mixture with human fibroblasts using rBC2LCN-conjugated mag-
netic beads (Figs. 1-3). Our results suggested that magnetic-cell
separation using rBC2LCN effectively removed teratoma-forming

pluripotent stem cells from the cell mixture (Fig. 4). We propose
that rBC2LCN is a suitable lectin marker for magnetic beads-based
cell separation and that this application will contribute to the
development of a practical and feasible method for removal of re-
sidual undifferentiated cells. As previously reported, the current
magnetic activated cell sorting (MACS) technology is insufficient to
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meet the purification needs of cell therapy [46]. The relevance and
validation of this technique for cellular transplantation will require
more detailed experiments. In this study, we eliminated pluripo-
tent stem cells from a fibroblast cell line acutely mixed together. For
example, it will be more convincing to demonstrate that pluripo-
tent cells can be separated from pluripotent stem cell-derived cell
products or other cellular lineages that have been cultured together
in the same conditions over time. It is crucial to properly combine
the respective removal techniques according to the application
scope. Further experiments are demanded to develop an optimised
protocol for removal of residual undifferentiated cells.
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